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Bank on Compute-near-Memory: Design Space
Exploration of Processing-near-Bank Architectures
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Abstract—Near-DRAM computing strategies advocate for pro-
viding computational capabilities close to where data is stored.
Although this paradigm can effectively address the memory-
to-processor communication bottleneck, it also presents new
challenges: The strict resource constraints in the memory pe-
riphery demand careful tailoring of architectural elements. We
herein propose a novel framework and methodology to explore
Compute-near-Memory designs that interface to DRAM memory
banks, demonstrating the area, energy, and performance trade-
offs subject to the architectural configuration. We exemplify
this methodology by conducting two studies on compute-near-
bank designs: (1) analyzing the interaction between control and
data resources, and (2) exploring the integration of processing
units with different DRAM standards. According to our study,
the optimal size ratios between instruction and data capacity
vary from 2× to 4× across benchmarks from representative
application domains. The retrieved Pareto-optimal solutions from
our framework improve state-of-the-art designs, e.g., achieving
a 50% performance increase on matrix operations with 15%
energy overhead relative to the FIMDRAM design. In addition,
the exploration of DRAM shows the interplay between available
internal bandwidth, performance, and area overhead. For exam-
ple, a three-fold increase in bandwidth rises performance by 47%
across workloads at a 34% extra area cost.

Index Terms—Compute-near-Memory, DRAM, Processing-in-
Memory, Accelerator, System simulation, Performance evaluation

I. INTRODUCTION

Modern applications, particularly in the high performance
computing, machine learning and data processing domains [1],
have grown significantly in memory footprint and computa-
tional intensity. This trend poses a challenge for data transfers
throughout the system, exacerbating the performance disparity
between computation and memory, the so-called memory
wall [2]. As a result, a significant part of execution time
and energy is devoted to off-chip communication, stalling
computation [3]–[7].

Near-data processing architectures alleviate these shortcom-
ings by placing computing where the data is stored. These
designs reduce the need for communication between main
processors and memory elements, decreasing the latency in
the system and increasing energy efficiency. In addition,
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their close access to memory allows high parallelism when
executing repetitive kernels [8]–[10].

Near-data processing alternatives can be divided into
Compute-in-Memory (CiM), where the array of memory cells
is customized to enable computation between memory words,
and Compute-near-Memory (CnM), which places processing
units (PUs) close to the cell arrays without modifying them.
Both strategies can be implemented at any point of the system
memory hierarchy —caches, main memory, or storage— offer-
ing different degrees of parallelism [8], [9], [11]. Among these,
CnM at the bank level is a particularly promising strategy [10],
[12]–[17]. It involves closely interfacing the PUs with DRAM
banks, avoiding (1) the costly modification of the cell array
IPs, (2) the stringent area restrictions within the bank, and (3)
the energy overhead to move data between bank and DRAM
IO. By also leveraging simultaneous access to banks, bank-
level CnM architectures offer high-throughput, low-latency,
and low-energy data processing [9], [10].

Although several bank-level CnM designs have been pro-
posed [10], [12]–[17], they highlight individual design points,
without an analysis of architectural parameters, DRAM pro-
tocols, and their impact on performance. Therefore, they
cannot provide general guidelines. Instead, we introduce a
new methodology to systematically explore the Compute-
near-Memory design space for diverse application domains,
conforming to the DRAM protocol modifications introduced
by this paradigm. By simulating the processing units and their
interface to the DRAM banks, and providing a programming
model, we can analyze the effect of a wide array of architec-
tural choices on performance, energy, and area. To this end,
we provide a template based on the state-of-the-art FIMDRAM
architecture [16]. The template enables the parametric defini-
tion of CnM solutions that interface processing units with the
DRAM memory banks, in compliance with available JEDEC
standards. We demonstrate the versatility of this methodology
through the analysis of two crucial dimensions of the CnM
design, and quantify their trade-offs for the first time. First, we
study the balance between control and data resources at the PU
(i.e., the storage capacity for instructions and variables), which
is essential under the CnM area constraints to further exploit
data locality at the DRAM proximity. Second, we explore
how interfacing PUs to banks in different DRAM standards
impacts computing behavior, showcasing that the standard
choice can target the optimization of different performance
metrics to improve upon state-of-the-art designs. In summary,
the contributions of this paper are the following:

• We introduce a Compute-near-Memory architectural tem-
plate that allows to model PUs and the interfaced DRAM
protocol according to selected architectural parameters.
We also provide a design exploration framework and
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Fig. 1. Diagram of the different levels of the DRAM structure where
Compute-near-Memory (CnM) Processing Units (PUs) can be interfaced.

a programming interface to simulate the execution of
applications on individual instances of the template.

• We explore the trends in performance, area, and en-
ergy consumption of bank-level CnM PUs across design
points, validated with ML and data processing compute
kernels. For example, we show that FIMDRAM [16] can
be outperformed by more than 1.95x, with only a 23%
energy overhead when executing a convolution.

• We report Pareto-optimal CnM PU configurations of
control and data resources across applications. Thus, we
show optimal utilization of PU resources when the ratio
of instruction to data capacity is set between 2 and 4.

• We analyze the integration of CnM PUs into different
DRAM standards, showing the interplay among clock
frequency, parallelism, and computing metrics. We find
that the use of LPDDR4 can degrade the energy efficiency
of CnM up to 23% with respect to HBM2, and we show
that GDDR5 can achieve 77% of the performance of
Hynix-AiM [14], an application-specific design.

The introduced framework is available at GitHub.

II. RELATED WORK

Compute-near-DRAM works have proposed to interface
the processing elements at different levels of the memory
structure [10], as illustrated in Fig. 1: (a) channel, (b) die,
(c) bank or (d) subarray. Channel-level CnM (i.e., out of the
DRAM die) interfaces a processing unit (PU) with multiple
DRAM dies via an interposer [18], 3D integration [7] or
the DIMM interconnect [19]. CnM at the die level places
a PU within the die, shared between the banks [4]–[6].
Computing near the DRAM bank involves interfacing a PU
to the banks IO [12], [14]–[17]. Finally, subarray-level CnM
adds processing logic to each of the subarrays in the DRAM
bank [20], [21]. The choice of integration level rests on the
trade-off between computation potential and design effort.
Although computing at lower DRAM levels allows a higher
degree of parallelism and reduces energy consumption, it also
increases the design effort due to resource constraints [9], [10].
Among these alternatives, bank-level CnM stands out as a
trade-off between performance and cost [10]. This approach
allows high-bandwidth and low-energy access to the stored
data without modifying the internal bank structure. However,
the design of CnM architectures at the bank level needs to
address the stringent area limitations in the DRAM context,
where resource overhead is expensive [11].

