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Abstract
Neural architecture search (NAS) emerged as a way to automatically optimize neural networks for a specific task and dataset.
Despite an abundance of research on NAS for images and natural language applications, similar studies for time series data
are lacking. Among NAS search spaces, chain-structured are the simplest and most applicable to small datasets like time
series. We compare three popular NAS strategies on chain-structured search spaces: Bayesian optimization (specifically
Tree-structured Parzen Estimator), the hyperband method, and reinforcement learning in the context of financial time series
forecasting. These strategies were employed to optimize simple well-understood neural architectures like the MLP, 1D CNN,
and RNN, with more complex temporal fusion transformers (TFT) and their own optimizers included for comparison. We
find Bayesian optimization and the hyperband method performing best among the strategies, and RNN and 1D CNN best
among the architectures, but all methods were very close to each other with a high variance due to the difficulty of working
with financial datasets. We discuss our approach to overcome the variance and provide implementation recommendations for
future users and researchers.

Keywords Neural architecture search · Time series forecasting · Hyperparameter optimization · Deep learning · Neural
networks · Reinforcement learning

1 Introduction

Deep neural networks have been very successful in a wide
variety of tasks over the last two decades. In large part their
success is attributed to their ability to perform very well
without major manual feature engineering required when
compared to more classical techniques [1]. However, the
exact architecture of the neural network still has to be pre-
scribed manually by the user. This led to the development of
so-called auto-ML techniques that aim to automate this pro-
cess. In the context of deep neural networks, auto-ML has
a very large overlap with neural architecture search (NAS),
itself having a large overlap with hyperparameter optimiza-
tion.
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A lot of research has been done in NAS in recent years,
see [2] for an overview and insights from over 1000 papers.
However, most work focused on computer vision or natural
language applications, with less investigation into architec-
tures for analyzing time series data. In this work, we attempt
to bridge this gap by evaluating and comparing the perfor-
mance of three popular simple NAS strategies on 3 distinct
yet similar (financial) time series datasets.

Modern competitive neural nets perform very well on nat-
ural language and images datasets, and any improvement is
marginal, while the datasets and networks are huge, requir-
ing vast resources to train each individual network and thus
directing NAS research toward more complicated methods
that reduce the number of overall trials [2, 3]. Meanwhile,
time series, and especially financial time series, pose a fun-
damentally different challenge.With time series, the datasets
are often small due to the low number of historical samples,
which forces the networks to have fewer parameters too in
order to avoid overfitting. This results in neural networks that
train in seconds onmodernhardware. Theperformance, espe-
cially in the case of financial time series, on the other hand, is
always comparatively very poor. The challenge comes with
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financial markets being notoriously hard to predict. Intu-
itively, this is clear: If it was easy, every researcher would
havebeen amillionaire. Theproblem is challengingdue to the
inherently noisy and non-stationary nature of financial time
series. Market prices are influenced by a myriad of unpre-
dictable factors, such as economic events, investor behavior,
and geopolitical developments, leading to a low signal-to-
noise ratio. Consequently, even state-of-the-art algorithms
struggle to achieve high performance, typically resulting in
F1, (balanced) accuracy, and AUC scores well below 0.6 on
average when applied to test data [4–6].

A seminal survey article on NAS [3] breaks down the
search into 3 components: search spaces, search strategies,
and performance estimation strategies. Once a search space
is set up, an algorithm following the search strategy explores
the search space looking for the best neural network configu-
ration, evaluated and eventually selected by the performance
estimation strategy. Following this terminology, we discuss
the search spaces we set up for NAS in Sect. 3, the search
strategies in Sect. 4, and the performance estimation together
with methodology in Sect. 5. In Sect. 2 we discuss the exact
practical problem from project partner Predictive Layer SA
that our neural networks were trying to solve. Our results
are summarized and discussed in Sects. 6 and 7, respectively.
Finally, we outline possible future directions for this research
in Sect. 7.1.

2 Data and problem formulation

This project was a collaboration with Predictive Layer
SA, who provided real-world customer data and predic-
tion requirement. The data under consideration are financial
multivariate daily time series in tabular form, each row corre-
sponding to one day and each column a separate feature. The
task consists of predicting whether the target feature will
increase or decrease 5 days (or 10 days, depending on the
dataset) in the future. Thus the problem is essentially binary
classification. The models output a number between 0 and
1 as output, interpreted as probability that the target feature
will grow on a given day.

