
8

Document Retrieval Metrics for Program Understanding

Eric Harth
Geneva School of Business Administration

Univ. of Applied Sciences Western Switzerland
7, route de Drize, 1227 Carouge, Switzerland

eric.harth@hesge.ch

Philippe Dugerdil
Geneva School of Business Administration

Univ. of Applied Sciences Western Switzerland
7, route de Drize, 1227 Carouge, Switzerland

philippe.dugerdil@hesge.ch

ABSTRACT

The need for domain knowledge representation for program

comprehension is now widely accepted in the program

comprehension community. The so-called “concept assignment

problem” represents the challenge to locate domain concepts in the

source code of programs. The vast majority of attempts to solve it

are based on static source code search for clues to domain concepts.

In contrast, our approach is based on dynamic analysis using

information retrieval (IR) metrics. First we explain how we

modeled the domain concepts and their role in program

comprehension. Next we present how some of the popular IR

metrics could be adapted to the “concept assignment problem” and

the way we implemented the search engine. Then we present our

own metric and the performance of these metrics to retrieve domain

concepts in source code. The contribution of the paper is to show

how the IR metrics could be applied to the “concept assignment

problem” when the “documents” to retrieve are domain concepts

structured in an ontology.

Categories and Subject Descriptors

D.2.7 [Distribution, Maintenance, and Enhancement]:

Restructuring, reverse engineering, and reengineering

General Terms

Algorithms, Measurement, Experimentation

Keywords

Document retrieval metrics, Program comprehension, Domain

ontology, Dynamic analysis.

1. INTRODUCTION
Program comprehension has been a hot topic in software

engineering for more than three decades with pioneering work in

software psychology [12]. As early as 1983, Brooks proposed that

program understanding be defined as the process of re-creating the

links between the domain problem and the program code by

hypothesis generation, refinement and validation [2]. As of 1995,

the main theories of program comprehension for maintenance have

been analyzed by Mayrhauser and Vans who proposed a program

comprehension metamodel [13].

The authors explained that top-down hypothesis generation should

sometimes be complemented by bottom-up program analysis.

These early works highlighted the need for domain knowledge to

be explicitly taken into account in program understanding. This

vision has since gained an increasing acceptance in the software

engineering community [10]. In the mid 90's Biggerstaff,

Mitbander and Webster coined the term “concept assignment" [1]

to name the search and assignment of human-oriented concepts to

the elements of the program code. The authors explain that during

program understanding the software engineer would discover and

interrelate informal human-oriented concepts step by step to build

an understanding of the program (i.e. create a mental model [13,9]).

In fact, this vision is close to that of Brooks [2].

In this paper we propose a new approach to the concept assignment

problem by using ontologies [18] and documents retrieval metrics

[19]. The concepts are then considered the “documents” to retrieve

using “queries” represented by the code of the methods. After some

background information given in section 2, section 3 proposes an

introduction to program understanding and to our approach that

represent the sequence of domain concepts involved in the

execution of the program. Section 4 deal with the identification of

the concepts in the source code, in particular the structure of the

ontology we used and the stemming technique needed to match the

strings. Section 5 deals with the metrics we used to compute the

distance between the terms in the source code of the methods and

the concepts. Section 6 presents the results of our concept retrieval

experiments using several metrics. Section 7 concludes de paper.

The annex in section 10 presents some implementation issues.

2. BACKGROUND
In the paper of Biggerstaff, Mitbander and Webster [1] the notion

of “concept" is not precisely defined. Consequently, many

researchers have since worked on the “concept assignment

problem" while speaking about widely different things. Rajlich and

Wilde recognized this problem and presented the way “concepts"

can be represented in programs and the role they play in program

comprehension [8]. Recently, the kinds of knowledge required by

program maintenance engineers has been summarized in Maalej et

al. [16] that present the current approaches in program

understanding. As far as document retrieval techniques are applied

to the “concept assignment problem”, Marcus proposed a method

to use semantics to drive program analysis [15]. His approach is

based on the retrieval of information from the source code and the

associated documentation (i.e. user manual), using machine

learning models and document indexing techniques. Therefore, this

technique is applicable only if there is some useful and accurate

documentation on the program. This is generally not the case for

legacy systems. Starting from the ideas of Markus, Kuhn at al. [14]

built a tool to identify clusters in source code using the latent

semantic indexing (LSI) over the source artifacts. The inputs of the

indexing mechanism are the identifiers and the comments in the

source code. The trouble is that most of the legacy system for which

program comprehension is needed lack reliable program

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

FIRE '15, December 04-06, 2015, Gandhinagar, India
© 2015 ACM. ISBN 978-1-4503-4004-5/15/12…$15.00

DOI: http://dx.doi.org/10.1145/2838706.2838710

gwenola.dossanto
Texte tapé à la machine
Published in Proceedings of the 7th Forum for Information Retrieval Evaluation which should be cited to refer to this work. DOI 10.1145/2838706.2838710

9

comments. In our research we explicitly represent domain concept

as ontologies. But the key problem to solve is finding a technique

to identify the references to the domain concepts in the source code

of the program. The document/query metaphor borrowed from the

information retrieval (IR) domain, allows us to reuse indexing

methods usually applied to text or natural language representation.

