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ABSTRACT 

The need for domain knowledge representation for program 

comprehension is now widely accepted in the program 

comprehension community. The so-called “concept assignment 

problem” represents the challenge to locate domain concepts in the 

source code of programs. The vast majority of attempts to solve it 

are based on static source code search for clues to domain concepts. 

In contrast, our approach is based on dynamic analysis using 

information retrieval (IR) metrics. First we explain how we 

modeled the domain concepts and their role in program 

comprehension. Next we present how some of the popular IR 

metrics could be adapted to the “concept assignment problem” and 

the way we implemented the search engine. Then we present our 

own metric and the performance of these metrics to retrieve domain 

concepts in source code. The contribution of the paper is to show 

how the IR metrics could be applied to the “concept assignment 

problem” when the “documents” to retrieve are domain concepts 

structured in an ontology. 

Categories and Subject Descriptors 

D.2.7 [Distribution, Maintenance, and Enhancement]: 

Restructuring, reverse engineering, and reengineering 

General Terms 

Algorithms, Measurement, Experimentation 

Keywords 

Document retrieval metrics, Program comprehension, Domain 

ontology, Dynamic analysis. 

1. INTRODUCTION 
Program comprehension has been a hot topic in software 

engineering for more than three decades with pioneering work in 

software psychology [12]. As early as 1983, Brooks proposed that 

program understanding be defined as the process of re-creating the 

links between the domain problem and the program code by 

hypothesis generation, refinement and validation [2]. As of 1995, 

the main theories of program comprehension for maintenance have 

been analyzed by Mayrhauser and Vans who proposed a program 

comprehension metamodel [13].  

The authors explained that top-down hypothesis generation should 

sometimes be complemented by bottom-up program analysis. 

These early works highlighted the need for domain knowledge to 

be explicitly taken into account in program understanding. This 

vision has since gained an increasing acceptance in the software 

engineering community [10]. In the mid 90's Biggerstaff, 

Mitbander and Webster coined the term “concept assignment" [1] 

to name the search and assignment of human-oriented concepts to 

the elements of the program code. The authors explain that during 

program understanding the software engineer would discover and 

interrelate informal human-oriented concepts step by step to build 

an understanding of the program (i.e. create a mental model [13,9]). 

In fact, this vision is close to that of Brooks [2].  

In this paper we propose a new approach to the concept assignment 

problem by using ontologies [18] and documents retrieval metrics 

[19]. The concepts are then considered the “documents” to retrieve 

using “queries” represented by the code of the methods. After some 

background information given in section 2, section 3 proposes an 

introduction to program understanding and to our approach that 

represent the sequence of domain concepts involved in the 

execution of the program. Section 4 deal with the identification of 

the concepts in the source code, in particular the structure of the 

ontology we used and the stemming technique needed to match the 

strings. Section 5 deals with the metrics we used to compute the 

distance between the terms in the source code of the methods and 

the concepts. Section 6 presents the results of our concept retrieval 

experiments using several metrics. Section 7 concludes de paper. 

The annex in section 10 presents some implementation issues. 

2. BACKGROUND 
In the paper of Biggerstaff, Mitbander and Webster [1] the notion 

of “concept" is not precisely defined. Consequently, many 

researchers have since worked on the “concept assignment 

problem" while speaking about widely different things. Rajlich and 

Wilde recognized this problem and presented the way “concepts" 

can be represented in programs and the role they play in program 

comprehension [8]. Recently, the kinds of knowledge required by 

program maintenance engineers has been summarized in Maalej et 

al. [16] that present the current approaches in program 

understanding. As far as document retrieval techniques are applied 

to the “concept assignment problem”, Marcus proposed a method 

to use semantics to drive program analysis [15]. His approach is 

based on the retrieval of information from the source code and the 

associated documentation (i.e. user manual), using machine 

learning models and document indexing techniques. Therefore, this 

technique is applicable only if there is some useful and accurate 

documentation on the program. This is generally not the case for 

legacy systems. Starting from the ideas of Markus, Kuhn at al. [14] 

built a tool to identify clusters in source code using the latent 

semantic indexing (LSI) over the source artifacts. The inputs of the 

indexing mechanism are the identifiers and the comments in the 

source code. The trouble is that most of the legacy system for which 

program comprehension is needed lack reliable program 
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comments. In our research we explicitly represent domain concept 

as ontologies. But the key problem to solve is finding a technique 

to identify the references to the domain concepts in the source code 

of the program. The document/query metaphor borrowed from the 

information retrieval (IR) domain, allows us to reuse indexing 

methods usually applied to text or natural language representation. 