Our three source datasets thatwe report on inSect. 6 are for
Japanese, German, and US bonds. Each of the tabular source
datasets has a size of about 4000×1000: 1000 columns (input
features), representing the many financial markers believed
to be predictive of the target, with each row corresponding
to a business day over a 15-year period. While this sample
size is relatively small for deep learning applications [1]—
especially given the high number of features—such sizes are
typical in time series datasets. Thus we hope that our findings
will be relevant to time series practitioners.

3 Architecture types and their search spaces

In NAS, the search spaces and search strategies go hand in
hand and are designed together essentially at the same time.
The simplest among the search spaces are chain-structured.
Search spaces with a chain structure feature a straightfor-
ward architectural topology: a sequential chain of operational
layers. These configurations frequently utilize cutting-edge
manually designed architectures as their foundational frame-
work, trying to find the best configuration for the specific
dataset at hand by essentially hyperparameter optimization.
Despite their simplicity, chain-structured search spaces often
yield very good results [2]. The biggest downsides of this
approachwhen compared to themore complicated cell-based
and one-shot approaches are its limited flexibility and scal-
ability when applied to very large datasets. While being
limited to a pre-defined overall structure prevents discov-
ering truly novel architectures, in practice well-designed and
well-understood architectures usually perform best [2]. Scal-
ability becomes importantwhen dealingwith large image and
natural language datasets that most research on NAS focuses
on; however, in the case of time series and especially our
small datasets, our neural networks train in seconds. There-
fore scalability was not an issue for us, and thus we focused
on chain-structured search spaces.

For the foundational frameworks that the search spaces
were built upon, we concentrated on simple well-known
architecture types, like feedforward (FFNN, also known as
multi-layer perceptron or MLP), convolutional (CNN), and
recurrent (RNN) networks. This was done both for their
proven performance in time-series context and due to them
having fewer parameters than most cutting-edge architec-
tures, which ismore appropriate when dealingwith very little
data as in our case. However, we also examined the state-
of-the-art Temporal Fusion Transformer (TFT) architecture
for comparison (see below). Each of these architectures was
adapted to the problem at hand, and for each of them, a search
space of hyperparameters was set up to determine the exact
configuration. The search strategies discussed in Sect. 4 then
optimized each of these separately, and the best-performing
ones were compared. This approach is similar to what [7] did
with a single type of CNN for image classification.

3.1 Feedforward networks

Feedforward networks (aka multi-layer perceptron or MLP)
have the advantage of being the simplest type of deep neu-
ral networks. The main disadvantage for our problem comes
from the fact that they cannot take the time dimension into
account explicitly. Feedforward networks take a row of num-
bers as input, one row of our datasets corresponding to
one-day information for various time series. Implicitly, the
time information is taken into account in the form of delayed
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(or averaged) features—a column in the dataset that is essen-
tially the same as another column with an added delay of a
couple days (or averaged over a couple days, respectively),
a standard practice in the field [5].

As far as NAS is concerned, our hyperparameters for opti-
mization are the number of hidden layers and the number of
units per hidden layer. Dropout layers were used for regu-
larization and the dropout rate was another hyperparameter
optimized. Although not part of the architecture itself, the
learning rate is a crucial hyperparameter for any learning
algorithm that was also optimized.

3.2 Convolutional neural networks

Although designed for and used mainly with images, convo-
lutional neural networks (CNNs) are suitable for any kind of
grid-like data, especially when there is a natural fixed notion
of distance between neighboring data points, such as the case
for time series [1].

CNNs allow taking the time dimension into account
explicitly and naturally. Instead of each input being a single
row of data corresponding to a single business day (as was
the case for FFNN), a sliding window or a ‘chunk’ of our
dataset—a subtable comprised of several consecutive rows
can be passed as a single input to a CNN. Evaluating the his-
tory from the last, say, 15 business days explicitly, the model
is making a prediction for the following day as before.

