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Abstract: The attractor complexity index (ACI) is a recently developed gait analysis tool based on
nonlinear dynamics. This study assesses ACI’s sensitivity to attentional demands in gait control
and its potential for characterizing age-related changes in gait patterns. Furthermore, we compare
ACI with classical gait metrics to determine its efficacy relative to established methods. A 4 × 200 m
indoor walking test with a triaxial accelerometer attached to the lower back was used to compare
gait patterns of younger (N = 42) and older adults (N = 60) during normal and metronome walking.
The other linear and non-linear gait metrics were movement intensity, gait regularity, local dynamic
stability (maximal Lyapunov exponents), and scaling exponent (detrended fluctuation analysis). In
contrast to other gait metrics, ACI demonstrated a specific sensitivity to metronome walking, with
both young and old participants exhibiting altered stride interval correlations. Furthermore, there
was a significant difference between the young and old groups (standardized effect size: −0.77).
Additionally, older participants exhibited slower walking speeds, a reduced movement intensity, and
a lower gait regularity. The ACI is likely a sensitive marker for attentional load and can effectively
discriminate age-related changes in gait patterns. Its ease of measurement makes it a promising tool
for gait analysis in unsupervised (free-living) conditions.

Keywords: gait analysis; accelerometers; gait variability; nonlinear dynamics; aging; fall prevention;
metronome walking

1. Introduction

As individuals age, their ability to walk is significantly impacted by a convergence
of biomechanical and physiological changes. These changes are a result of age-related
physiological and neurological alterations, including decreased muscle strength, lower
cardiorespiratory fitness, degeneration of the sensory system, impaired neuromuscular
coordination, or diminished joint mobility [1]. Compared to young adults, older people
exhibit distinct gait characteristics: notably slower preferred walking speeds, shorter stride
lengths, longer double-support stance times, reduced push-off forces, and a more flat-footed
landing [2,3].

These adaptations suggest a shift toward a more secure gait pattern. This cautious
manner of walking requires increased attention and cognitive resources for motor control.
Indeed, walking is governed by a balance between automatic processes—fast, efficient neu-
ral mechanisms requiring minimal conscious attention—and executive control processes,
which are slower and demand significant cognitive resources [4]. Older adults increasingly
rely on executive control processes to manage walking [4]. Neuroimaging studies have
shown increased activation in the prefrontal cortex of older adults during walking tasks,
supporting the notion of reduced automaticity [5,6].

Gait automaticity can be evaluated using dual-tasking tests, involving walking while
performing another concurrent task. The aim is to evaluate how divided attention modifies
gait performance [7]. Known as motor cognitive interference, these modifications are more
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pronounced in older adults, particularly in those with cognitive impairments, compared
to their younger or cognitively healthy counterparts [8]. Competing demands for limited
attentional or mental resources is a key factor in gait performance [9]. When engaged in
dual tasking, older individuals may struggle to allocate additional attention to maintain
stable gait patterns. Age-related decline in executive function, particularly in dimensions
like attention and cognitive flexibility, contributes to increased difficulty in dual-task
performance among older adults [10,11]. These dual-task-related gait changes have been
shown to be predictive of future falls in older adults, highlighting the importance of
assessing gait automaticity in fall risk evaluation and prevention strategies [12].

Another key characteristic of gait in older individuals is increased variability [3,13].
Gait variability refers to the natural variation in the spatial and temporal characteristics
of walking [14]. Classically, linear statistical measures of gait variability, such as standard
deviation or range, focus on quantifying the amount of variation in a set of gait param-
eters. In contrast, nonlinear approaches—as delineated in nonlinear dynamical system
theory [15]—can reveal the structured temporal patterns underlying this variability, em-
phasizing its deterministic rather than random nature. Nonlinear tools, such as entropic
measures, fractal analysis, or those developed for the study of deterministic chaos, are
used to evaluate this temporal structure of variability [16,17]. Both linear and nonlinear
strategies have been used effectively to describe gait variability in the older population and
predict the likelihood of falls [13,18–22].