State-of-the-art industrial bank-level CnM solutions show
a variety of objectives in their architectural design. UP-
MEM [12], [13] targets flexibility by implementing complex
multi-threaded PUs with a rich ISA, as well as large local
instruction and data memories. Computation is handled via a
memory-mapped control interface in each DDR4 die. On the
contrary, Hynix-AiM [14] and McDRAMv2 [15] focus only
on deep learning workloads. Hynix-AiM accelerates matrix-
vector multiplication employing dot product PUs attached
to GDDR6 banks. It also implements a data memory and
a look-up table to compute activations at each DRAM die,
shared among banks. McDRAMv2 integrates systolic arrays in
its processing units to accelerate matrix-matrix multiplication
within LPDDR4 memories. These PUs also include large data
memories and perform computation of common ML layers and
activation functions. Hynix-AiM and McDRAMv2 completely
avoid the use of instruction memories by handling execution
through a modified interface with DRAM. In between these
works, FIMDRAM [16] and LPDDR-PIM [17] strike a trade-
off between flexibility and kernel-specific performance. Their
PUs implement a simple SIMD pipeline and include small
instruction and data memories.

However, the works above [12], [14]–[17] lack an analysis
of the underlying design space. Filling this gap, we present
a simulation framework that allows designers to perform
architectural analysis of bank-level CnM solutions that ex-
ecute domain-specific workloads. Consequently, it enables
hardware-software co-design from the CnM system perspec-
tive. Unlike existing simulators [12], [14], [15], [17], [22]
it supports the easy configuration of the CnM architectural
parameters, including the datapath design and the DRAM
banks. Furthermore, we ensure JEDEC-compliance as required
in bank-level CnM, which published CIM exploratory frame-
works [23], [24] have not addressed. Through two studies
on the storage resources of CnM PUs and the choice of
the DRAM standard, we demonstrate the flexibility and po-
tential of the framework to guide design choices of CnM
architectures. Our first study focuses on the size of data
and control resources, not explored in previous work [12]–
[17]. We showcase the trade-offs between area, performance,
and energy consumption, and provide Pareto-optimal points
for the first time for different target metrics when executing
relevant ML and data processing kernels. Next, while previous
designs focus on single DRAM configurations [12]–[15],
[17], we explore how the implementation and performance
of CnM processing units are affected by the choice of DRAM
standard. This study depicts that CnM parallelism and working
frequency are governed by DRAM specifications. For example,
we illustrate that GDDR5 memories can enable CnM perfor-
mances close to application-specific CnM designs [14], and
that CnM with LPDDR4 memories displays higher energy
overheads than HBM2 due to a lower performance that makes
static power consumption prominent.

III. COMPUTE-NEAR-MEMORY DSE FRAMEWORK

Our framework, depicted in Fig. 2, is composed of (a) a
CnM architectural template that provides a configurable model

https://github.com/gem5-X/cnm_framework
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Fig. 2. Overview of the proposed Compute-near-Memory framework, allowing simulation of ML and data processing compute kernels for performance, energy
and area estimates. The framework comprises the (a) Architectural Template modeling the behavior of the DRAM and PU according to design parameters,
executing an application interpreted by the (b) Programming Interface.

of a processing unit (PU) attached to the DRAM banks, and (b)
a programming interface with DSE support that interprets an
application written in assembler to be executed on an instance
of the CnM template. The CnM architectural template itself
comprises a tunable SystemC model of a PU, which allows to
explore design trade-offs and to synthesize specific instances;
and a DRAM simulator [25], which provides the timing of the
sequence of DRAM commands in Fig. 2.(b), conforming to
compatible JEDEC standards, that trigger CnM execution in
the PU model.

A. Compute-near-Memory Architectural Template

As depicted in Fig. 3, the architectural template defines
a processing unit interfaced with two DRAM banks (A and
B). The PU, described in Section III-B, implements a single-
instruction-multiple-data (SIMD) pipeline that supports ad-
dition, multiplication, Multiply-Add (MAD), and Multiply-
Accumulate (MAC) operations, which are widely present in
data-intensive applications. It also implements simple control
and data movement instructions, as defined in Section III-C.
By instantiating one PU per every two banks and exploiting
concurrent access to all banks in a channel, this architecture
enables massively parallel execution. The template supports
integration with different DRAM standards, as described
in Section III-D. The architectural template is inspired by
industry-proven FIMDRAM [16], which facilitates a domain-
specific starting point and ensures compliance with JEDEC
standards [26]–[29]. The template generalizes the FIMDRAM
design through parameter tuning to enable the extraction of
prevailing trends, and can emulate it as a specific instance.

B. Processing Unit Architecture

To support the functionality of the architectural template, the
processing unit is composed of three main elements, shown in
Fig. 3: (1) register files holding scalar and vector data, as well
as CnM instructions, (2) a SIMD arithmetic unit (AU) capable
of performing multiplication and addition, and (3) a control
unit (CU) managing the execution of the instructions, and the
interface with the host CPU and the memory banks.

Control
Unit
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Bank
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RD / WR
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Commands

GRF_A

GRF_B

ADD MUL
SRF

CRF

SIMD
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SIMD
Adder

···

···
···+
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Fig. 3. Architecture of the Compute-near-Memory (CnM) processing unit
(PU) and its interface to the banks. The design-time tunable parameters are
highlighted in red.