In this context several methods are generally used to find similarity

between a list of terms and a corpus of textual documents:

 Classical string distance methods based on character

comparison [5]: Manhattan, Dice, Jaccard, Levenshtein, Jaro-

Winkler distances.

 Vector-based methods based on the Latent Semantic Analysis

(LSA) [3] using the Single Value Decomposition (SVD) to

reduce the size of the original documents without losing their

internal contextual and local semantic relationship [6]. The

LSA methods can be viewed as a space compression method

that simplifies drastically the similarity calculation among the

original query and the target documents. However, as noted by

Oates et al. [7], LSA has some drawbacks and are best used in

pattern recognition and data clustering.

 Statistical methods based on TFIDF frequency analysis [11,17],

are easier to implement than LSA and generally quite effective.

They exploit statistic terms occurrence within a document and

their global usage among the corpus. The more frequently a

term appears in corpus, the less discriminant it is for similarity

calculation.

In our study, Jaccard, Levenshtein and TFIDF techniques have

been evaluated to identify the reference to concepts in the source

code.

3. CONCEPTS, CODE COMPREHENSION
Since the goal of our research is to help with the understanding of

programs, we must analyze program execution. Indeed it is well

known that the semantics of programs comes from the

interpretation of the sequence of its “commands” [4] (i.e. the

program statements). However, in our case, the interpretation must

be at a higher level: in the context of the application domain. In

other words, we must explain what the program does in terms of

the domain concepts. While we could theoretically analyze all the

paths through all the statements of the program, this is infeasible in

practice for industrial size programs. To overcome the problem, one

approach is to choose a set of program usage scenarios (use-cases)

and analyze the code that gets executed when the scenarios are run.

But we are well aware that, depending on the chosen scenario, some

of the program paths may never be executed. However, our

ambition is not to be able to explain every single path through the

program but only the meaningful ones i.e. the ones that correspond

to use cases relevant to the business. Therefore our tool analyzes

the sequence of concepts that get referenced when the program runs

according to some scenario. The interpretation of the (business

related) meaning of the program comes from the comparison of the

sequence of concept with the purpose of the scenario in the business

domain. But a full explanation of our program understanding

technique is beyond the scope of this article. The analysis of the

running of a program is called dynamic analysis. Most often it is

done off-line by analyzing a record of the sequence of methods that

get executed when the scenario is run. This record is called the

execution trace. There are several techniques to generate it. The one

we chose is to instrument the source code of the program that

consists of inserting extra statements in the source code to record

events when the methods are executed. In our implementation, an

event is generated when the method is entered and exited.

Besides, the source code of each method of the program is statically

analyzed to identify the business concepts referenced in the

methods. This allows us to graphically represent the sequence of

the concepts that are referenced when the scenario is run by

displaying the concept involved in each executed method. We call

this representation the “Concept time series” (figure 1). On the left

side we represented the two sources of information needed to

generate the concept time series: the execution trace file (sequence

of method signatures) and the method to concept database. The

latter holds the relation between the methods and the concepts

referenced in each method. Each relation is associated with a

weight that represents the “strength” of the relation (i.e. how

strongly the code of the method evokes the concept). Our analysis

tool then merges the information from these sources to compute the

concept time series presented on the right. The x axis represents

time and the y axis the frequency of the use of the concepts.

Figure 1. Concept Time Series

4. MAPPING CONCEPTS TO METHODS
To map the concepts to the methods, we must rely on clues. These

are the collections of strings that are contained in the methods and

in the concepts. Then, by measuring the overlap between these

collections, we compute the strength of the relation from method to

concept. The domain concepts are structured in an ontology i.e. an

explicit representation of the concepts and the links between them.

The concepts are represented by a name and a set of attributes that

characterize the concept. The concepts could be linked to each other

by several relations, but two of them hold a specific semantic:

 Subclass-of (ISA): the specialization link that goes from a

specialized concept to a more generic one.

 Part-of: the link that goes from a concept that represents a

component to the concept that represents the compound.

This concept representation is manually built with the help of an

expert from the domain and is rather independent from any

programs. But the developers of programs in this domain may have

some special way to name the concepts and their attributes. For

example there could be naming conventions in the enterprise and/or

programming language constraints that may prevent the

programmer from using the full names. If possible, we review the

domain concept ontology with programmers to know how the

concepts and their attributes may be named in the programs. This

lead to an ontology having two layers:

1. The program independent layer where the concepts and

attributes are named according the conventions in the

domain.