Both one- and two-dimensional CNNs can be used for our
problem.One-dimensional (1D)CNNsonly perform the con-
volution operation over the time dimension, treating separate
features as parallel input channels, just like the red, green,
and blue channels are consideredwhenworkingwith images.
Thus each chunk of data is passed as a 1D ‘image’ of size
chunk_length (a hyperparameter to be optimized) and
n f eatures (fixed number coming from the dataset) channels.
Two-dimensional (2D) CNNs take each chunk as a single-
channel 2D ‘image’ of size chunk_length × n f eatures ,
performing the convolution operation over both the time
dimension and across the various features. The latter seems
counterintuitive as there is no fixed distance between the fea-
tures, but such approach was found to be successful in the
context of financial time series before[5]. After experiment-
ing with 2D CNNs on our data, we found them a lot more
computationally expensive than others, while often perform-
ing worse. For this reason 2DCNNs were later dropped from
our consideration.

The length in time of the chunks passed as individual
examples, chunk_length, was a crucial hyperparameter
to optimize for all of the CNNs. The number of convolutional
layers (including pooling and activation functions) was fixed
at 3 for all CNN architectures to reduce the size of the search
spaces, but the kernel sizes were optimized. The number of
convolution filters per layer was optimized too, but it works

differently for different implementations, as discussed below.
Dropout layers were used once again for regularization and
the dropout ratewas optimized too, togetherwith the learning
rate.

Among 1D CNNs, there are two distinct ways to perform
the convolution operation. In depthwise convolution, each
channel (input feature) is passed separately through its own
convolutional and pooling layers. Each of these then gives a
fixed number (the number of separate convolution filters) of
output channels per input channel, interpreted as a summary
of what happened to this feature in the time span consid-
ered. The convolution and pooling operations will shrink the
length (in time) of each output channel, possibly to 1 (oth-
erwise flattening is applied), and all of these are then passed
to a fully connected layer that makes a prediction based on
these summaries. Although easy to interpret, this method had
the problem of blowing up the dimensionality of the prob-
lem, as each of the features gets its own set of convolution
parameters. This made computation infeasible and we aban-
doned this approach. In basic (we call them ‘ordinary’) 1D
convolution, all input channels are mixed already in the first
(and subsequent) convolution layers. The output of convolu-
tion is flattened and passed to a single fully connected layer
for making the final prediction.

3.3 Recurrent neural networks

Recurrent neural networks (RNNs) were designed for and
are very successful at treating sequential data [1] and are
thus the natural choice for our problem. The same chunks
of data as for CNNs were passed as individual inputs to
the RNNs, here naturally interpreted as sequences of length
chunk_length and dimension n_features. Both sim-
ple RNNs and more sophisticated long short-term memory
(LSTM) RNNs were implemented and optimized separately,
but they have the same search spaces of hyperparameters. In
both cases, stacked RNNs were used, where the output of
one RNN is taken as input to the next one. The number of
such stacked layers was a hyperparameter to optimize. Each
RNN layer also has its number of hidden units, which was
also optimized. The chunk length was once again optimized,
together with dropout and learning rates as before.

LSTMs provide many advantages over basic RNNs [1]
without too much additional computational cost, especially
in the case of our small datasets. For this reason after initial
trials, we proceeded with just LSTMs for the final tests.

3.4 Temporal fusion transformer

Forecasting across multiple time horizons often involves an
intricate amalgamation of inputs, encompassing static (i.e.,
time-invariant) covariates, known future inputs, and addi-
tional exogenous time series observed solely in the past.
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The challenge lies in handling this complexity without prior
knowledge of how these inputs interact with the target vari-
able. While various deep learning approaches have been
proposed, they oftenmanifest as ‘black-box’models, lacking
transparency regarding their utilization of the diverse input
types encountered in practical scenarios.

In a recent work [8], the Temporal Fusion Transformer
(TFT) was introduced as an innovative attention-based archi-
tecture addressing this issue. TFT not only achieves high-
performance multi-horizon forecasting but also provides
interpretable insights into temporal dynamics. In order to
capture temporal relationships at different scales, TFT incor-
porates recurrent layers for local processing and interpretable
self-attention layers for modeling long-term dependencies.
Specialized components within TFT are employed to select
relevant features, and a series of gating layers effectively
suppress unnecessary components, resulting in high perfor-
mance across a broad spectrum of scenarios.