Four different register files are located within the PU. First,
the control register file (CRF) holds up to C 32-bit instruction
words to be interpreted by the CU, acting as a local instruction
memory. The scalar register file (SRF) can store R scalar
variables for multiplication and R for addition, which are
replicated in the AU for every SIMD lane. Finally, two vector
register files (general register files, GRFs) are present, each
with capacity for R vectors of S words. C and R hence
indicate the amount of resources devoted to instructions and
data. We explore their interplay in Section V. As depicted
in Fig. 3, GRF A and GRF B are interfaced to the banks
A and B, respectively, to allow for direct data movement.
The number of SIMD lanes S and the data type should
be chosen to correspond with the width of the bank IO
(S × word bits = IO bits). For instance, if implementing
a 16-bit data type, S needs to be set to 16 in accordance with
the 256-bit HBM2 bank IO [26]. As the choice of DRAM
standard alters the interface between the PU and the bank,
Section VI analyzes the effects of bandwidth changes on
computing behavior. In the PU, data movement is supported
among data register files. An optional SIMD ReLU operation
is also enabled when moving data to a GRF.

The arithmetic unit comprises S multipliers and S adders
that perform in lock-step for SIMD execution. Inputs can be
obtained from the GRFs, the SRF, or either of the interfaced
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TABLE I
INSTRUCTIONS SUPPORTED BY THE CNM ARCHITECTURAL TEMPLATE.

Instruction Description

NOP CLKS Multi-cycle pipeline stalling.
JUMP ADDR ITER Repeated jump back for looping.
EXIT End of the CnM execution.

Data movement among register files and
MOV DST SRC RELU between GRFs and banks, with

optional ReLU.
ADD DST SRC0 SRC1 Addition.
MUL DST SRC0 SRC1 Multiplication.
MAD DST SRC0 SRC1 SRC2 Multiply-and-add.
MAC DST SRC0 SRC1 Multiply-and-accumulate.
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Fig. 4. State of the interface between the DRAM banks and the PU when (a)
reading data from DRAM in memory mode, (b) writing to the PU registers,
(c) executing an instruction that writes back to the bank A, and (d) executing
an instruction that reads from bank B.

banks. The result of the operation is written back to one of the
GRFs. Additionally, to allow for MAD and MAC, the output
of the multipliers can be supplied into the adders.

Finally, the control unit is in charge of the execution flow.
It comprises the interface with the DRAM commands that
govern execution (described in Section III-D), and the logic
to retrieve and decode the instructions in the CRF.

C. Processing Unit ISA

When the execution of the processing unit is directed
by the DRAM commands, a 5-stage pipeline is triggered:
(1) Decode of an instruction, (2) Load data from bank, (3)
Multiplication, (4) Addition, and (5) Writeback to GRF or
bank. After it starts, the pipeline advances using the memory
clock without requiring further DRAM commands. Any of the
stages after Decode can be skipped if they are not needed for
the executed instruction, e.g., instructions can skip the Load
stage if they do not involve reading from a DRAM bank.
As in FIMDRAM [16], the PU pipeline implements three
types of instructions (described in Table I) which support the
execution of linear algebra kernels present in a broad set of
applications, including ML, as shown in Section IV-A. Flow-
control instructions (NOP, JUMP and EXIT) guide general
CnM execution. Next, data movement in the PU is handled
by MOV instructions. Lastly, arithmetic instructions enable
SIMD addition, multiplication, MAD, and MAC.

D. Interface between Host and DRAM Banks

To support Compute-near-Memory, the host can alternate
between two DRAM operation modes: memory mode and
CnM mode. Memory-mapped registers are employed to man-
age mode changes. In memory mode, the DRAM acts as

a normal memory and the processing units are inactive, as
shown in Fig. 4(a). During CnM mode, instead, the PUs
are active, and concurrent access to all banks is enabled,
i.e. a single DRAM command handles the behavior of all
the banks in the memory channel. This mechanism allows
to govern the execution of the PUs using standard DRAM
commands, avoiding modifications in the memory controller
or in the interface between host CPU and memory. Hence,
computation near-memory is managed by issuing read (RD)
and write (WR) commands to the correct addresses, which
simultaneously arrive at the banks and the PUs.

The DRAM command and the address trigger both writes
to the memory-mapped PU registers (Fig. 4(b)) and execution
of instructions (Fig. 4(c,d)). Specifically, the DRAM address
is extended by one bit so that the new most significant bit
(MSB) determines which of the two actions is performed. To
guarantee synchronization between PU execution and access
to the correct data in DRAM [10], [16], we assume that
reordering of commands and squashing of reads during CnM
mode are avoided at the memory controller.

Supporting concurrent access to all banks involves modest
modifications to the memory controller. Since memory oper-
ations cannot be pipelined across bank groups, consecutive
commands need to comply with the longer timings for same-
bank access. To simulate this behavior and support a wide
range of protocols, we extended an open-source DRAM sim-
ulator, Ramulator [25], to (1) model the channel-wide scope
of memory accesses, (2) reflect the scheduling modifications
due to simultaneous bank access, and (3) monitor the state of
the DRAM rows, i.e., whether they are open or closed.

E. Programming Interface

The execution of an application on the Compute-near-
Memory architectural template requires a corresponding se-
quence of DRAM commands governing data movement and
PU operation. To generate such a sequence while abstracting
from the ISA implementation and memory-mapping aspects,
the programming interface presented in Fig. 2(b) is employed.
Since its flexibility matches that of the template, the pro-
gramming interface allows to sweep the available architectural
parameters for each executed application, supporting a fast
exploration of the design space.

The application is implemented using a custom assembly
language with a reduced number of instructions. These in-
structions comprise the ISA defined in Table I, commands to
write to the different register files in the PU, and an EXEC
instruction to generate the DRAM sequence which will trigger
the CnM execution. Taking the application code as input, the
assembler generates the corresponding sequence of DRAM
commands, as depicted in Fig. 2(b). In addition to writing
the local data memories, the sequence of CnM instructions
is written into the CRF starting from the index specified in
the code. Afterwards, to generate the DRAM commands to
trigger execution, the instruction memory is considered from
the initial index until the first EXIT command. If processing a
JUMP instruction, the assembler generates the corresponding
commands to decode the instructions in every iteration.
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F. Compute-near-Memory Execution
To execute an application on the Compute-near-Memory

processing units, first the programming interface is employed
to obtain the input sequence of DRAM commands. The
memory controller, modeled by Ramulator [25] with the
extensions described in Section III-D, receives this sequence
and schedules the commands according to the selected DRAM
standard and the concurrent access to all banks. Consequently,
it inserts the additional commands required to abide by DRAM
protocols —such as activation, precharge, and refresh—, and
specifies the cycle when each command is issued. The re-
sulting timed sequence arrives at the memory banks and the
PUs, modeled by the instance of the architectural template
in Fig. 2(a) with the chosen architectural parameters. There,
the commands are interpreted at the corresponding cycle to
perform writes to the PU registers and to trigger the execution
of the instructions that implement the application.