Because age-related decline in walking ability and gait performance increases the risk
of stumbling and subsequent falls [23], it is crucial to identify gait changes in older adults.
Analyzing age-related gait modifications not only helps with the early detection of fall risks
but also aids in developing and evaluating intervention strategies to maintain safe mobil-
ity [24]. In addition, gait analysis also offers a means to monitor individual progress during
rehabilitation, providing insight into the patient’s recovery trajectory [25–27]. Traditionally
conducted using motion capture systems in laboratory settings, gait analysis has advanced
with the advent of inertial sensors like accelerometers, enabling real-world gait quality
measurements [28]. These developments underscore the potential of portable, accessible
tools in public health, especially for older adults, to provide continuous, objective data that
may signal subtle changes in gait or balance predictive of fall risk [29].

The assessment of gait parameters in ecological contexts presents unique challenges.
The process requires the use of simple, non-intrusive devices designed for prolonged use
over several days. As a result, a single point measurement cannot provide a comprehensive
understanding of gait kinematics and kinetics. A recent systematic review highlights that
traditional linear variability metrics, including step time and step length variability, are
inadequately captured using a single accelerometer positioned at the lower back [30]. The
problem may arise because these methods need to accurately record each gait event to
evaluate variance without noise, something that is difficult with a single accelerometer.
In addition, this systematic review emphasizes that while nonlinear measures can serve
as valuable complements to linear measures of variability, there remains a need for more
high-quality studies to confirm their validity.

Over the last decade, several high-quality studies have demonstrated that accelero-
metric measures are effective at predicting fall risk among older adults in their everyday
home environments. By collecting acceleration-derived data over extended periods, re-
searchers have evaluated gait quality and quantity, identifying measures that sensitively
distinguish between individuals with high and low fall risks. Significant predictors have
included a comprehensive range of gait parameters—such as walking speed, stride length
and frequency, intensity, regularity (autocorrelation function (ACF) method), smoothness,
symmetry, and complexity—derived from both linear and nonlinear analyses [19,31–33].
However, there remains a need to develop advanced methods for analyzing acceleration
signals that capture the full spectrum of gait characteristics, particularly those accounting
for gait automaticity, to enhance our understanding of balance deterioration.
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The ACIER (attractor complexity index empirical rationalization) study endeavors
to fill this gap by validating an approach based on the nonlinear analysis of acceleration
signals measured at the lower back level. We sought to validate a novel method derived
from the nonlinear dynamic analysis of chaotic systems (Lyapunov exponents). Initially
intended to evaluate gait resilience to perturbations, the maximal Lyapunov exponents
method has also demonstrated a robust ability to quantify the long-range correlations
observed over consecutive strides [34]. This particular structure of variability, characterized
by a scale-free organization of temporal variance, is also known as statistical persistence, 1/f
noise, power–law correlation, or fractal pattern [35]. Recognizable in various physiological
signals, fractal dynamics has been proposed as a signature of the elaborate complexity
found in living organisms [36]. A recent study has shown that the variability of lower
limb muscle activity, as recorded by surface electromyography, has a similar long-range
correlation pattern to the time series of gait intervals. This finding sheds light on the
neurological basis of gait complexity [37].

Although early research suggested that a decrease in gait complexity indicated neural
aging or degeneration [36], more recent studies have nuanced this assumption. They
suggest that gait complexity is not static and can be modulated by a range of experimental
factors and disease conditions. For example, dual tasking changes gait correlation patterns
in older adults, linking gait complexity to motor-cognitive interference [38]. In patients with
Parkinson’s disease, treadmill walking increases gait complexity, unlike in healthy controls.
This suggests that externally paced walking may demand fewer attentional resources than
self-paced walking in these individuals [39]. When exposed to visual field perturbations,
older adults reduce their gait complexity—a phenomenon absent in younger individuals—
which suggests they allocate more attention to gait control when confronted with external
challenges [40]. People with chronic low back pain also exhibit reduced gait complexity
when concentrating on their symptoms but see improvements when their attention is
diverted [41]. Lastly, healthy young adults experience reduced gait complexity when
performing cognitive tasks on smartphones while walking [42]. These findings collectively
support the hypothesis that measuring the correlation patterns between successive strides
can provide valuable insights into how much attention is allocated to gait control.