In this context several methods are generally used to find similarity 

between a list of terms and a corpus of textual documents: 

 Classical string distance methods based on character 

comparison [5]: Manhattan, Dice, Jaccard, Levenshtein, Jaro-

Winkler distances. 

 Vector-based methods based on the Latent Semantic Analysis 

(LSA) [3] using the Single Value Decomposition (SVD) to 

reduce the size of the original documents without losing their 

internal contextual and local semantic relationship [6]. The 

LSA methods can be viewed as a space compression method 

that simplifies drastically the similarity calculation among the 

original query and the target documents. However, as noted by 

Oates et al. [7], LSA has some drawbacks and are best used in 

pattern recognition and data clustering. 

 Statistical methods based on TFIDF frequency analysis [11,17], 

are easier to implement than LSA and generally quite effective. 

They exploit statistic terms occurrence within a document and 

their global usage among the corpus. The more frequently a 

term appears in corpus, the less discriminant it is for similarity 

calculation. 

In our study, Jaccard, Levenshtein and TFIDF techniques have 

been evaluated to identify the reference to concepts in the source 

code. 

3. CONCEPTS, CODE COMPREHENSION 
Since the goal of our research is to help with the understanding of 

programs, we must analyze program execution. Indeed it is well 

known that the semantics of programs comes from the 

interpretation of the sequence of its “commands” [4] (i.e. the 

program statements). However, in our case, the interpretation must 

be at a higher level: in the context of the application domain. In 

other words, we must explain what the program does in terms of 

the domain concepts. While we could theoretically analyze all the 

paths through all the statements of the program, this is infeasible in 

practice for industrial size programs. To overcome the problem, one 

approach is to choose a set of program usage scenarios (use-cases) 

and analyze the code that gets executed when the scenarios are run. 

But we are well aware that, depending on the chosen scenario, some 

of the program paths may never be executed. However, our 

ambition is not to be able to explain every single path through the 

program but only the meaningful ones i.e. the ones that correspond 

to use cases relevant to the business. Therefore our tool analyzes 

the sequence of concepts that get referenced when the program runs 

according to some scenario. The interpretation of the (business 

related) meaning of the program comes from the comparison of the 

sequence of concept with the purpose of the scenario in the business 

domain.  But a full explanation of our program understanding 

technique is beyond the scope of this article. The analysis of the 

running of a program is called dynamic analysis. Most often it is 

done off-line by analyzing a record of the sequence of methods that 

get executed when the scenario is run. This record is called the 

execution trace. There are several techniques to generate it. The one 

we chose is to instrument the source code of the program that 

consists of inserting extra statements in the source code to record 

events when the methods are executed. In our implementation, an 

event is generated when the method is entered and exited.  

Besides, the source code of each method of the program is statically 

analyzed to identify the business concepts referenced in the 

methods. This allows us to graphically represent the sequence of 

the concepts that are referenced when the scenario is run by 

displaying the concept involved in each executed method. We call 

this representation the “Concept time series” (figure 1). On the left 

side we represented the two sources of information needed to 

generate the concept time series: the execution trace file (sequence 

of method signatures) and the method to concept database. The 

latter holds the relation between the methods and the concepts 

referenced in each method. Each relation is associated with a 

weight that represents the “strength” of the relation (i.e. how 

strongly the code of the method evokes the concept). Our analysis 

tool then merges the information from these sources to compute the 

concept time series presented on the right. The x axis represents 

time and the y axis the frequency of the use of the concepts. 

 

Figure 1. Concept Time Series 

4. MAPPING CONCEPTS TO METHODS 
To map the concepts to the methods, we must rely on clues. These 

are the collections of strings that are contained in the methods and 

in the concepts. Then, by measuring the overlap between these 

collections, we compute the strength of the relation from method to 

concept. The domain concepts are structured in an ontology i.e. an 

explicit representation of the concepts and the links between them. 

The concepts are represented by a name and a set of attributes that 

characterize the concept. The concepts could be linked to each other 

by several relations, but two of them hold a specific semantic: 

 Subclass-of (ISA): the specialization link that goes from a 

specialized concept to a more generic one. 