Thanks to the matching configurability of the template and
the interface, an application can be executed on different
architectural instances without any modification of the code.
As a result, multiple instances of the execution process can
be simulated, sweeping architectural parameters to perform
a rapid DSE. Such flexibility enables the assessment of data
representation, level of integration and usage of resources in
the CnM context. In the following sections, we showcase the
latter option, key in CnM system design, by analyzing the
configuration of PU instruction and data capacity, along with
the impact of interfacing to different DRAM standards.

IV. EXPERIMENTS

A. Kernels Mapped to the CnM Architecture
The programming interface described in Section III-E al-

lows the parameterized implementation of different kernels

using our bank-level CnM architectural template. Here, we
provide the mapping of five kernels, shown in Fig. 5: vector
addition, dot product, matrix-vector multiplication, matrix
multiplication, and convolution. These linear algebra and
data processing operations are widely present in machine
learning and scientific computing workloads where memory
communication bottlenecks are frequent, e.g., in transformer
models [17]. They also allow to study the behavior of both
1D and 2D kernels, which exhibit different requirements for
computing and communication.

The vector addition kernel sums V pairs of n-dimensional
vectors. Every vector is stored in memory in row-major
order, so that every DRAM column contains S consecutive
dimensions of a vector. As shown in Fig. 5(a), to execute the
kernel, the processing unit moves the first element of each
vector pair to the general registers, and adds them together
with the corresponding second element obtained from the
banks. The results are stored back in memory.

The dot product kernel performs V dot product operations
between two groups of V n-dimensional vectors. Each vector
is transposed and stored in memory in column-major order.
During execution, the PU moves the first vector group to
the GRF. Then, the elements of this group are multiplied by
the corresponding ones from the second group obtained from
DRAM, and the result is accumulated in one of the general
registers to progressively obtain the dot product results, as
depicted in Fig. 5(b).

The matrix-vector multiplication kernel multiplies a vec-
tor An by a matrix Bn×p to obtain the vector Cp. The scalar
RF holds the elements of A, while B is stored in DRAM. To
execute the kernel (Fig. 5(c)), each element of A performs
a SIMD multiplication with the corresponding elements of
several columns in B, accumulating the results in the GRF.
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TABLE II
CONFIGURATION OF THE DRAM STANDARDS FOR THE CNM ANALYSIS.

HBM2 DDR4 GDDR5 LPDDR4
[26] [27] [28] [29]

Data rate (Gbps) 2.4 3.2 4 3.2
Array width — 8x 16x 16x

Internal clock (MHz) 300 400 1000 200
Number of banks / PUs 16 / 8 16 / 8 16 / 8 8 / 4
Bank IO interface (bits) 256 64 256 256

PU SIMD lanes (S) 16 4 16 16
Peak PU throughput (Gbps) 76.8 25.6 256 51.2

The matrix multiplication kernel multiplies two matrices
Am×n and Bn×p, obtaining the matrix Cm×p as a result. The
elements of A are loaded into scalar registers, while the rows
of matrix B are aligned and sequentially stored in DRAM. To
obtain the rows C, the elements of A multiply and accumulate
the columns of B in parallel, storing the results in the general
register file (Fig. 5(d)).

The convolution kernel convolves a series of co filters (k×
k × ci) with the input tensor (hi × wi × ci), resulting in the
output tensor of dimensions ho × wo × co. The weights and
biases of each filter are loaded into the scalar register file, as
depicted in Fig. 5(e). The elements in the SRF operate channel
by channel with all the relevant input tensor elements, which
are unrolled in the row orientation when stored in DRAM. The
different output channels are obtained through repeated MAC
operations with the corresponding filter coefficients, storing
the results in the GRFs (Fig. 5(e)).

B. Experimental Setup

We employ our Compute-near-Memory framework to an-
alyze the performance of different PU configurations, mod-
eled as instances of the architectural template. The DRAM
simulator provides the scheduling of the DRAM commands,
while the SystemC model simulates functionality. Across
instances, we used the half-precision floating point format
(16 bits), a common choice for efficient HPC and ML im-
plementations [16]. In addition to the functional simulation
performed with the framework, we employ Mentor Catapult to
perform high-level synthesis of the SystemC-defined designs,
and next we utilize Cadence Genus and Joules to obtain post-
synthesis area and energy results using TSMC 28nm HPC
logic technology.

We realize two explorations analyzing different architectural
design dimensions. In Section V, we obtain different PU
design points by varying the amount of resources devoted to
controlling execution (C control registers) and storing the ker-
nels dataset (R scalar and general registers). We analyze C =
{16, 32, 64, 128} registers per CRF and R = {4, 8, 16, 32}
registers per SRF and GRF. The HBM2 DRAM standard [26]
with a 2.4 Gbps interface is considered for this exploration. To
adapt to its 256-bit IO bank interface, the number of SIMD
lanes in the datapath (S) is set to 16. The PU designs are
synthesized targeting 300 MHz, matching the frequency of
the HBM2 internal clock.

Next, we analyze in Section VI the performance of the
CnM PUs when integrated into a channel of different pop-

TABLE III
BENCHMARK PARAMETERS EMPLOYED IN THE EXPLORATION OF PU
DESIGN POINTS (SINGLE PU) AND OF THE INTEGRATION OF PUS IN

CHANNELS OF DIFFERENT DRAM STANDARDS (CHANNEL).