[8] demonstrated significant performance enhancements
over existing benchmarks across various real-world datasets.
The study also highlighted three practical use cases illus-
trating the interpretability of TFT, showcasing its efficacy in
shedding light on the decision-making process. The PyTorch
Forecasting package [9] has on open-source implementation
of the model. It comes with its own optimizer, selecting the
optimal number of attention heads, the network’s hidden size,
and learning and dropout rates.

Althoughverypromising and successful for other datasets,
we found performance of TFT rather poor on our data: The
models reduce to a trivial binary predictor, always predict-
ing 1 or 0 no matter the input test data. We believe this was
largely due to the lack of data. As previously mentioned,
novel complex architectures like TFT have tens if not hun-
dreds of thousands of parameters which need a lot of data to
train well. It would be interesting to revisit TFT and other
models derived from it that have recently appeared in the
literature on other, bigger datasets.

4 Search strategies

Classical approaches to hyperparameter tuning in machine
learning, such as grid search and random search, have been
widely used due to their simplicity [10]. However, these
methods can be computationally expensive and inefficient,
especiallywhendealingwith high-dimensional search spaces
or expensive objective functions [11].Many approaches have
been introduced to improve performance, including but not
limited to: particle swarm optimization [12], using a simple
neural predictor [13], NAS without training [14], Bayesian
optimization, reinforcement learning, and the hyperband
method. An extensive survey on over 1000 NAS papers
[2] favorably featured the three latter approaches among

the strategies for chain-structured search spaces, and these
are the methods we explored in our work. The survey also
prioritized cell-based, hierarchical search spaces and one-
shot techniques, but we believe chain-structured spacesmake
more sense for small datasets like time series.

4.1 Bayesian optimization

Bayesian optimization has emerged as a popular alternative
to grid and random search for hyperparameter tuning, as it
efficiently explores the search space and intelligently guides
the optimization process [15]. One widely used technique in
Bayesian optimization is based onGaussian processes (GPs),
which fit the objective function using Gaussian processes
as probabilistic models and leverages acquisition functions
to balance exploration and exploitation [16]. GPs provide a
flexible, nonparametric tool formodeling complex functions,
allowing for uncertainty quantification and adaptation to new
data [17].

However, GP-based methods have some limitations, such
as the inability to handle categorical features or depen-
dent parameters without ad hoc modifications [18]. This has
led to the development of alternative methods, such as the
Tree-structured Parzen Estimator (TPE), which has gained
attention for its scalability and effectiveness [11]. TPE mod-
els the search space using hierarchical Parzen estimators,
which adaptively partition the space tomodel complex, high-
dimensional functions [11]. A simplified high-level version
of the TPE algorithm for neural networks optimization is pre-
sented in Algorithm 1. Line 6 in Algorithm 1 makes intuitive
sense as ‘choose a pointwhere xnext ismost likely “good” and
least likely “bad”’. Theoretically, it is justified since optimiz-
ing the criterion of Expected Improvement (EI)—the goal of
TPE—is equivalent to maximizing l(x)/g(x) at each step of
the algorithm [11]. See [11] for a more detailed introduction
to TPE and [19] for an in-depth tutorial.

Algorithm 1 Simplified TPE NAS
Input: A search space S of neural network hyperparameters, number

of trials ntrials , number of initial random samples ninit
Output: Results R for each hyperparameter configuration tested
1: Randomly select ninit configurations from S.
2: Train and test neural nets with the selected configurations, recording

results in R
3: for n = 1 to ntrials do
4: Split R into Rgood and Rbad based on their performance according

to the test metric.
5: Fit two density models: l(x) for Rgood and g(x) for Rbad
6: Choose the next configuration xnext by maximizing

l(xnext )/g(xnext )
7: Train and test a neural net with the new configuration, updating R
8: end for
9: return R
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TPE is particularly suitable for addressing the shortcom-
ings of GP-based methods, as it can naturally handle cate-
gorical features and dependent parameters without requiring
extensive adaptations. Performance comparisons between
TPE, GP-based methods, and classical search techniques
have shown that TPE often yields improved results across
various tasks and datasets [20].