 Part-of: the link that goes from a concept that represents a 

component to the concept that represents the compound. 

This concept representation is manually built with the help of an 

expert from the domain and is rather independent from any 

programs. But the developers of programs in this domain may have 

some special way to name the concepts and their attributes. For 

example there could be naming conventions in the enterprise and/or 

programming language constraints that may prevent the 

programmer from using the full names. If possible, we review the 

domain concept ontology with programmers to know how the 

concepts and their attributes may be named in the programs. This 

lead to an ontology having two layers: 

1. The program independent layer where the concepts and 

attributes are named according the conventions in the 

domain. 

2. The program specific layer which translates the strings of the 

first layer to strings used in the programs. 

This is showed in figure 2. The strings used to describe the 

concepts in layer 1 are translated, in layer 2, to the strings that may 

be found in the programs. For example, the concept in layer 1 can 

be represented by program classes with some specific naming 

convention. Moreover, each concept attribute may correspond to 
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several identifiers in the programs. In particular, this is the case for 

legacy software which underwent several generations of 

maintenance programmers. Moreover, there could also be 

conventions to name the variables that will reference the instances 

of a class. These candidate names for the variables can also be 

recorded in layer 2. Of course, the same string in layer 2 could be 

mapped to the attributes of several concepts in layer 1.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Business concepts ontology structure 

Figure 3 displays a screenshot of our tool showing the 

representation of the two layers of an ontology in the domain of 

heat exchangers. It shows structure of a concept (“Fluide”) with its 

attribute names (left) and the corresponding program identifiers 

(right). The bottom of the screen displays, on the left, the class 

name representing the concept in the programs and on the right the 

identifiers (variable names) we may find in the programs to 

reference instances of this class.  

 

 

 

 

 

 

 

 

 

Figure 3. Layers 1 and 2 for a concept in the ontology 

In summary, the collection of strings associated to a concept 

includes the name of the concept, the name of its attributes as well 

as the programming level equivalent of these strings. As for the 

methods, the strings are the names of: the methods, the parameters, 

the variables, the constants as well as the names of the types of: the 

parameters, the variables and the object returned by the method. 

Figure 4 presents the mapping between the method’s source code 

and the concepts that our two layers ontology enables. Beside each 

concept (oval) we represented a few identifiers that can be used to 

retrieve the references to the concepts in the source code. 

 

Figure 4. Mapping concepts to method’s source code 

A key hypothesis in our work is that the program source code is not 

obfuscated and that all identifiers (methods, parameters, variables) 

are meaningful and carefully chosen by the programmers. 

5. METRICS 

5.1 Introduction 
There are many techniques available to match the strings of the 

methods and the concepts. The simplest is to compute the size of 

the intersection of the collections of strings associated to the 

methods and the concepts. However, there are many problems with 

this. In particular, we know that some strings are very specific to a 

concept while others are very general. Therefore, the specific 

strings should have more weight in the matching than general ones. 

If we roughly apply this simple technique, several non-relevant 

concepts could be linked to the methods. For example, if a method 

contains the string “height”, all the concepts with a “height” 

attribute will be associated to it. Another problem is to cope with 

the special syntax of the strings in the programs. For example the 

method names are often composed of several words identified 

using the camel syntax. Such string would probably not correspond 

to any single string contained in the concepts (layer 1). Then, we 

must split the strings from the program into their components words 

before proceeding with the matching. Finally, the names could be 

written in the singular or plural forms on both sides. One should 

therefore simplify these strings to make them comparable (i.e. 

extract the root form or “stem” of the string). We soon realized this 

kind of processing to be analog to what is used in document 

retrieval if one considers the concepts to be the documents to 

retrieve and the strings in the method the element of the “query”. 

Then, we explored several metrics to find the one that would be 

best suited to the problem. Since we are dealing with document 

retrieval techniques, we will use the word “term” to mean any string 

that is relevant for the matching. The collections of terms to 

compare are computed using the following processes (Figure 5): 

 

Figure 5. Production of the terms to compare 

The “stemisation” a procedure used to reduce inflected or derived 

words to their root form [21]. As a result, a collection of root terms 

is associated to each method and each concept. The matcher will 



11 

 

then use a metric to compute the method to concept relation (figure 

6). 