Kernel Single PU Channel

Vector addition
V = 128, n = 128 V = 256, n = 256

Dot product
Matrix-vector

n = p = 180 n = p = 1024
multiplication
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Fig. 6. Synthesized area of the components across PU configurations,
normalized by the baseline design [16].

ular DRAM standards. The HBM2 interface is set as the
comparison baseline, resembling the FIMDRAM configura-
tion [16]. DDR4 [27] is studied as a standard involving a
low bandwidth interconnect. Exemplifying an alternative high
bandwidth DRAM standard, GDDR5 [28] is also considered
in the analysis. Finally, we evaluate LPDDR4 [29], a low
power standard. The parameters employed in this second
study are shown in Table II. To achieve a fair comparison
frame, the exploration considers 4 Gb DRAM channels across
standards, and the PU instances employ C = 32, R = 8 as
sizing parameters. The CnM PUs are synthesized targeting
the frequency of the internal clock in the standard, and their
number of SIMD lanes S is set to adapt to the bank IO
interface.

To match the design points with different application do-
mains, we use the kernels previously described as reference
points, sized as shown in Table III. To be representative
of general trends for arbitrarily-sized kernels, the selected
dimensions imply data mappings significantly larger than what
the PUs can hold for a single kernel iteration.

V. EXPLORATION OF BANK-LEVEL CNM PU DESIGNS

A. Area Results

Before the studies of performance and energy consumption,
we focus on the area occupation of the analyzed PU config-
urations to examine overhead at the confined DRAM bank
periphery. This exploration allows to assess the cost of in-
creasing computing performance via enlarging register files to
improve locality. Fig. 6 shows the normalized area results after
synthesis of the modeled Compute-near-Memory processing
units, comprising the control unit (CU), the arithmetic unit
(AU), and the register files.
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Fig. 7. Performance results (FLOPS) when executing the considered kernels, normalized with respect to the FIMDRAM [16] configuration (C = 32, R = 8).
Vector addition and dot product (1D kernels, left) display a mainly C-limited behavior (no performance increase when adding data registers), while matrix-
vector multiplication, matrix multiplication and convolution (2D kernels, right) are primarily R-limited (adding control registers fails to speed up execution).

Thanks to the simplicity of the supported instruction set, the
CU has a low impact on the area of the PU. Its occupation
remains constant across configurations, barely affected by the
size variation of register files. The area of the AU is also stable
among the studied designs, occupying a considerable fraction
of the PU. However, the overhead of the design is mainly
dictated by the storage elements. Particularly, GRFs rapidly
dominate when increasing the number of registers to achieve
better locality. Since 256-bit vector registers are employed in
this round of experiments (S = 16), the PUs with the largest
R values need to accommodate up to 16 kbit of data registers.
SRF occupation also presents a linear growth, but with a lower
impact on area. Similarly, expanding the instruction capacity
to allow the execution of more operations per iteration, re-
ducing loop overhead, makes the CRF area significant when
comprising more than 64 instructions (> 2 kbit).

Key Takeaway 1: Register files dominate the area of the
PU, followed by arithmetic logic.

Consequently, the correct sizing of the data and instruction
register files is the key to obtaining good performance and
energy consumption while optimizing the area of the PU, as
explored in the next sections.

B. Performance Results

Run-time performance of the benchmark kernels is limited
by the amount of computation that can be mapped to the PU
at once, executed as a loop. Larger computation tiles present
a lower loop overhead and an increased data locality. In turn,
the size of such tile is limited by two factors: the number of
control registers C and the size of the data register files R.
The first factor defines the total instruction capacity. Instead,
the amount of data registers establishes how many variables
can be used in an iteration before needing an update. For a
specific kernel we define C, R configurations as C-limited if
the number of control registers is more restrictive than R, or
R-limited otherwise.

Illustrating these trends, Fig. 7 shows the performance
results when executing the analyzed kernels in different con-
figurations of CnM processing units, normalized with respect
to the FIMDRAM configuration [16]. The plots demonstrate
C-limited execution when the performance values remain
unchanged when moving along the X-axis. Here, for a certain
number of control registers, increasing the data capacity fails
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Fig. 8. Analysis of the instruction mix of the convolution kernel across C, R
configurations: (a) number of memory access normalized with respect to the
FIMDRAM [16] configuration (C = 32, R = 8), and (b) utilization of the
arithmetic unit, measured as the ratio between executed arithmetic instructions
and the total number of instructions.
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Fig. 9. Performance speedup over the baseline design [16] for representative
kernels executed on PU with different C, R configurations. The best perform-
ing ratios between instruction and data capacity are highlighted in yellow.

to achieve a performance improvement. Correspondingly, R-
limited performance is exhibited when the values do not vary
along the Y-axis.

Experiments show that the 1D kernels (vector addition and
dot product) are primarily C-limited workloads. Due to their
lack of data reuse, varying the C, R configuration does not
alter the number of memory accesses. Thus, the performance
improvements when increasing instruction capacity arise from
the reduction in loop overhead and the lower average latency
between DRAM commands, as sequential accesses better
exploit row locality. Contrarily, Fig. 7 demonstrates that the
performance of matrix-vector multiplication, matrix multipli-
cation, and convolution (2D kernels) is mostly R-limited. The
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Fig. 10. Energy consumption (Joules) of a PU when executing the kernels, normalized with respect to the FIMDRAM [16] configuration (C = 32, R = 8).
Energy use in 1D kernels (left) displays higher sensitivity to data capacity than in 2D kernels (right).

data reuse inherent to matrix operations allows to employ the
contents of the data registers in several iterations before being
updated. As a result, adding more data registers diminishes the
number of memory accesses during execution, which in turn
boosts the utilization of the arithmetic unit, as depicted in the
representative convolution example in Fig. 8.

Overall, results in Fig. 7 reveal the need to balance the
number of instruction and data registers in order to attain
good performance at the lowest area cost, as large register files
can increase overhead by more than 100%. Fig. 9 illustrates
the performance change when varying the amount of control
registers (C) for set sizes of the data register files (R). Across
workloads, for each value of R the speed-up stops growing at
a certain value of C, at which point the instruction memory
can access all the data registers in one iteration. Notably, these
plateaus occur at ratios between instruction and data capacity
that are consistent within the analyzed kernel. For 1D kernels,
the optimal sizing ratio between instruction and data capacity
is equal to 4. This proportion allows to allocate the high
number of memory access instructions per iteration required
by the kernel. For example, an improvement of more than
1.6× is achieved when increasing C from 16 to 128 when
R = 16, as shown in Fig. 7. Instead, 2D kernels present a
lower optimal ratio of 2 between instruction and data capacity
(Fig. 9(c)). The lower number stems from the presence of
more arithmetic operations per memory access. In particular,
multiplying the data capacity by eight achieves more than 2.6×
performance increase for these kernels when C ≥ 64.