2. The program specific layer which translates the strings of the

first layer to strings used in the programs.

This is showed in figure 2. The strings used to describe the

concepts in layer 1 are translated, in layer 2, to the strings that may

be found in the programs. For example, the concept in layer 1 can

be represented by program classes with some specific naming

convention. Moreover, each concept attribute may correspond to

10

several identifiers in the programs. In particular, this is the case for

legacy software which underwent several generations of

maintenance programmers. Moreover, there could also be

conventions to name the variables that will reference the instances

of a class. These candidate names for the variables can also be

recorded in layer 2. Of course, the same string in layer 2 could be

mapped to the attributes of several concepts in layer 1.

Figure 2. Business concepts ontology structure

Figure 3 displays a screenshot of our tool showing the

representation of the two layers of an ontology in the domain of

heat exchangers. It shows structure of a concept (“Fluide”) with its

attribute names (left) and the corresponding program identifiers

(right). The bottom of the screen displays, on the left, the class

name representing the concept in the programs and on the right the

identifiers (variable names) we may find in the programs to

reference instances of this class.

Figure 3. Layers 1 and 2 for a concept in the ontology

In summary, the collection of strings associated to a concept

includes the name of the concept, the name of its attributes as well

as the programming level equivalent of these strings. As for the

methods, the strings are the names of: the methods, the parameters,

the variables, the constants as well as the names of the types of: the

parameters, the variables and the object returned by the method.

Figure 4 presents the mapping between the method’s source code

and the concepts that our two layers ontology enables. Beside each

concept (oval) we represented a few identifiers that can be used to

retrieve the references to the concepts in the source code.

Figure 4. Mapping concepts to method’s source code

A key hypothesis in our work is that the program source code is not

obfuscated and that all identifiers (methods, parameters, variables)

are meaningful and carefully chosen by the programmers.

5. METRICS

5.1 Introduction
There are many techniques available to match the strings of the

methods and the concepts. The simplest is to compute the size of

the intersection of the collections of strings associated to the

methods and the concepts. However, there are many problems with

this. In particular, we know that some strings are very specific to a

concept while others are very general. Therefore, the specific

strings should have more weight in the matching than general ones.

If we roughly apply this simple technique, several non-relevant

concepts could be linked to the methods. For example, if a method

contains the string “height”, all the concepts with a “height”

attribute will be associated to it. Another problem is to cope with

the special syntax of the strings in the programs. For example the

method names are often composed of several words identified

using the camel syntax. Such string would probably not correspond

to any single string contained in the concepts (layer 1). Then, we

must split the strings from the program into their components words

before proceeding with the matching. Finally, the names could be

written in the singular or plural forms on both sides. One should

therefore simplify these strings to make them comparable (i.e.

extract the root form or “stem” of the string). We soon realized this

kind of processing to be analog to what is used in document

retrieval if one considers the concepts to be the documents to

retrieve and the strings in the method the element of the “query”.

Then, we explored several metrics to find the one that would be

best suited to the problem. Since we are dealing with document

retrieval techniques, we will use the word “term” to mean any string

that is relevant for the matching. The collections of terms to

compare are computed using the following processes (Figure 5):

Figure 5. Production of the terms to compare

The “stemisation” a procedure used to reduce inflected or derived

words to their root form [21]. As a result, a collection of root terms

is associated to each method and each concept. The matcher will

11

then use a metric to compute the method to concept relation (figure

6).

Figure 6. Term matching

5.2 TF-IDF
This is one of the most popular metrics for document retrieval [17].

If the general idea of the metric is always the same, the specific

implementation may vary. Here is the way we applied it to our

context. Let M be the set of methods, C be the set of concepts, tc(c)

be the collection of the terms associated to the concept c, t be a term

and occurrences(t,c) be the number of occurrences of t in c. Then

we have:

 TF(t,c), the Term Frequency, is the number of occurrences of

the term t in the concept c relative to the number of term in c:

TF(t,c) = occurrences(t,c) / | tc(c) |. This technique allows the

computation to be independent from the concept

size (number of terms).