 

Figure 6. Term matching 

5.2 TF-IDF 
This is one of the most popular metrics for document retrieval [17]. 

If the general idea of the metric is always the same, the specific 

implementation may vary.  Here is the way we applied it to our 

context. Let M be the set of methods, C be the set of concepts, tc(c) 

be the collection of the terms associated to the concept c, t be a term 

and occurrences(t,c) be the number of occurrences of t in c. Then 

we have: 

 TF(t,c), the Term Frequency, is the number of occurrences of 

the term t in the concept c relative to the number of term in c: 

TF(t,c) = occurrences(t,c) / | tc(c) |. This technique allows the 

computation to be independent from the concept 

size (number of terms).  

 IDF(t,C), the Inverse Document Frequency, computes the 

inverse proportion of the term t over the entire concept corpus 

as: IDF(t,C) = log ( | C | / (1 + | { c  C | t  tc(c)} |)) 

By multiplying both measures, we get the final metric: 

TFIDF(t,c) = TF(t,c) * IDF(t,C), which expresses the “strength” of 

the term t to retrieve the concept c. Now we must gather the results 

for all the terms in the collections. Following a technic used in IR, 

for each concept c we will compute a vector in the space of the 

terms where each element of the vector is the value of TFIDF(t,c) 

for the corresponding  term t. Usually, in document retrieval, to 

compute the “proximity” of two documents we compute the cosine 

of the angle between their vectors. However in our case we are not 

interested in the proximity of the concepts themselves but in the 

proximity of the methods to the concepts. Therefore we must 

compute a TF-IDF vector for the methods too. But for the methods 

the term frequency is not relevant. Indeed the number of times a 

term (a variable name for example) is used in a method is much less 

an indication of the “strength” of the term in the method (whatever 

it could mean) than it is a characterization of the programming 

style. Moreover, it is not relevant to compute the IDF for the 

methods because the goal is not to retrieve the methods but the 

concepts from the strings found in the methods. Consequently we 

reuse the IDF factor computed for the concepts. In summary the 

values of the TF-IDF metric for a method m are: 

 TF(t,m) = 1 if the term is present in the method, 0 otherwise. 

 IDF(t,M) = IDF(t,C)  

The computation of the cosine of the angle between the vectors of 

a concept and a method gives the strength of the evocation of the 

concept by the method. If mi is the vector of a method and cj is the 

vector of a concept, the weight of the evocation (mi, cj) is: 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑡𝑓𝑖𝑑𝑓(𝑚𝑖 , 𝑐𝑗)  = 𝑚𝑖 𝑐𝑗 / |𝑚𝑖| ∗ | 𝑐𝑗| 

5.3 Jaccard similarity 
The Jaccard similarity is a statistical measure to compare the 

diversity of two sets of terms [23]. In our context, it is computed as 

the ratio between the sizes of the intersection and the union of the 

sets of terms found in the concepts and the methods. It is defined 

as: 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝑐, 𝑚) =  
|𝑡𝑐(𝑐) ⋂ 𝑡𝑚(𝑚)|

|𝑡𝑐(𝑐) ⋃ 𝑡𝑚(𝑚)|
 

Where:  

 c : a concept in the ontology 

 m : a method in the source code 

 tc(c) : collection of the terms associated to the concept c 

 tm(m) : collection of the terms associated to the method m 

This coefficient is usually normalized in the interval [0,1] and is 

interpreted as semantic proximity between a concept and a method. 

The greater the coefficient the more similar the concept c and the 

method m. 

5.4 Levenshtein similarity 
This is based on the calculation of the edit distance - or Levenshtein 

distance - between two string s1 and s2. This distance measures the 

required modifications in the string s1 (character insertion, 

deletion, substitution) to transform it into the string s2. 

edit_dists1,s2(l1,l2) =  If MIN((l1,l2) = 0 Then MAX(l1,l2) 
 Else MIN ( edit_dists1,s2 (l1-1,l2) +1, 
  edit_dists1,s2 (l1,l2-1) +1,  
  edit_dists1,s2 (l1-1,l2-1) + cost(l1,l2) ) 

cost(l1,l2) = If s1(l1) = s2(l2) Then 0  Else 1 
 

Where:  

 s1 : first term to compare 

 s2 : second term to compare 

 l1 : length of s1 

 l2 : length of s2 

 s(y) : the character y of the string s 

 cost(l1,l2) : single character match between  s1 and s2.  