A disadvantage of Bayesian optimization in general and
TPE especially is the high theoretical complexity of the
method when compared with simpler techniques, often for
not much gain [2, 13]. Thankfully, a good well-supported
practical implementation of TPE (that we used for our com-
parison) is available in the Optuna package, a versatile
optimization library that has demonstrated its utility in vari-
ous machine learning tasks [21].

4.2 Reinforcement learning approach

An alternative iterative approach consists of treating the neu-
ral architecture search problem as a reinforcement learning
problem. Action of the agent at time step t is selecting a
specific neural network configuration. The reward is the per-
formance of the selectedmodelwhich leads to the next action.
In this way choices of parameters which produce “good”
neural networks are rewarded, whereas those which produce
badly performing neural networks are penalized. We let the
system evolve for a number of iterations and at the end obtain
the test results for all configurations explored.

The specific method we used introduced in [7] uses an
RNN as a controller, trained with REINFORCE. The out-
put sequence of the RNN controller is a string encoding the
hyperparameters of a neural network to be trained and tested.
The authors claimed that compared with Bayesian optimiza-
tion, the reinforcement learning method is more general and
more flexible [7]. The algorithm is presented in Algorithm 2.
An open-source implementation of the controller RNN to
use with image data is available at [22], which we adapted to
work with our time series data.

Algorithm 2 Reinforcement learning NAS
Input: A search space S of neural network hyperparameters, number

of trials ntrials
Output: Results R for each hyperparameter configuration tested
1: Initialize the controller RNN C with random weights θC
2: for i = 1 to ntrials do
3: Evaluate C to get an architecture configuration s from S
4: Train and test a neural net with configuration s, update results R
5: Use the test metric as the reward signal, compute the policy gra-

dient and update the controller weights θC of C
6: end for
7: return R

4.3 Hyperband

The Hyperband introduced in 2018 by Li et al. [23], is a
hyperparameter optimization method fundamentally differ-
ent from both Bayesian optimization and the reinforcement
learning approach. While the latter both use a clever tech-
nique to suggest the next neural network configuration to
fully train and test, the Hyperband method selects many con-
figurations randomly, instead cleverly allocating resources
only to the ones looking promising early on in their training.

What makes Hyperband notable are its simplicity, effi-
ciency, scalability, and the ability to use multiple GPUs
simultaneously for faster optimization. It is compatible with
popular machine learning libraries like Scikit-learn
and Keras, embedded in the KerasTuner framework
[24].

Hyperband is designed for the efficient exploration and
optimization of hyperparameter configurations. Algorithm 3
employs successive halving, a subprocess that involves
eliminating less promising models and further training the
survivors.

In successive halving, you provide the hyperparameter
search space S, the total number of epochs epochsmax needed
for full training of a neural net, and a factor η > 1 (usually
η = 2 or 3 or 4) determining the speed of reducing mod-
els and increasing training epochs for the survivors. This
process iterates until the best performing models are fully
trained, resulting in the identification of the best model and
its validation loss.

To achieve a balance between exploration and optimiza-
tion, Hyperband executes successive halving multiple times,
labeling each iteration as a bracket. The number of brackets
is determined by a parameter smax = ⌊

logη(epochsmax)
⌋
. In

each bracket, the number of models decreases by a factor,
and new models are generated. Hyperband ensures a robust
exploration by randomly generatingmodels for each bracket,
preventing too few models in a bracket. The initial training
epochs for each bracket strictly increase by a factor.

Practically implemented in KerasTuner as the Hyper-
band tuner, it is available for single or multiple GPUs for
parallel tuning. Users can specify η and epochsmax. This
allows control over the search time while efficiently explor-
ing the hyperparameter search space [25].