 IDF(t,C), the Inverse Document Frequency, computes the

inverse proportion of the term t over the entire concept corpus

as: IDF(t,C) = log (| C | / (1 + | { c C | t tc(c)} |))

By multiplying both measures, we get the final metric:

TFIDF(t,c) = TF(t,c) * IDF(t,C), which expresses the “strength” of

the term t to retrieve the concept c. Now we must gather the results

for all the terms in the collections. Following a technic used in IR,

for each concept c we will compute a vector in the space of the

terms where each element of the vector is the value of TFIDF(t,c)

for the corresponding term t. Usually, in document retrieval, to

compute the “proximity” of two documents we compute the cosine

of the angle between their vectors. However in our case we are not

interested in the proximity of the concepts themselves but in the

proximity of the methods to the concepts. Therefore we must

compute a TF-IDF vector for the methods too. But for the methods

the term frequency is not relevant. Indeed the number of times a

term (a variable name for example) is used in a method is much less

an indication of the “strength” of the term in the method (whatever

it could mean) than it is a characterization of the programming

style. Moreover, it is not relevant to compute the IDF for the

methods because the goal is not to retrieve the methods but the

concepts from the strings found in the methods. Consequently we

reuse the IDF factor computed for the concepts. In summary the

values of the TF-IDF metric for a method m are:

 TF(t,m) = 1 if the term is present in the method, 0 otherwise.

 IDF(t,M) = IDF(t,C)

The computation of the cosine of the angle between the vectors of

a concept and a method gives the strength of the evocation of the

concept by the method. If mi is the vector of a method and cj is the

vector of a concept, the weight of the evocation (mi, cj) is:

𝑤𝑒𝑖𝑔ℎ𝑡_𝑡𝑓𝑖𝑑𝑓(𝑚𝑖 , 𝑐𝑗) = 𝑚𝑖 𝑐𝑗 / |𝑚𝑖| ∗ | 𝑐𝑗|

5.3 Jaccard similarity
The Jaccard similarity is a statistical measure to compare the

diversity of two sets of terms [23]. In our context, it is computed as

the ratio between the sizes of the intersection and the union of the

sets of terms found in the concepts and the methods. It is defined

as:

𝑤𝑒𝑖𝑔ℎ𝑡_𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑐, 𝑚) =
|𝑡𝑐(𝑐) ⋂ 𝑡𝑚(𝑚)|

|𝑡𝑐(𝑐) ⋃ 𝑡𝑚(𝑚)|

Where:

 c : a concept in the ontology

 m : a method in the source code

 tc(c) : collection of the terms associated to the concept c

 tm(m) : collection of the terms associated to the method m

This coefficient is usually normalized in the interval [0,1] and is

interpreted as semantic proximity between a concept and a method.

The greater the coefficient the more similar the concept c and the

method m.

5.4 Levenshtein similarity
This is based on the calculation of the edit distance - or Levenshtein

distance - between two string s1 and s2. This distance measures the

required modifications in the string s1 (character insertion,

deletion, substitution) to transform it into the string s2.

edit_dists1,s2(l1,l2) = If MIN((l1,l2) = 0 Then MAX(l1,l2)
 Else MIN (edit_dists1,s2 (l1-1,l2) +1,
 edit_dists1,s2 (l1,l2-1) +1,
 edit_dists1,s2 (l1-1,l2-1) + cost(l1,l2))

cost(l1,l2) = If s1(l1) = s2(l2) Then 0 Else 1

Where:

 s1 : first term to compare

 s2 : second term to compare

 l1 : length of s1

 l2 : length of s2

 s(y) : the character y of the string s

 cost(l1,l2) : single character match between s1 and s2.

This metric is usually normalized in the interval [0,1]:

𝑙𝑒𝑣𝑒𝑛_𝑑𝑖𝑠𝑡(𝑠1, 𝑠2) =
𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑠1,𝑠2(|𝑠1|, |𝑠2|)

𝑚𝑎𝑥 (|𝑠1|, |𝑠2|)

To convert the distance into a similarity metric, we calculate its

inverse:

𝑙𝑒𝑣𝑒𝑛_𝑠𝑖𝑚(𝑠1, 𝑠2,) = 1 − 𝑙𝑒𝑣𝑒𝑛_𝑑𝑖𝑠𝑡(𝑠1, 𝑠2)

The greater the coefficient, the more similar the terms. The

Levenshtein similarity between a concept c and a method m is

finally computed as the average of the distance computed over the

Cartesian product of both collections of terms, with duplicate pairs

removed:

𝑤𝑒𝑖𝑔ℎ𝑡_𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑐, 𝑚) = 𝑀𝐸𝐴𝑁(𝑙𝑒𝑣𝑒𝑛_𝑠𝑖𝑚(𝑡𝑐 , 𝑡𝑚))

 tc tc(c)

 tm tm(m)
Where:

 tc(c) : collection of the terms associated to the concept c

 tm(m) : collection of the terms associated to the method m

5.5 Structural similarity
The three above mentioned metrics do not take the origin of the

term into account when computing the strength of the match. By

origin we mean: is it a full string or a string component, is it a class

name or an attribute name, does the concept have several matching

attributes or not, etc. Hence we designed a metric that takes the

origin of each term into account. The metric is defined by the

following rules. First, if the name of a concept is matched against a

term in the method, then we are sure the concept to be referenced

12

(weight = 1). Second if we match the name of a class represented

in the layer 2 of the ontology with a full type name in a method,

then we know that the concept associated to this class name is

referenced by the method (weight = 1). If we match an identifier

for that class (candidate name of a variable) with a term in the

method, we are also quite confident that the concept is referenced

(weight = 1). However, if this identifier only matches a subterm in

the method (a single word composing a longer term), the

confidence is less. We heuristically use a weight of 0.8 in this case.