This metric is usually normalized in the interval [0,1]: 

𝑙𝑒𝑣𝑒𝑛_𝑑𝑖𝑠𝑡(𝑠1, 𝑠2)  =
𝑒𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑠1,𝑠2(|𝑠1|, |𝑠2|)

𝑚𝑎𝑥 (|𝑠1|, |𝑠2|)
 

To convert the distance into a similarity metric, we calculate its 

inverse: 

𝑙𝑒𝑣𝑒𝑛_𝑠𝑖𝑚(𝑠1, 𝑠2, ) = 1 − 𝑙𝑒𝑣𝑒𝑛_𝑑𝑖𝑠𝑡(𝑠1, 𝑠2) 

The greater the coefficient, the more similar the terms. The 

Levenshtein similarity between a concept c and a method m is 

finally computed as the average of the distance computed over the 

Cartesian product of both collections of terms, with duplicate pairs 

removed: 

𝑤𝑒𝑖𝑔ℎ𝑡_𝑙𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑐, 𝑚)  = 𝑀𝐸𝐴𝑁(𝑙𝑒𝑣𝑒𝑛_𝑠𝑖𝑚(𝑡𝑐 , 𝑡𝑚)) 

 tc  tc(c)  

 tm  tm(m) 
Where:  

 tc(c) : collection of the terms associated to the concept c 

 tm(m) : collection of the terms associated to the method m 

5.5 Structural similarity 
The three above mentioned metrics do not take the origin of the 

term into account when computing the strength of the match. By 

origin we mean: is it a full string or a string component, is it a class 

name or an attribute name, does the concept have several matching 

attributes or not, etc. Hence we designed a metric that takes the 

origin of each term into account. The metric is defined by the 

following rules. First, if the name of a concept is matched against a 

term in the method, then we are sure the concept to be referenced 
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(weight = 1). Second if we match the name of a class represented 

in the layer 2 of the ontology with a full type name in a method, 

then we know that the concept associated to this class name is 

referenced by the method (weight = 1). If we match an identifier 

for that class (candidate name of a variable) with a term in the 

method, we are also quite confident that the concept is referenced 

(weight = 1). However, if this identifier only matches a subterm in 

the method (a single word composing a longer term), the 

confidence is less. We heuristically use a weight of 0.8 in this case. 

Example, if we know that an instance of the class “PointClass” 

could be referenced by a variable named “pt”, then the match of 

that string with the term “first_pt” found in the code would get a 

weight of 0.8. Next, if each of the attribute names of a concept 

(layer 1) is found in a method, we are almost sure the concept itself 

to be referenced by the method. However there remains some doubt 

because of the possible overlap in the attribute names among the 

concepts. An attribute is found in a method either if its name or a 

corresponding program identifier represented in the layer 2 of the 

ontology is matched to a full term in the method, or if such 

identifier is matched to a subterm in the method. To account for the 

uncertainty, the match of all the attributes of a concept would lead 

to a total weight of 0.8. Then if only a subset of the attributes of a 

concept is found in the method, we reduce the weight accordingly. 

Therefore each single attribute match gets a weight of 0.8* 

1/#attributes in concept. Finally, the match of an attribute name 

could be partial if a component word only of an attribute name is 

matched with a subterm in a method. If all the component words of 

an attribute name are matched to subterms in a method, we are still 

unsure about a true reference to the attribute because of the overlap 

in the component words among the attribute names. To account for 

this extra uncertainty, the match of all the component words of all 

the attributes of a concept would lead to a total weight of 0.7. Now, 

if only a subset of the words of an attribute is matched, we reduce 

the weight accordingly. Then, each single attribute’s component 

word match gets a weight of 0.7*1/#words in the attribute* 

1/#attributes in concept. Since the identifier of an attribute in layer 

2 is supposed to be the exact string to be found in a program, we do 

not have a rule for its partial match.  