A disadvantage of the Hyperband method is that it will
quickly discard the architectures that performed badly early
on in their training. Sometimes these architectures would
outperform the others that did better early on if allowed to
train until completion.
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Algorithm 3 Hyperband NAS
Input: Maximum number of epochs epochsmax, hyperparameter

search space S, reduction factor η > 1
Output: Set R of best hyperparameters configurations maximizing the

test metric
1: Compute the maximum number of brackets: smax =⌊

logη(epochsmax)
⌋

2: for each bracket s = smax, smax − 1, . . . , 0 do
3: Set the number of configurations ncon f igs =

⌈
smax+1
s+1 · ηs

⌉
in this

bracket
4: Set the initial number of epochs of training per configuration

ninitial = epochsmax
ηs

5: Randomly select ncon f igs hyperparameter configurations from S
in a set T

6: for i = 0, 1, . . . , s do
7: Train each configuration from T for ninitial ∗ ηi epochs. Test

and save the results.
8: Select the top

⌊
ncon f igs

ηi

⌋
configurations of T based on the test

metric, discard the rest from T
9: end for
10: Save the best hyperparameter configurations from T in a set R
11: end for
12: return the set R of best hyperparameters

5 Methodology

5.1 Data preprocessing

To circumvent the high dimensionality of our data (∼1000
features with under 4000 samples), the number of features
was reduced approximately by a factor of 3 by removing
features in the prepared datasets ‘time-derived’ from orig-
inal features, such as by lagging original features by fixed
time steps or taking the mean over the same time steps. Such
time-derived features are standard in the industry [5], but are
fundamentally used because the algorithms applied to the
data can only take in one row of data as input. All the more
sophisticated neural network architectures take in a sequence
of rows of data, making time-derived features redundant. See
Sect. 3 for more details. The datasets were then normalized
before applying principal component analysis (PCA) to fur-
ther reduce the number of features.

5.1.1 Principal component analysis

PCA is a dimensionality reduction technique widely used to
transform high-dimensional data—especially when the fea-
tures are highly correlated—into a lower-dimensional space
by identifying the directions (principal components) along
which the data vary most [1]. Let X be our training data
matrix of size nsamples × n f eatures . PCA is an orthogonal
linear transformation of the real inner product feature space
that maps the data X to a new coordinate system. In this
transformed system, the direction of maximum variance by
some scalar projection of the data aligns with the first coordi-

Fig. 1 Scree plot for the Japan training dataset after time-derived
features were removed. The curve saturates around 150 components,
suggesting that k = 150 is a good choice to keep most of the informa-
tion while reducing the dimensionality significantly

nate (known as the first principal component), the direction
of the second-highest variance aligns with the second coor-
dinate, and so on. Moreover, the transformed columns of X
are linearly uncorrelated with each other.

It turns out that such transformation is given by a matrix
W whose columns are the eigenvectors of XT X , ordered
by their descending eigenvalues, which tell us how much of
the variance in the dataset is described by the correspond-
ing principal component [26]. By retaining only the first k
components with the highest variance, i.e., applying a trans-
formation given by the first k columns of W , we transform
X into a nsamples × k matrix, effectively capturing most
of the information while reducing dimensionality, noise, and
redundancy. A scree plot is a plot of the cumulative explained
variance (i.e., cumulative sum of the eigenvalues, usually
normalized so that the total sum is 1) against the component
number. Looking at the scree plot, a good value of k that
balances dimensionality reduction and information retention
can be identified (see Fig. 1 for an example). We tried a cou-
ple values of k for each dataset and architecture type before
proceeding with the main NAS studies.

5.2 Metrics

There are many evaluation metrics applicable to the binary
classification problem. Although common for other classifi-
cation tasks, accuracy (ACC) is not a good metric as a trivial
predictor that always gives the same output no matter the
input can have high accuracy in the case of an unbalanced
dataset. Balanced accuracy (bACC), the average between the
true negative and true positive rates, mitigates this problem.
Another popular alternative is the F1 score, the harmonic
mean of precision and recall. The area under the receiver
operating characteristic (ROC) curve, or AUC for short, is
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another good choice. It is hard to say which one is better, and
a good strategy could mix a combination of these. Wemostly
focused on AUC as we found it to be the hardest metric to
optimize, but we paid close attention to bACC and F1 too
and report on all three in Sect. 6.