In the ACIER study, the use of metronome walking was proposed as a paradigm to
induce increased attentional demands—or decreased gait automaticity—during walking.
The process of aligning rhythmic auditory cues with motor actions (sensorimotor synchro-
nization) relies on conscious intent; synchronization requires that a person must intend
to move, indicating the mobilization of executive functions [43]. Sensorimotor synchro-
nization is known to involve extensive cortical, subcortical, and cerebellar networks [44,45].
Metronome walking, where individuals match their steps to a steady beat, is known to alter
the correlation pattern in stride intervals, resulting in an anti-correlated (or anti-persistent)
pattern [46,47]. Studies have observed a relationship between the amount of attention paid
to gait control and the degree of stride anti-correlation in treadmill experiments [48,49].
It appears that executive function is involved in the regulation of anti-persistence in the
variable relevant to treadmill walking goal attainment [49]. Notably, this shift towards anti-
persistence is also evident in other controlled walking tasks, such as synchronizing steps to
floor markings or walking on a treadmill at a fixed speed [47,50,51]. These findings indicate
that the observed decrease in gait complexity, shifting from correlation to anti-correlation,
is more widely related to the attention allocated to gait control, rather than specifically tied
to auditory-motor coupling.

In the initial phase of the ACIER study, our goal was to evaluate, in older people, the
responsiveness of the proposed method (attractor complexity index, ACI) to metronome
walking relative to an established reference technique (detrended fluctuation analysis,
DFA) [52]. This involved optimizing the parameterization of the ACI algorithm and exam-
ining its intrasession reliability. The present article describes the second phase of the study,
in which our focus shifted to determining the efficacy of this new method in characterizing
the gait patterns of older individuals through comparative analyses with a younger cohort.
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In addition, we investigated the effectiveness of ACI relative to other established gait vari-
ability metrics. A central hypothesis tested was the unique sensitivity of ACI to metronome
walking, which would induce distinct changes not observable with traditional variability
parameters. The secondary hypothesis was that ACI could discriminate age-related changes
in gait patterns as efficiently as other gait metrics.

2. Materials and Methods
2.1. Study Rationale and Design

In the context of identifying older individuals at increased risk of falling in their
daily environment, the rationale behind the ACIER study centered on the use of a single
triaxial accelerometer attached to the lower back, a methodology that represents the norm
among researchers in this field [29,31,33]. To specifically validate our novel approach
(ACI [34,52,53]), metronome walking was used to alter the correlation structure of gait and
thus confirm the specific sensitivity of the ACI to attentional demands in gait control.

While our long-term purpose is to use ACI in unsupervised settings, we first needed
to analyze its properties in more controlled contexts. Therefore, our validation study used
a standardized indoor walking circuit to reduce environmental biases. In addition, the
indoor setting facilitated accurate measurement of average walking speed, allowing for a
more nuanced interpretation of the collected gait metrics and their interrelationships.

The second phase of the ACIER study used a cross-sectional design and aimed to
compare younger adults with the older adults enrolled in Phase 1 [52]. As in Phase 1, in
addition to the lumbar accelerometer, the younger participants wore a second accelerometer
attached to the foot, which served as a reference standard for calculating the correlation
structure between strides. In addition to calculating both short- and long-term logarithmic
divergence exponents (using the Lyapunov exponent method), several other gait metrics
were derived from the lumbar acceleration signals for comparative analysis. Linear mixed-
effects models were used as the method of inference to examine the effects of age group
(older versus younger), walking condition (metronome versus normal), and walking speed
as well as potential interactions between these factors.

For additional insights into the ACIER study, particularly the study rationale, settings,
recruitment and characteristics of older participants, detailed experimental procedures,
and an in-depth explanation of the ACI algorithm, readers are encouraged to refer to the
companion article [52].

2.2. Participant Recruitment and Eligibility

In addition to older adults already enrolled in Phase 1, our goal was to recruit 40
healthy adult participants between the ages of 18 and 40 without gait disorders of orthope-
dic or neurologic origin. The minimum age limit was set in response to legal restrictions,
thus excluding minors. The maximum age limit was determined based on epidemio-
logic [54,55] and experimental [56,57] studies that have shown that changes in both static
and dynamic balance can occur in individuals in their forties or fifties, similar to those
observed in older adults. Young participants were recruited through a combination of per-
sonal networks and electronic advertisements. The research team used connections within
our institution (HE-Arc), including students, colleagues, friends, and family, supplemented
by targeted email campaigns to partner institutions and internal mailings within HE-Arc.
This approach aimed to ensure a diverse pool of participants.