Example, if we know that an instance of the class “PointClass”

could be referenced by a variable named “pt”, then the match of

that string with the term “first_pt” found in the code would get a

weight of 0.8. Next, if each of the attribute names of a concept

(layer 1) is found in a method, we are almost sure the concept itself

to be referenced by the method. However there remains some doubt

because of the possible overlap in the attribute names among the

concepts. An attribute is found in a method either if its name or a

corresponding program identifier represented in the layer 2 of the

ontology is matched to a full term in the method, or if such

identifier is matched to a subterm in the method. To account for the

uncertainty, the match of all the attributes of a concept would lead

to a total weight of 0.8. Then if only a subset of the attributes of a

concept is found in the method, we reduce the weight accordingly.

Therefore each single attribute match gets a weight of 0.8*

1/#attributes in concept. Finally, the match of an attribute name

could be partial if a component word only of an attribute name is

matched with a subterm in a method. If all the component words of

an attribute name are matched to subterms in a method, we are still

unsure about a true reference to the attribute because of the overlap

in the component words among the attribute names. To account for

this extra uncertainty, the match of all the component words of all

the attributes of a concept would lead to a total weight of 0.7. Now,

if only a subset of the words of an attribute is matched, we reduce

the weight accordingly. Then, each single attribute’s component

word match gets a weight of 0.7*1/#words in the attribute*

1/#attributes in concept. Since the identifier of an attribute in layer

2 is supposed to be the exact string to be found in a program, we do

not have a rule for its partial match.

The above rules are all equally important since each one processes

some specific concept reference case (through class names,

variable names or attribute names). They will then cover several

application contexts and programming styles. In summary, the

structural similarity metric is defined by the algorithm showed in

figure 7 where:

 full_name(c) return the full name of a concept

 class_names(c) return any name of a class that represents the

concept in the program code

 class_identifiers(c) returns any identifier representing the

name of a variable that references an instance of such class

 #attributes(c) returns the number of attributes declared in the

concept c

 #components(a) returns the number of component words of

the attribute a

 full_name(a) return the full name of an attribute

 attr_identifiers(a) returns any identifier representing the

attribute a in the program code.

6. RESULTS

6.1 Case Study
To evaluate the performance of the metrics in the retrieval of the

concepts references in the methods we ran a set of experiments on

the three projects listed in table 1. The first two projects are open

source projects and the last one is an old program written by our

industrial partner.

Algorithm:

weight_struct(c,m) = 0.

For a given concept c and method m
 If (full_name(c) OR class_names(c) OR class_identifiers(c)) is

 matched to a full term in m then weight_struct(c,m) = 1

 Else

 If class_identifiers(c) is matched to a subterm in m

 Then weight_struct(c,m) = 0.8

 Else

 For each attribute a of c

 If (full_name(a) OR attr_identifiers(a)) is matched to a full

 term in m OR if attr_identifiers(a) matches a subterm in m

 Then weight_struct(c,m) =

 weight_struct(c,m) + 0.8 * 1/#attributes(c).

 Else for each component word w of a
 If the word is found in m

 Then weight_struct(c,m) = weight_struct(c,m)
 + 0.7*1/#components(a)* 1/#attributes(c).

 EndIf

 EndIf

 EndFor

 EndIf

 EndIf

EndFor

Figure 7. Structural similarity metric algorithm

This is the project we help it understand. It was originally written

in Fortran and was later translated to C / C++. Therefore the

structure of the program is awkward and not really object oriented.

It is therefore very difficult to understand for non-specialists (an

even difficult for specialists of the domain).

Table 1 – Project in the case study

Project Description Lang. LOC

Genetics
Program trying to retrieve an arbitrary

DNA sequence using a genetic
algorithm

Java 403

JHotel
Program managing hotel reservations
and customers

Java 21475

Devor
Program computing heat exchanger
geometry and constraints

C/C++ 100949

6.2 Estimation of Metrics Relevance
As it is common in IR field, we will use the precision and recall

factors to measure relevance of the concepts found in the methods.

The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 factor expresses the ratio of the retrieved concept

that are corrects i.e. the ones that an expert would retrieve by hand.