5.3 Random seed variationmitigation

Neural networks, in particular in the context of financial time
series forecasting, suffer from comparatively high variance
depending on the random seed chosen during training due to
their stochastic nature [4–6]. Even identical neural network
architectures trained in exactly the same way but with differ-
ent random seeds can have vastly different performance on
the test dataset, e.g., an AUC of 0.56 on a ‘good’ random
seed and 0.48 (i.e., worse than random) on a ‘bad’ one. This
is a problem for NAS as what seemed like a good (or bad)
neural network configuration might have just been a lucky
(or unlucky, respectively) seed. To mitigate this problem, we
modified Algorithms 1, 2, and 3 to train and test each archi-
tecture configuration chosen 15 times with different random
seeds, averaging the test metrics and using the averages as
the result for the configuration chosen. At the end of opti-
mization, the best performing configuration was trained and
tested 50 times (again, with different random seeds every
time) to further eliminate random seed variation.

5.4 Experimental setup

We started with 7 different broad architecture types: FFNN,
depthwise 1D CNN, ordinary 1D CNN, 2D CNN, simple
RNN, LSTM, and TFT, but for final optimization studies
only FFNN, ordinary 1D CNN, and LSTM were used, as
discussed in Sect. 3. Each of them has their own search space
of hyperparameters determining the exact network architec-
ture.

The data were split into (in historical order): first 70%
for training, the following 20% for validation used in the
evaluation during optimization runs, and the last 10% for
final testing on unseen data. Normalization and PCA trans-
formations were fitted on the training datasets and applied to
training, validation, and test data.

Each of the three search spaces was explored by each of
the three search strategies described in Sect. 4 (modified by
repeated training, testing, and averaging as discussed above)
on each of the three (modified) datasets, resulting in 27 stud-
ies total.

Each studywas limited to 300 trials, i.e., 300different neu-
ral network architecture configurations from a search space
tested. Each configuration was trained for 80 epochs ,1 15
times over (see Sect. 5.3 above).

1 epochsmax = 80 in the case of Hyperband.

When the optimization studies were completed, the 27
architectures performing best on the validation datasets were
selected and evaluated on the test set. For these final tests we
retrained and tested each network 50 times and averaged the
test metrics to minimize the variance coming from different
random seeds.

6 Results

Our best results were obtained on the Germany dataset,
with time-derived redundant features removed but no PCA
applied. The LSTM with parameters selected by the hyper-
band method applied to the unseen test data achieved an
AUC score of 0.56 on average over 50 test runs starting
from different random seeds (see Sect. 5), with 0.05 standard
deviation. The same architecture showed balanced accuracy
score of 0.54 ± 0.04. 1D CNNs were also able to achieve
good performance on this dataset, with the best architecture
provided by Bayesian optimization giving an AUC score of
0.54 ± 0.05 and a high F1 score of 0.6 ± 0.06.

For the Japan dataset, the redundant time-derived features
removed and PCA applied retaining most of the information
in the dataset while further cutting the number of features
approximately in half gave the best results. The best per-
forming architecture was a 1D CNN coming from Bayesian
optimization, achieving an AUC score of 0.54 ± 0.03 over
50 test runs, with a high F1 score of 0.65 ± 0.02.

The US dataset was most challenging for us. Although
tuned 1dCNNsgave anAUCscore of 0.6±0.02 on validation
data (not used for training) in our repeated testing, and an
individual lucky random seed gave an AUC of 0.58 on test
data, on average no architecture could achieve AUC over
0.5 on the test dataset. We believe something very significant
happened in the US market in the last year or so of our data
that changed the market dynamics completely.

6.1 Architectures and search strategies compared

Our results show LSTMs and 1D CNNs outperforming sim-
ple feedforward networks for nearly all search strategies and
datasets, as expected, but were neck in neck between each
other.