The above rules are all equally important since each one processes 

some specific concept reference case (through class names, 

variable names or attribute names). They will then cover several 

application contexts and programming styles. In summary, the 

structural similarity metric is defined by the algorithm showed in 

figure 7 where:  

 full_name(c) return the full name of a concept 

 class_names(c) return any name of a class that represents the 

concept in the program code 

 class_identifiers(c) returns any identifier representing the 

name of a variable that references an instance of such class 

 #attributes(c) returns the number of attributes declared in the 

concept c 

 #components(a) returns the number of component words of 

the attribute a 

 full_name(a) return the full name of an attribute  

 attr_identifiers(a) returns any identifier representing the 

attribute a in the program code.  

6. RESULTS 

6.1 Case Study 
To evaluate the performance of the metrics in the retrieval of the 

concepts references in the methods we ran a set of experiments on 

the three projects listed in table 1. The first two projects are open 

source projects and the last one is an old program written by our 

industrial partner.  

Algorithm: 

weight_struct(c,m) = 0. 

For a given concept c and method m 
 If (full_name(c) OR class_names(c) OR class_identifiers(c)) is 

  matched to a full term in m then weight_struct(c,m) = 1 

 Else 

  If class_identifiers(c) is matched to a subterm in m  

  Then weight_struct(c,m) = 0.8 

  Else 

   For each attribute a of c 

    If (full_name(a) OR attr_identifiers(a)) is matched to a full 

                   term in m OR if attr_identifiers(a) matches a subterm in m 

    Then weight_struct(c,m) =  

      weight_struct(c,m) + 0.8 * 1/#attributes(c). 

    Else for each component word w of a 
     If the word is found in m 

     Then weight_struct(c,m) = weight_struct(c,m) 
       + 0.7*1/#components(a)* 1/#attributes(c). 

     EndIf 

    EndIf 

   EndFor 

  EndIf 

 EndIf 

EndFor 

Figure 7. Structural similarity metric algorithm 

This is the project we help it understand. It was originally written 

in Fortran and was later translated to C / C++. Therefore the 

structure of the program is awkward and not really object oriented. 

It is therefore very difficult to understand for non-specialists (an 

even difficult for specialists of the domain). 

Table 1 – Project in the case study 

Project Description Lang. LOC 

Genetics 
Program trying to retrieve an arbitrary 

DNA sequence using a genetic 
algorithm 

Java 403 

JHotel 
Program managing hotel reservations 
and customers 

Java 21475 

Devor 
Program computing heat exchanger 
geometry and constraints 

C/C++ 100949 

6.2 Estimation of Metrics Relevance  
As it is common in IR field, we will use the precision and recall 

factors to measure relevance of the concepts found in the methods. 

The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 factor expresses the ratio of the retrieved concept 

that are corrects i.e. the ones that an expert would retrieve by hand. 

A precision factor of 1 would mean that all retrieved concepts are 

correct concepts (but there could be more correct concepts than 

retrieved). The recall factor is the ratio of the correct concepts that 

are retrieved. A recall factor of 1 would mean that all correct 

concepts are retrieved (but we may have retrieved more concepts 

some of which are not correct). To identify the correct concepts, we 

did the work manually through manual code inspection: we 

identified all the concepts truly referenced in the method’s source 

code.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑚, 𝑤) =  
|𝑉(𝑚) ∩ 𝑇(𝑚, 𝑤, 𝛼) |

|𝑇(𝑚, 𝑤, 𝛼)|
 

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝑚, 𝑤)  =  
|𝑉(𝑚) ∩ 𝑇(𝑚, 𝑤, 𝛼) |

|𝑉(𝑚)|
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Where: 

 𝑚 = the method considered  

 𝑤 = the metric considered  

 𝛼 = the metric threshold to keep a retrieved concept 

 𝑉(𝑚) = set of correct concepts referenced in m. 

 𝑇(𝑚, 𝑤, 𝛼) = set of concepts retrieved in m with metric w 

and threshold 𝛼 

We can now apply both measures to a project (where n is the 

number of methods): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤) =
∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑚𝑖 , 𝑤)𝑛

𝑖=1

𝑛
  

 

𝑟𝑒𝑐𝑎𝑙𝑙(𝑤) =
∑ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑚𝑖 , 𝑤)𝑛

𝑖=1

𝑛
  

And finally combine them with the unique F-measure [24]: 

𝐹𝛽(𝑤) =
(1 + 𝛽) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤) ∗ 𝑟𝑒𝑐𝑎𝑙𝑙(𝑤)

(𝛽2) ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑤) + 𝑟𝑒𝑐𝑎𝑙𝑙(𝑤)
 

Where: 

 𝛽  = weight of recall to precision  

To compare the metrics we computed the F-measure with  𝛽 = 1 

(F1 measure) for each of the projects and metrics with 𝛼 = 0.2 

(Table 2), 0.4 (Table 3), 0.6 (Table 4).  The performance of each 

metric as a function of the project is presented in figures 8 to 10. 