According to these results, PU designs can target different
trade-offs through the sizing of register files. Maximum perfor-
mance across workloads can be achieved by choosing the more
limiting ratio C/2R = 4 on 1D kernels. However, kernels with
lower optimal ratios suffer from low utilization. For example,
while the configuration C = 128, R = 16 achieves the best
performance in all kernels for the chosen number of data
registers, more than half of the instruction capacity is unused
for 2D workloads.

C. Energy Results

The energy consumed by the PU across configurations when
executing the considered kernels is shown in Fig. 10. These
results illustrate a rise in energy consumption across workloads
when increasing the data capacity, in dependence on the area
of the processing unit and on the achieved performance. A
PU covering a wide area implies both larger static power
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Fig. 11. Breakdown of energy results for vector addition (VA) and matrix-
vector multiplication (MVM): (a) percentage of static energy with respect to
the total consumption and (b) energy consumption per component.

and a higher number of components consuming switching
power. However, higher-performance designs execute the ker-
nels faster, diminishing leakage energy. At a lesser degree,
results also show that, when performance is limited by R
or C, increasing the other parameter only leads to higher
energy consumption due to additional leakage. Since the
FLOP count for each operation remains constant across C,R
configurations, the heatmaps in Fig. 10 also provide energy
efficiency metrics, indicating the power consumed per unit of
performance (normalized W/FLOPS).

Fig. 10 depicts steeper growths in the energy costs of 1D
kernels: since they are mainly C-limited kernels, the addition
of data registers fails to significantly improve performance,
and thus the static component of the power is not offset by a
faster execution. Likewise, reducing R has a low impact on the
run-time of vector kernels, and thus higher energy savings are
achieved. Instead, 2D kernels benefit from larger data RFs, as
the improved performance reduces the relative energy increase.
Illustrating these trends, Fig. 11(a) depicts how for vector
addition the ratio of static energy grows more rapidly with the
number of data registers than for matrix-vector multiplication.
Besides, as 2D kernels exploit data locality at the SRF, one of
the GRFs can be turned off to decrease energy consumption.
Thus, the percentage of energy consumed by GRFs is larger in
1D workloads than in 2D kernels, as shown in the breakdown
of per-component energy in Fig. 11(b). Consequently, energy
results of 1D workloads are more sensitive to the addition of
data registers. Overall, optimizing the sizing parameters can
improve energy consumption by 50% for 1D kernels and by
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area. Highlighted PU configurations are shown in non-blue colors.

30% for 2D workloads.
Key Takeaway 2: Mappings that minimize the use of

register files reduce the energy overhead in loop kernels.

D. Performance, Power and Area Trade-offs

Fig. 12 shows the performance, energy consumption and
area trade-offs at the PU when executing two representative
kernels for 1D and 2D operations, respectively dot product and
convolution. We highlight several C,R configurations showing
sizing trends: “FIMDRAM” resembling the state-of-the-art
design [16] (C = 32, R = 8), a low power configuration (C =
32, R = 4), two designs optimized for 1D (C = 64, R = 8)
and 2D operations (C = 32, R = 16), and a configuration
with good overall performance (C = 64, R = 16).

In the first row of Fig. 12, the graphs show how im-
provements in speed-up come at an energy cost. However,
increases in energy have more impact on 2D kernels than
on 1D operations, as conveyed by the difference in slope

and correlation coefficient. While energy increases are mainly
driven by expansions in data capacity that mostly enhance the
behavior of 2D computations, adding instruction registers to
improve 1D operations has a lower energy overhead. These
trends are depicted again in the graphs comparing area and
speed-up, where again area increases have a bigger effect on
the execution of 2D kernels. Finally, the last row in Fig. 12
showcases the linear relationship between area and energy
requirements. The graph depicts how, for 1D kernels, adding
more area causes a steeper growth in energy consumption.
As shown in Fig. 11(a), this difference derives from the
higher impact of static power, since more GRF resources are
employed and run-time is not improved enough to offset the
static power consumption.

Key Takeaway 3: The relations between performance,
power and area are kernel-dependant and linear.

When compared to the analyzed design points, the baseline
inspired on FIMDRAM exhibits good performance at low
energy and area costs, residing at the surroundings of the
Pareto frontier. However, the processing unit can be modified
to achieve lower power consumption and area occupation,
or better performance. The low power configuration (C =
32, R = 4) achieves 20% decrease in energy consumption
and 19% lower area at a 39% performance cost with respect
to FIMDRAM. A design doubling the number of instruction
registers (C = 64, R = 8) can improve performance of 1D
operations in 23% with low energy (4%) and area (9%) over-
heads, and without affecting run-time or energy consumption
of 2D kernels. In turn, multiplying by two the number of the
data registers in a PU (C = 32, R = 16) achieves up to
50% speed-up of 2D operations with a 40% area cost and
a maximum energy overhead of 15%. Finally, performance
can be improved across kernels by increasing both C and R
(C = 64, R = 16). While the area of the design increases in
48%, speed-ups as high as 50% are achieved at less than 33%
energy overhead.

Key Takeaway 4: Area constraints near the bank oblige
tuning of instruction and data capacity for CnM viability.

Register files should be sized to allow for the instructions
held at one time to make use of all the available data storage.
Correspondingly, they should display ratios from 2× to 4×
between instruction and variable capacity. By employing our
framework, these favorable configurations can be assessed and
identified.