For search strategy, overall the hyperband method and
Bayesian optimization showed better performance than the
reinforcement learning-based approach, but all three were
very close to each other, well within standard deviation as
shown in Fig. 2. Optimization time was very similar between
the three methods, about 12h per architecture type using a
single Nvidia Quadro RTX 4000GPU,with feedforward net-
works training faster than CNNs and LSTMs due to their
lower complexity.
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Fig. 2 Best performing architectures selected by each search strategy
on eachdataset. Every point represents average AUC score and standard
deviation on test data after retraining the selected architecture 50 times.
Type of the neural network chosen by the search strategy is displayed
above each point; search strategies are color-coded

Practically, the reinforcement learning approach required
the most work to adapt from the open-source implementa-
tion of the method in [7] and has many parameters of its
own to be optimized for best performance. In contrast, both
the hyperband implementation in KerasTuner and the
TPE Bayesian optimization from Optuna are easy to use
and well-supported, providing many options for both opti-
mization itself and performance monitoring. The Optuna
implementation is flexible in that nearly the same code can be
used to optimize hyperparameters of a different kind of solver
other than neural networks, such as decision trees-based
algorithms popular for time series prediction. Meanwhile,
KerasTuner implementation of hyperband has advantage
of easy parallelization over several GPUs (although we did
not have the hardware to make use of it).

7 Discussion

Overall,we did not observe significant convergence over time
in the hyperparameter optimization. An example history of
optimization plot is shown in Fig. 3. This was a general prob-
lem present for all neural architecture types, optimization
strategies, and datasets.

We believe all search strategies were working as they
should, but the main problem of financial time series pre-
diction on our datasets was just too difficult to decisively
improve upon through neural architecture search alone.
Many steps were taken to improve overall performance. In
the beginning the networks were heavily overfitting, where
we struggled to get any metrics above 0.5 even on the valida-
tion data. The feature reduction measures such as removing
time-derived features and PCA discussed in Sect. 5.1 helped

Fig. 3 Bayesian optimization history for the ordinary 1D CNN archi-
tecture on the US dataset. Each point represents average AUC score on
the validation dataset over 15 runs for the same network configuration

Fig. 4 Slice plot for Bayesian optimization of LSTMs on the Japan
dataset. Each point represents average AUC score on the validation
dataset over 15 runs for the same network configuration. It is clear that
setting chunk_length (i.e., the length in time of a sequence passed
to the LSTM for individual prediction) to 10 gives the best results, while
the other parameters are less impactful

mitigate this. Unfortunately, this still did not always trans-
late to good performance on the test dataset, even though we
heavily used dropout layers for regularization. We also tried
converting the main binary classification problem to regres-
sion, but this did not result in substantial improvement.

As a consequence, simply taking the final suggested archi-
tecture by either search strategy did not give the best results.
The best performing ones were also not always the best
choice due to the random seed variance discussed in Sect. 5.3.
Even though each network configuration was trained and
tested 15 times during the optimization process, training and
testing the best architectures more (e.g., 50) times sometimes
showed worse performance, indicating that the issue of ran-
dom seed variation was not fully resolved in our approach.

Nevertheless, all search strategies were still successful in
highlighting best choices for network parameters, at least for
the validation set, which is the most evident from slice plots
as in Fig. 4. For Bayesian optimization and the reinforcement
learning approach, the best parameters for each architecture
were read off slice plots like this.

To combat the big variance between networks starting
from different random seeds (see Sect. 5.1 and Fig. 2), we
tried filtering the outputs, disregarding those with probabili-
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ties close to 0.5 (interpreted as those where the network ‘was
not sure’), a standard approach [1]. Although this improved
overall performance a little on average, it instead greatly
increased the variance. For a fixed architecture, selecting net-
works trained from random seeds giving good performance
on validation set did not translate to better performance on
the test set. Our best suggestion to combat the variance is
to use an ensemble model built from many incarnations of a
chosen network architecture.

7.1 Future work

Performing the same studies on more and publicly avail-
able time-series datasets, especially non-financial datawould
shed more light on whether our findings were specific to our
data or a more general feature.

In addition, cell-based and hierarchical search spaces [2]
could be explored in the future in the context of time-series
forecasting. These are based on searching over structural
blocks within a network piece by piece instead of navigating
through a grid-like space as in the standard approachwe took.
One-shot NAS techniques such as supernet-based methods
(differentiable and not) and hypernetworks [2] could be
explored.With one-shot techniques, one trains a single (mas-
sive) super/hyper-network, which can be used to subsample
and evaluate many smaller networks to find the optimal one,
without re-training. This is opposed to the standard approach
of training and testing many architecture configurations that
we took. Finally, genetic algorithms have proved to be very
successful for NAS on image datasets [27] and should be
explored in the context of time series too.
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