A precision factor of 1 would mean that all retrieved concepts are

correct concepts (but there could be more correct concepts than

retrieved). The recall factor is the ratio of the correct concepts that

are retrieved. A recall factor of 1 would mean that all correct

concepts are retrieved (but we may have retrieved more concepts

some of which are not correct). To identify the correct concepts, we

did the work manually through manual code inspection: we

identified all the concepts truly referenced in the method’s source

code.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑚, 𝑤) =
|𝑉(𝑚) ∩ 𝑇(𝑚, 𝑤, 𝛼) |

|𝑇(𝑚, 𝑤, 𝛼)|

𝑟𝑒𝑐𝑎𝑙𝑙(𝑚, 𝑤) =
|𝑉(𝑚) ∩ 𝑇(𝑚, 𝑤, 𝛼) |

|𝑉(𝑚)|

13

Where:

 𝑚 = the method considered

 𝑤 = the metric considered

 𝛼 = the metric threshold to keep a retrieved concept

 𝑉(𝑚) = set of correct concepts referenced in m.

 𝑇(𝑚, 𝑤, 𝛼) = set of concepts retrieved in m with metric w

and threshold 𝛼

We can now apply both measures to a project (where n is the

number of methods):

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤) =
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑚𝑖 , 𝑤)𝑛

𝑖=1

𝑛

𝑟𝑒𝑐𝑎𝑙𝑙(𝑤) =
∑ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑚𝑖 , 𝑤)𝑛

𝑖=1

𝑛

And finally combine them with the unique F-measure [24]:

𝐹𝛽(𝑤) =
(1 + 𝛽) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤) ∗ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑤)

(𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤) + 𝑟𝑒𝑐𝑎𝑙𝑙(𝑤)

Where:

 𝛽 = weight of recall to precision

To compare the metrics we computed the F-measure with 𝛽 = 1

(F1 measure) for each of the projects and metrics with 𝛼 = 0.2

(Table 2), 0.4 (Table 3), 0.6 (Table 4). The performance of each

metric as a function of the project is presented in figures 8 to 10.