Table 2 - Threshold 0.2 

Project Metric Precision Recall F1-measure 

Genetics 

TFIDF 0.80159 0.74603 0.77281 

Jaccard 0.71429 0.75397 0.73359 

Levenshtein 0.62698 0.59524 0.61070 

Structure 0.71429 0.71429 0.71429 

JHotel 

TFIDF 0.59322 0.58898 0.59109 

Jaccard 0.59322 0.54379 0.56743 

Levenshtein 0.42542 0.43362 0.42948 

Structure 0.68927 0.71328 0.70107 

Devor 

TFIDF 0.50467 0.50467 0.50467 

Jaccard 0.47819 0.46885 0.47347 

Levenshtein 0.89252 0.89252 0.89252 

Structure 0.45327 0.45327 0.45327 

Table 3 - Threshold 0.4 

Project Metric Precision Recall F1-measure 

Genetics 

TFIDF 0.76190 0.44444 0.56140 

Jaccard 0.54762 0.37302 0.44376 

Levenshtein 0.14286 0.08730 0.10837 

Structure 0.69048 0.47619 0.56365 

JHotel 

TFIDF 0.69774 0.67090 0.68406 

Jaccard 0.52542 0.51695 0.52115 

Levenshtein 0.49153 0.49153 0.49153 

Structure 0.69576 0.71328 0.70441 

Devor 

TFIDF 0.48131 0.48131 0.48131 

Jaccard 0.46262 0.46262 0.46262 

Levenshtein 0.46262 0.46262 0.46262 

Structure 0.37912 0.49361 0.42885 

Table 4- Threshold 0.6 

Project Metric Precision Recall F1-measure 

Genetics 

TFIDF 0.66667 0.35714 0.46512 

Jaccard 0.23810 0.17460 0.20147 

Levenshtein 0.09524 0.03968 0.05602 

Structure 0.69048 0.47619 0.56365 

JHotel 

TFIDF 0.52542 0.51412 0.51971 

Jaccard 0.49153 0.49153 0.49153 

Levenshtein 0.49153 0.49153 0.49153 

Structure 0.69052 0.70833 0.69931 

Devor 

TFIDF 0.46729 0.46729 0.46729 

Jaccard 0.46262 0.46262 0.46262 

Levenshtein 0.46262 0.46262 0.46262 

Structure 0.37912 0.49361 0.42885 

 

 

Figure 8. F1 measure, threshold 0.2 

 

Figure 9. F1 measure, threshold 0.4 

 

Figure 10. F1 measure, threshold 0.6 

If we put aside the special result for Levenshtein in the Devor 

project with threshold = 0.2, that we must further investigate, the 

interpretation of the results are the following. Figure 8 to 10 show 

that our specific “Structure” metric at least equals but often 

outperforms all the other metrics on all projects whatever the 

threshold. This is due to the special fit of the metric to the semantics 
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of the “documents” to retrieve. We can also note that TFIDF works 

better than Levenshtein or Jaccard. An interesting finding is that all 

metrics seem to converge to about the same value whatever the 

threshold for the Devor project. But Devor is by far the largest 

project by the number of lines of code, 5 times bigger than JHotel 

and 250 times bigger than Genetics. So far, we do not understand 

if this convergence is an effect of the size or if this is driven by 

some other specific characteristics of Devor. But project size is 

clearly a candidate hypothesis since JHotel, which is 50 times 

bigger than Genetics, seems to show a much smaller spread of 

values for the metrics (for threshold > 0.2) than Genetics. The poor 

performance of Levenshtein does not come as a surprise since the 

metrics apply to the sets of “stemmized” words (all variations of a 

particular word have been removed). Then the comparison of two 

words is either 0 or large. Then the precision should be lower in 

comparison to the other metrics, which is mostly the case.  