VI. INTERFACING DIFFERENT DRAM STANDARDS

A. Area Results

As in the previous study, we first explore the area overhead
of placing PU units near the DRAM banks. However, we
now focus on the interaction between the parallelism, interface
width, and clock frequency at the channels of the DRAM stan-
dards listed in Table II. We consider a single PU configuration
that resembles the FIMDRAM design (C = 32, R = 8) [16].
The area occupation of the processing units in the standards is
analyzed in Fig. 13. The graph on the left shows total PU area
in a channel, i.e., the area overhead per 4 Gb. With the same
width of bank interface (S = 16) and number of PUs, HBM2
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Fig. 13. Total area of the PUs in a channel across DRAM configurations (a),
area per bank IO bit of the PUs in a channel (b) and area per CnM throughput
across DRAM configurations (c), normalized by the FIMDRAM baseline.

and GDDR5 have equal number of interfaced PU bits (2 kbit,
128 SIMD lanes). Nevertheless, the higher clock frequency
increases the area overhead in the GDDR5 channel, mainly due
to the critical paths in the arithmetic unit. DDR4 has one fourth
of the interfaced channel bits of HBM2 (32 lanes), resulting in
the lowest area overhead despite its faster 400 MHz internal
clock. Instead, for LPDDR4 the reduced overhead due to the
1 kbit (64 lanes) interfaced is further decreased by the low
200 MHz internal frequency.

The PU area per interfaced bit is shown in Fig. 13(b). Here,
the effects of clock frequency are better perceived and the
disparities due to different total number of PUs and SIMD
lanes are concealed. Among the standards, the size of the AU
and the GRFs vary according to the clock frequency. Besides,
the DDR4 standard shows a larger control overhead, since the
employed PUs compute using four SIMD lanes, instead of the
16 lanes used in the rest of standards.

Fig. 13(c) displays area results per peak PU throughput.
Considering the values in Table II, we show that, for DDR4
and GDDR5, the area overhead is offset by the high through-
put achievable with their faster clock frequencies. Likewise,
LPDDR4 has low area efficiency due to its limited throughput.

Key Takeaway 5: The DRAM standard determines the
achievable throughput between bank and CnM PU.

Results show that, when considering a single DRAM chan-
nel, the analyzed standards offer different trade-offs. DDR4
memory achieves low area overhead and high area efficiency,
while falling short in throughput due to the low total number
of SIMD channels. Contrarily, high parallelism and clock
frequency allows GDDR5 to attain very high throughput
and area efficiency, but with a large area overhead. As the
middle ground, HBM2 shows reasonable throughput and area
overhead with a lower area efficiency than GDDR5, thanks to
its high parallelism. LPDDR4 fails to surpass the alternatives
in any metric due to its low frequency and parallelism.

However, different trade-offs are found when analyzing
from the perspective of the total DRAM memory in a sys-
tem. DDR4 and GDDR5 standards can increase memory and
processing capacities by adding more dies to the channel.
Nevertheless, in these standards supporting extra dies requires
a larger total footprint and adds complexity to the interconnects
with the computing elements. Since HBM2 cubes are manufac-
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Fig. 14. Relative performance (FLOPS, the higher the better) when executing
MVM with different matrix sizes, normalized with respect to the execution
of 16x16 MVM employing HBM2.

tured by stacking multiple dies, this standard can support up to
16 channels with a smaller footprint and a denser interconnect
through an interposer. These features allow computing near the
HBM2 banks to achieve a higher throughput while keeping the
area overhead reasonable. LPDDR4 dies include two channels,
doubling their storage and computing capabilities. However,
such increase fails to match the throughput or footprint effi-
ciency of other DRAM alternatives.

B. Performance and Energy Results and Trade-offs

All previous results referred to the large kernel dimen-
sions in Table III to leverage CnM massive parallelism. To
illustrate the results of instead employing constrained input
sizes, Fig. 14 shows the interaction between dimensions of a
matrix-vector multiplication kernel and the employed DRAM
standard. When executing small kernels, the lower number of
SIMD lanes in the DDR4 channel results in a higher fraction
of active lanes than in the PUs of the HBM2 channel. For
instance, MVM computation with a 32 × 32 matrix can be
parallelized over 32 lanes, which represent the total number
of SIMD lanes in DDR4, but only one fourth for the lanes in
HBM2. As a result, the same number of DRAM commands
is needed for executing the kernel in both standards, and the
higher clock of DDR4 offsets the lower parallelism offered
to match HBM2 performance. Nonetheless, when larger ker-
nels are employed, all the SIMD lanes in the HBM2 are
used, and thus the higher parallelism reduces the amount of
DRAM commands needed for execution. Fig. 14 illustrates the
stabilization of speed-up for large kernels, where the perfor-
mance difference represents the interplay between the level of
parallelism and the processing frequency. In both standards,
smaller performance increases are experienced as workloads
grow further due to the diminishing control overhead.

Key Takeaway 6: The lower bound of CnM speed-up
depends on workload size. The upper bound depends on
the parallelism set by the DRAM standard.

To compare the compute-near-memory execution of the con-
sidered benchmarks using different DRAM standards, Fig. 15
displays performance, energy consumption and energy effi-
ciency (FLOPS/W) values normalized with respect to HBM2
measurements. Speed-up values show that GDDR5 outper-
forms HBM2 in all kernels due to its higher clock frequency.
In turn, DDR4 and LPDDR4 do not match HBM2 speed due
to their low parallelism.
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described in Table III.
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Fig. 16. Energy consumption per component when executing different kernels,
normalized by the FIMDRAM baseline [16].

As for energy consumption, HBM2 and GDDR5 exhibit
results proportionate to the achieved performance and the em-
ployed clock. However, DDR4 and LPDDR4 display similar or
higher energy numbers than HBM2 despite their low area. Per-
component energy results in Fig. 16 showcase the overhead
of the control unit and CRF in DDR4 due to the higher
iteration count to offset the low parallelism, particularly in
vector addition where data reuse is low. In LPDDR4, the high
run-time intensifies the impact of static power consumption at
the arithmetic unit, specially in 2D kernels.

The third graph in Fig. 15 shows how HBM2 achieves
good energy efficiency across workloads. LPDDR4 and DDR4
also obtain good results in 1D and 2D kernels respectively,
where low energy overhead is observed. In contrast, CnM in
the GDDR5 channel necessitates high power to maintain the
obtained speed-up, hampering energy efficiency.

Area benefits

Speed-up Energy benefits

HBM2
DDR4
GDDR5
LPDDR4

Fig. 17. Qualitative comparison of CnM metrics for different standards.