2.3. Experimental Procedures

Participants were equipped with two triaxial accelerometers (Physilog 6S, Gaitup,
Lausanne, Switzerland): one attached to the lower back at the L4–L5 level and the other
attached to the instep of the right foot. They walked a 205-m corridor four times at their
natural pace, completing two round trips (Figure 1). Each segment was timed to measure
their preferred walking speed. After the first round trip, there was a five-minute break
during which walking cadence (step frequency, SF) was calculated from the lower back
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acceleration signal. On the next round trip, participants adjusted their gait to an electronic
metronome, the rhythm of which was matched to the cadence determined during the break.
A 30-s walk with the metronome was performed before the start of the second round trip
to familiarize participants with gait synchronization. Like the older participants, the young
participants wore their own low-rise, comfortable shoes during the walking test; high heels
were not allowed.

Figure 1. Experimental protocol for normal and metronome walking assessment: two-lap corri-
dor test.

2.4. Data Analysis

Acceleration data—sampled at a rate of 256 Hz—were transferred from the devices
to the institutional server. Calculations and analyses were performed in MATLAB R2021a
(The MathWorks Inc., Natick, MA, USA). No prefiltering of the acceleration signals was
performed prior to analysis. Segments indicative of steady walking were selected for
subsequent analysis. Specifically, non-walking periods were discarded, including the
time between the activation of the accelerometers and the onset of walking, the 5-s break
participants took midway during their walk along the 200-m corridor, and the time between
the end of the walk and the deactivation of the accelerometers. These non-walking periods
were identified and excluded by manually reviewing the acceleration data using a MATLAB-
generated figure. Raw acceleration data are available online [58].

Table 1 presents a summary of the gait metrics derived from the acceleration signals
(with the exception of the preferred walking speed, which was assessed by timing the
walks). The first column briefly outlines the methodology, explains its basic rationale, and
cites key papers that provide comprehensive descriptions of the algorithms used. The
subsequent column references studies that have applied the metric in unsupervised settings.

To strengthen the validity of gait metrics for unsupervised settings where direct speed
measurement is not possible, we measured average preferred walking speed by timing
participant displacement. An analytical framework was then developed to categorize
gait metrics based on their association with speed and responsiveness to age. Some gait
metrics may characterize aspects of gait decline that are unrelated to the expected decline
in preferred walking speed. No correlation with walking speed was expected. These have
been termed “speed-independent” metrics. Conversely, “speed-surrogate” metrics show
a strong correlation with walking speed, with this association expected in both younger
and older adults. Finally, “mixed metrics” represent an intermediate category. They show a
correlation with speed, but this correlation is likely to be stronger in older adults than in
younger individuals. Gait aspects characterized by mixed metrics are hypothesized to be
predominantly associated with the age-related decline in preferred walking speed.
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Table 1. Summary of the gait metrics used in the study.

Gait Metrics Principles and Methodology Applications in
Free-Living Conditions

Basic gait parameters

Walking speed Natural pace measured by timing over the 200 m corridor. N/A

Step frequency (SF) Mean number of steps per second. Computed from the vertical acceleration spectrum
via fast Fourier transform (FFT) [59]. [31,32,60]

Variability parameters
(lumbar

accelerometer)

Movement intensity
(RMS)

RMS quantifies the magnitude of a varying signal as the square root of the average of
the squared values over a period. Representative of the average amplitude of the

acceleration during walking. Calculated using the vector magnitude of the 3D
acceleration signals [61].

[31,32,60]

Lateral stability
(RMS ratio)

RMS ratio represents the ratio between RMS in the mediolateral direction and the RMS
vector magnitude [62]. It attenuates the dependence of RMS to speed and is thought to

be sensitive to impaired dynamic balance [56,62].
[63]

Step regularity
(ACF)

Autocorrelation function (ACF) analyzes cyclic patterns in acceleration signals by
comparing values with time-shifted versions, with peak values indicating dominant

periods. Higher peaks indicate a pronounced similarity across successive cycles. Step
regularity corresponds to the first dominant period. Stride regularity corresponds to

the second dominant period [64].