Table 2 - Threshold 0.2

Project Metric Precision Recall F1-measure

Genetics

TFIDF 0.80159 0.74603 0.77281

Jaccard 0.71429 0.75397 0.73359

Levenshtein 0.62698 0.59524 0.61070

Structure 0.71429 0.71429 0.71429

JHotel

TFIDF 0.59322 0.58898 0.59109

Jaccard 0.59322 0.54379 0.56743

Levenshtein 0.42542 0.43362 0.42948

Structure 0.68927 0.71328 0.70107

Devor

TFIDF 0.50467 0.50467 0.50467

Jaccard 0.47819 0.46885 0.47347

Levenshtein 0.89252 0.89252 0.89252

Structure 0.45327 0.45327 0.45327

Table 3 - Threshold 0.4

Project Metric Precision Recall F1-measure

Genetics

TFIDF 0.76190 0.44444 0.56140

Jaccard 0.54762 0.37302 0.44376

Levenshtein 0.14286 0.08730 0.10837

Structure 0.69048 0.47619 0.56365

JHotel

TFIDF 0.69774 0.67090 0.68406

Jaccard 0.52542 0.51695 0.52115

Levenshtein 0.49153 0.49153 0.49153

Structure 0.69576 0.71328 0.70441

Devor

TFIDF 0.48131 0.48131 0.48131

Jaccard 0.46262 0.46262 0.46262

Levenshtein 0.46262 0.46262 0.46262

Structure 0.37912 0.49361 0.42885

Table 4- Threshold 0.6

Project Metric Precision Recall F1-measure

Genetics

TFIDF 0.66667 0.35714 0.46512

Jaccard 0.23810 0.17460 0.20147

Levenshtein 0.09524 0.03968 0.05602

Structure 0.69048 0.47619 0.56365

JHotel

TFIDF 0.52542 0.51412 0.51971

Jaccard 0.49153 0.49153 0.49153

Levenshtein 0.49153 0.49153 0.49153

Structure 0.69052 0.70833 0.69931

Devor

TFIDF 0.46729 0.46729 0.46729

Jaccard 0.46262 0.46262 0.46262

Levenshtein 0.46262 0.46262 0.46262

Structure 0.37912 0.49361 0.42885

Figure 8. F1 measure, threshold 0.2

Figure 9. F1 measure, threshold 0.4

Figure 10. F1 measure, threshold 0.6

If we put aside the special result for Levenshtein in the Devor

project with threshold = 0.2, that we must further investigate, the

interpretation of the results are the following. Figure 8 to 10 show

that our specific “Structure” metric at least equals but often

outperforms all the other metrics on all projects whatever the

threshold. This is due to the special fit of the metric to the semantics

0

0.2

0.4

0.6

0.8

1

Genetics JHotel Devor

TFIDF

Jaccard

Levenshtein

Structure

0

0.2

0.4

0.6

0.8

Genetics JHotel Devor

TFIDF

Jaccard

Levenshtein

Structure

0

0.2

0.4

0.6

0.8

Genetics JHotel Devor

TFIDF

Jaccard

Levenshtein

Structure

14

of the “documents” to retrieve. We can also note that TFIDF works

better than Levenshtein or Jaccard. An interesting finding is that all

metrics seem to converge to about the same value whatever the

threshold for the Devor project. But Devor is by far the largest

project by the number of lines of code, 5 times bigger than JHotel

and 250 times bigger than Genetics. So far, we do not understand

if this convergence is an effect of the size or if this is driven by

some other specific characteristics of Devor. But project size is

clearly a candidate hypothesis since JHotel, which is 50 times

bigger than Genetics, seems to show a much smaller spread of

values for the metrics (for threshold > 0.2) than Genetics. The poor

performance of Levenshtein does not come as a surprise since the

metrics apply to the sets of “stemmized” words (all variations of a

particular word have been removed). Then the comparison of two

words is either 0 or large. Then the precision should be lower in

comparison to the other metrics, which is mostly the case.

7. CONCLUSION
In this paper we explore the use of information retrieval approaches

and metrics to the “concept assignment problem” [1]. We saw that

the best performance is reached when we use our specific metric,

the “Structure” metric, that takes the syntactical category of the

terms (concept name or identifier, attribute name or identifier) into

account. However we consider that “Structure” misses the

discriminatory power of the IDF factor. Indeed with “Structure” all

the terms within their syntactic category are considered equally

relevant to identify some concept. But a term that is present in only

one concept is much more relevant to identify this concept than

those which are present in several concepts. Then, we think that a

combination of the Structure metric with the IDF factor may further

improve the performance of the concept assignment to the methods.

This is what we will investigate in the future. Finally, the Concept

Time Series that the concept retrieval metrics allows to display

(§10.3) is a powerful tool to investigate the patterns of concept

invocations when a program runs. By identifying these patterns we

can further “summarize” the information of the execution trace

hence to generate some abstract explanation of the implementation

of the scenario.

8. ACKNOWLEDGEMENT
This work has been developed in the context of the Ontoreverse

project supported by the Interreg IV program.

9. REFERENCES
[1] T. J. Biggerstaff and B. Mitbander. 1994. Program

understanding and the concept assignment problem.

Communications of the ACM, 37(5).

[2] R. Brooks. 1983. Towards a theory of the comprehension of

computer programs. Intl. J. of Human-Computer Studies,

18(6).

[3] Dumais S.T., Furnas G.W., Landauer T.K., Deerwester S.,

Harshman R. 1988. Using Latent Semantic Analysis to

Improve Access to Textual Information. Proc of the ACM

CHI.

[4] Floyd R.W. 1967. Assigning Meaning to Programs. In:

Schwartz J.T. Editor, Mathematical Aspects of Computer

Science - American Mathematical Society.

[5] Moreau E., Yvon F., Cappé O. 2008. Robust Similarity

Measures for Named Entities Matching. Proc. of the Int.

Conf. on Computational Linguistics.

[6] Maletic J.I., Marcus A. 2001. Supporting Program

Comprehension Using Semantic and Structural Information.

Proc. of the IEEE ICSE.

[7] Oates T., Bhat V., Shanbhag V. 2002. Using Latent Semantic

Analysis to Find Different Names for the Same Entity in Free

Text. Proc. of the ACM WIDM

[8] V. Rajlich and N. Wilde. 2002. The role of concepts in

program comprehension. Proc. of the IEEE Workshop on

Program Comprehension.

[9] S. Rugaber. 1995. Program comprehension. Encyclopedia of

Computer Science and Technology, 35(20).

[10] S. Rugaber. 2000. The use of domain knowledge in program

understanding. Annals of Software Engineering, 9(1-4).

[11] Salton G., Buckley C. 1988. On the Use of Spreading

Activation Methods in Automatic Information Retrieval.

Proc. of the ACM SIGIR.

[12] Shneiderman B. 1980. Software psychology: human factors

in computer and information systems. Winthrop Pub.

[13] von Mayrhauser A. , Vans. A. M. 1995. Program

comprehension during software maintenance and evolution.

IEEE Computer, 28(8).

[14] Kuhn A., Ducasse S., Girba T. 2005. Enriching Reverse

Engineering with Semantic Clustering. Proc. of the IEEE

WCRE.

[15] Marcus A. 2004. Semantic Driven Program Analysis. Proc of

the IEEE ICSM.