C. DRAM Standard Trade-offs

The combined area, performance and energy results allow to
optimize different design metrics through the choice of DRAM
standard in CnM architectures, as qualitatively illustrated in
Fig. 17. If performance is the focus, GDDR5 offers the
lowest run-time when executing different kernels, though it
increases area overhead and energy consumption. Instead,
HBM2 trades some performance to reduce power and area
overheads. It also allows to increase parallelism with the
same device footprint thanks to 3D stacking, thus improving
performance with respect to GDDR5 while maintaining a
better energy efficiency. Finally, DDR4 and LPDDR4 offer
lower area overhead alternatives, but with low performance
and energy efficiency dependent on the executed kernel. In
order to exploit the low frequency clocks in these standards
to obtain low power designs, more area should be employed
to increase parallelism.

VII. COMPARISON WITH RECENT CNM DESIGNS

In Table IV, we compare state-of-the-art bank-level
Compute-near-Memory architectures that execute matrix-
vector multiplication kernels as reported in the literature [12]–
[15]. To show how different configurations can be derived with
our framework, we include the four designs highlighted in the
PU exploration in Section V: low power (C = 32, R = 4),
optimized for vector (C = 64, R = 8) and matrix oper-
ations (C = 32, R = 16), and good overall performance
(C = 64, R = 16). We also cover the designs studied in the
DRAM exploration in Section VI.

CnM processing units use the internal clock specified by
the standard employed. In the case of McDRAMv2, a clock
divider increases the operation frequency of the MAC units in
the systolic array, while the rest of the PU elements use the 250
MHz clock. The size of the instruction memories determines
the execution flexibility of the PU. At one end of the spectrum
are the large instruction memories of UPMEM [13], which
supports a complex ISA. On the other hand, Hynix-AiM [14]
and McDRAMv2 [15], oriented to deep learning, avoid the use
of instruction memories by allowing control of PU execution
via customized DRAM commands. FIMDRAM [16] and our
designs are in the middle, able to target the execution of small
kernel loops in the ML and data processing domains. Similarly,
the size of data memory conditions the degree of data reuse
possible during PU execution. Again, UPMEM shows its aim
of flexibility in the large data memories it implements, while
the rest of the designs have smaller ones for the data reuse
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TABLE IV
COMPARISON OF STATE-OF-THE-ART BANK-LEVEL CNM DESIGNS AND PERFORMANCE WHEN EXECUTING MATRIX-VECTOR MULTIPLICATION KERNELS.

Design
DRAM Data PU PU instruction PU data Data PUs per SIMD lanes PU Peak MVM 1 PU MVM 1 channel

type rate clock memory memory type channel per PU Throughput performance performance

UPMEM [12], [13] DDR4 2.4 Gbps 350 MHz 24 kB 64 kB INT32 641 1 11.2 Gbps 10.5 MOPS 381 MOPS1

Hynix-AiM [14] GDDR6 2 Gbps 1 GHz — 2 kB2 BF16 16 16 256 Gbps 1.42 GFLOPS 22.8 GFLOPS
McDRAMv2 [15] LPDDR4 3.2 Gbps 1 GHz — 8.2 kB INT8 4 128 64 Gbps 74.7 GOPS3 598 GOPS3

FIMDRAM [16] HBM2 2.4 Gbps 300 MHz 128 B 544 B FP16 8 16 76.8 Gbps 846 MFLOPS 10.8 GFLOPS

This
work

C = 32, R = 4 HBM2 2.4 Gbps 300 MHz 128 B 272 B FP16 8 16 76.8 Gbps 677 MFLOPS —
C = 64, R = 8 HBM2 2.4 Gbps 300 MHz 256 B 544 B FP16 8 16 76.8 Gbps 846 MFLOPS —
C = 32, R = 16 HBM2 2.4 Gbps 300 MHz 128 B 1.09 kB FP16 8 16 76.8 Gbps 970 MFLOPS —
C = 64, R = 16 HBM2 2.4 Gbps 300 MHz 256 B 1.09 kB FP16 8 16 76.8 Gbps 970 MFLOPS —
DDR4 version DDR4 3.2 Gbps 400 MHz 128 B 544 B FP16 8 4 25.6 Gbps — 3.07 GFLOPS

GDDR5 version GDDR5 4 Gbps 1 GHz 128 B 544 B FP16 8 16 256 Gbps — 17.5 GFLOPS
LPDDR4 version LPDDR4 3.2 Gbps 200 MHz 128 B 544 B FP16 4 16 51.2 Gbps — 2.79 GFLOPS

1Considering one single rank. 2Global buffer shared by the DRAM die. 3Derived from reported DNN inference performance.

needed in the execution of small kernels. The PU throughput
numbers demonstrate again a dependency on the targeted
flexibility. UPMEM does not exploit parallelism within the
PU, as it would add high complexity overhead to the already
intricate pipeline. Instead, the rest of the designs leverage both
channel and PU parallelism to achieve high performance.

Finally, the performance values display the result of the
different architectural choices. McDRAMv2 exhibits the high-
est performance thanks to the compact data type used and
its efficient application-specific architecture. Conversely, UP-
MEM presents the lowest performance as a result of its flexible
PU design without data parallelism. Hynix-AiM, FIMDRAM,
and our designs show mid-way performance values; however,
Hynix-AiM lacks the adaptability to workloads outside the
Deep Learning domain.

VIII. CONCLUSIONS

Bank-level Compute-near-Memory architectures mitigate
the communication bottleneck between computing elements
and memory. When processing units (PUs) are interfaced to
DRAM banks, they enable highly parallel and energy-efficient
computation while reducing system-wide data transmissions.
Nonetheless, their implementation entails the tuning of pa-
rameters in a multi-dimensional space. To assess the design
trade-offs of this novel computing paradigm, in this paper, we
have presented an architectural template and a methodology
enabling the exploration of the bank-level CnM design space.
Employing this template, we study the impact of design
decisions on computing resources and DRAM standards. We
analyze the balance between control and data resources of
PUs, providing Pareto-optimal configurations for the execution
of common ML and data processing kernels. Notably, we show
that these design dimensions are key to steering the perfor-
mance / energy / area trade-offs. In fact, resource utilization
is maximized when local PU memories can store between
twice and four times as many instructions as variables. We also
show how high-bandwidth DRAM standards such as HBM2
and GDDR5 present a better performance at bank-level CnM
than DDR4 and LPDDR4, while the latter two offer a lower
area overhead.
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