7. CONCLUSION 
In this paper we explore the use of information retrieval approaches 

and metrics to the “concept assignment problem” [1]. We saw that 

the best performance is reached when we use our specific metric, 

the “Structure” metric, that takes the syntactical category of the 

terms (concept name or identifier, attribute name or identifier) into 

account. However we consider that “Structure” misses the 

discriminatory power of the IDF factor. Indeed with “Structure” all 

the terms within their syntactic category are considered equally 

relevant to identify some concept. But a term that is present in only 

one concept is much more relevant to identify this concept than 

those which are present in several concepts. Then, we think that a 

combination of the Structure metric with the IDF factor may further 

improve the performance of the concept assignment to the methods. 

This is what we will investigate in the future. Finally, the Concept 

Time Series that the concept retrieval metrics allows to display 

(§10.3) is a powerful tool to investigate the patterns of concept 

invocations when a program runs. By identifying these patterns we 

can further “summarize” the information of the execution trace 

hence to generate some abstract explanation of the implementation 

of the scenario. 
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10. ANNEX: IMPLEMENTATION ISSUES 

10.1 Building Models 
We have built a dedicated tool to record the ontology of domain 

concept because current open source systems do not let us attach 
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program identifiers to concepts (i.e. they miss layer 2 

representation). To be compatible with standard tools on the 

market, our models can be exported in several standard formats 

(OWL/RDF, Turtle, Manchester and Functional Syntax). To 

implement this feature we are using the OWLAPI [22] library. 

Finally, to extract the information from the source code of the 

programs we use the CDT/JDT frameworks taken from the Eclipse 

environment [20]. These let us parse the code and build an abstract 

syntax tree (AST) representing all source information to analyze 

further. 

10.2 Making Strings Comparable 
As the method to concept relationship problem has been reduced to 

term comparison, we have implemented a concept term extractor 

and a method term extractor to generate all the terms found in both 

the concepts and the methods (see figure 5). Basically, the 

extractors work according to the following steps: 

1. Each full string is cleaned by removing all the non-

alphanumeric character; 

2. The type prefix or any other prefix associated to programming 

language conventions such as “m_” in C++ is removed; 

3. The full string is split with respect to the camel-casing notation; 

4. The full string and its parts are “stemmized” using the snowball 

algorithm [21]. 

This is true for all the strings but the ones declared in the layer 2 of 

the ontology (figure 2). For the latter the first two steps only are 

applied since they represent strings that are supposed to be found 

directly in the programs. As an example, figure 11 presents the 

analysis of the concept Car taken from figure 2. The extractor 

produces the terms listed in the left column of the right pane with 

the syntactical category of the terms (origin) listed in the right 

column. 

 

Figure 11.  Result of the term extraction 

10.3 Comparing term sets 
To allow experimenting with different similarity metrics, and study 

the relevance of the concept/method matching, we implemented a 

view which presents the detailed results of the matching (figure 12). 

In this view we can select the metric to use to compute the strength 

of the evocation. When a method is selected in the list displayed on 

the left, the matching concepts are displayed in the list in the center 

together with their weight (strength of the evocation) and a check 

box (“Validated”) allowing an expert to validate the match.  By 

checking it, the expert would confirm that the concept is truly 

referenced in the method. This is yet another way to check the 

relevance of the metric. In the right part of the screen we list the set 

of terms associated to the selected method (top) and selected 

concept (bottom).  

 

 

 

The term that match are highlighted (red). This allows us to see all 

the terms that are involved in the evocation of the selected concept 

by the selected method and allows the traceability of the 

calculations of the weight. 

 

 

 

 

 

 

 

 

 

Figure 12. Detailed view of the matching terms 

10.4 Building the time series of concepts 
Thanks to the retrieval of the concepts in the methods, we can now 

display these concepts sequentially according to the method 

sequence of a specific scenario (execution trace). Technically, 

because of the huge number of methods in an execution trace, we 

segment the trace as adjacent segments and compute the number of 

times a given concept is referenced within each segment. The time 

series is the graphical representation of the number of evocations 

of the concepts in each segment as a function of time. When a user 

wants to generate the concept time series for a set on concept, he 

selects the concept in a list and set the minimal “strength” of the 

concept evocation by the methods. Figure 13 presents the concept 

time series for the Genetics project with metric = TFIDF and 

threshold = 0.2. In particular, we can observe the emergence of a 

pattern of invocations, repeated three times in the executed 

scenario. This can be exploited for program understanding. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Concept time series with emergent patterns 

 

 