[16] Maalej W., Tiarks R., Roehm T., Koschke R. 2014. On the

Comprehension of Program Comprehension. ACM Trans. on

Software Eng. and Methodology, 23(4).

[17] Ramos J. 2003. Using TF-IDF to Determine Word Relevance

in Document Queries. Proc. of the 1st Instructional

Conference on Machine Learning.

[18] Horrocks I. 2008. Ontologies and the Semantic Web.

Communications of the ACM 51(12).

[19] Nguyen V.T., Sallaberry C., Gaio M. 2013. Mesure de la

similarité entre termes et labels de concepts ontologiques.

(« Measurement of similarity between terms and labels

ontological concepts”. Paper in french). Proc of the Conf. en

Recherche d'Information et Applications.

[20] Schorn M. 2009. Using CDT APIs to programmatically

introspect C/C++ code. EclipseCon, Santa Clara, California.

[21] Porter M.F. 1997. An algorithm for suffix stripping. Readings

in information retrieval. Morgan Kaufmann Pub.

[22] OWL API. 2015. A Java API and reference implementation

for creating, manipulating and serializing OWL Ontologies.

http://owlapi.sourceforge.net/. Retrieved August 2015.

[23] Hadjieleftheriou M., Srivastava D. – 2010. Weighted Set-

Based String Similarity. IEEE Data Eng. Bull.33(1).

[24] Magdy W., Jones G.J.F. 2010. A Score Metric for Evaluating

Recall-Oriented Information Retrieval Applications. Proc. of

the ACM SIGIR.

10. ANNEX: IMPLEMENTATION ISSUES

10.1 Building Models
We have built a dedicated tool to record the ontology of domain

concept because current open source systems do not let us attach

15

program identifiers to concepts (i.e. they miss layer 2

representation). To be compatible with standard tools on the

market, our models can be exported in several standard formats

(OWL/RDF, Turtle, Manchester and Functional Syntax). To

implement this feature we are using the OWLAPI [22] library.

Finally, to extract the information from the source code of the

programs we use the CDT/JDT frameworks taken from the Eclipse

environment [20]. These let us parse the code and build an abstract

syntax tree (AST) representing all source information to analyze

further.

10.2 Making Strings Comparable
As the method to concept relationship problem has been reduced to

term comparison, we have implemented a concept term extractor

and a method term extractor to generate all the terms found in both

the concepts and the methods (see figure 5). Basically, the

extractors work according to the following steps:

1. Each full string is cleaned by removing all the non-

alphanumeric character;

2. The type prefix or any other prefix associated to programming

language conventions such as “m_” in C++ is removed;

3. The full string is split with respect to the camel-casing notation;

4. The full string and its parts are “stemmized” using the snowball

algorithm [21].

This is true for all the strings but the ones declared in the layer 2 of

the ontology (figure 2). For the latter the first two steps only are

applied since they represent strings that are supposed to be found

directly in the programs. As an example, figure 11 presents the

analysis of the concept Car taken from figure 2. The extractor

produces the terms listed in the left column of the right pane with

the syntactical category of the terms (origin) listed in the right

column.

Figure 11. Result of the term extraction

10.3 Comparing term sets
To allow experimenting with different similarity metrics, and study

the relevance of the concept/method matching, we implemented a

view which presents the detailed results of the matching (figure 12).

In this view we can select the metric to use to compute the strength

of the evocation. When a method is selected in the list displayed on

the left, the matching concepts are displayed in the list in the center

together with their weight (strength of the evocation) and a check

box (“Validated”) allowing an expert to validate the match. By

checking it, the expert would confirm that the concept is truly

referenced in the method. This is yet another way to check the

relevance of the metric. In the right part of the screen we list the set

of terms associated to the selected method (top) and selected

concept (bottom).

The term that match are highlighted (red). This allows us to see all

the terms that are involved in the evocation of the selected concept

by the selected method and allows the traceability of the

calculations of the weight.

Figure 12. Detailed view of the matching terms

10.4 Building the time series of concepts
Thanks to the retrieval of the concepts in the methods, we can now

display these concepts sequentially according to the method

sequence of a specific scenario (execution trace). Technically,

because of the huge number of methods in an execution trace, we

segment the trace as adjacent segments and compute the number of

times a given concept is referenced within each segment. The time

series is the graphical representation of the number of evocations

of the concepts in each segment as a function of time. When a user

wants to generate the concept time series for a set on concept, he

selects the concept in a list and set the minimal “strength” of the

concept evocation by the methods. Figure 13 presents the concept

time series for the Genetics project with metric = TFIDF and

threshold = 0.2. In particular, we can observe the emergence of a

pattern of invocations, repeated three times in the executed

scenario. This can be exploited for program understanding.

Figure 13. Concept time series with emergent patterns