[25,31–33]
Stride regularity

(ACF)

Local dynamic
stability (LDS)

LDS assesses the resilience of gait to perturbations. It is determined by calculating the
logarithmic divergence rate between adjacent trajectories within a reconstructed

attractor that reflects the gait dynamics (Rosenstein’s algorithm) [65–67].
[31,32,60]

Attractor
complexity index

(ACI)

ACI has been empirically validated as a surrogate measure for the correlation structure
between successive strides. Its calculation follows the same principles as LDS

[34,52,53].
[60]

Foot accelerometer Scaling exponent α
(DFA)

Detrended fluctuation analysis (DFA) of stride interval time series provides the scaling
exponent (alpha, α), a measure of the correlation structure of gait [68]. N/A

We defined “basic gait parameters” as commonly used metrics that describe the
gait cycle during ambulation, including step length, step frequency (SF), and walking
speed. We excluded step length from the analysis to avoid redundancy, as it can be
derived from speed and SF. Average SF was calculated using spectral analysis (fast Fourier
transform) of the vertical acceleration from the lumbar accelerometer, identifying the
dominant frequency within the signal. We determined the average preferred walking
speed by timing participants as they walked the 205-m corridor. After calculating the
average SF, we calibrated the raw 3D acceleration signals using the method proposed by
Moe-Nilssen [69]. This algorithm corrects accelerometer data for tilt to obtain meaningful
acceleration information in a horizontal–vertical coordinate system. In addition, we used
an alternative method to generate gait metrics that are robust to orientation or displacement
problems with the motion sensor. The vector norm (or magnitude) of the 3D acceleration
signals was calculated as the square root of the sum of the squares of the individual
acceleration components. Note that to be consistent with the Moe-Nilssen procedure, the
effect of Earth acceleration was removed by subtracting one of the raw vector norms.

To standardize gait metrics across participants, we truncated acceleration signals to
250 steps (125 strides). This was accomplished by multiplying the individual step frequency
(SF) by the accelerometer sampling rate (256 Hz) and the desired step count (250). The
resulting signals in anteroposterior (AP), vertical (V), and mediolateral (ML) directions
and the vector norm varied in duration but represented an equal number of steps. These
standardization procedures were not applied to foot accelerometer data (see below).

To assess the intensity of the walking movements, the RMS of the vector norm was
determined over the 250 steps. It is well known that gait RMS has a significant correla-
tion with walking speed [70] and thus can serve as an effective proxy measure for this
parameter in unsupervised conditions (speed-surrogate metric). It has been suggested that
standardization of the root mean square (RMS) may provide a linear variability index that
is less sensitive to gait speed but more indicative of gait abnormalities [62]. Consequently,
the RMS ratio is defined as the quotient of the RMS of the acceleration signal measured in
the mediolateral direction and the RMS of the vector norm.

To quantify gait pattern regularity, we performed an unbiased autocorrelation analysis
using the vector norm as the input (ACF method [64]). Autocorrelation measures the
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similarity between a signal and its delayed version over various time intervals. We utilized
Matlab’s xcorr function with the “unbiased” option. The autocorrelation sequence was
normalized by dividing each element by the zero lag value, scaling results between −1 and
1, akin to a correlation coefficient. The first and second dominant periods correspond to
single step and stride phase shifts, respectively. Maximal values at these peaks define step
and stride regularity. To enhance statistical robustness, we applied Fisher’s transform to
normalize values following Auvinet et al.’s recommendations [71].

We calculated logarithmic divergence exponents using the maximal Lyapunov ex-
ponent method and Rosenstein’s algorithm as nonlinear measures of gait stability and
automaticity [65–67]. The companion article provides detailed computation methods for
short-term (LDS) and long-term (ACI) divergence exponents. Briefly, we standardized ac-
celeration signals to 18,750 samples (75 per step), constructed a multidimensional attractor
using Takens’ theorem, calculated logarithmic divergence between adjacent trajectories,
and determined divergence rates over 0–0.5 strides (LDS) and 5–12 strides (ACI). Following
previous recommendations [52,72], we analyzed LDS along the mediolateral axis (LDS-ML)
and ACI along the anteroposterior (ACI-AP) and vertical (ACI-V) axes as well as for the
vector norm (ACI-N).

A secondary accelerometer was attached to the foot to improve the accuracy of gait
event identification, allowing for a more accurate stride interval time series. This improve-
ment was critical for DFA, the reference method for assessing gait correlation structure,
which requires a discrete time series of gait events. The companion article provides a
comprehensive rationale and detailed explanation of this procedure [52]. Briefly, a peak
detection algorithm applied to the foot acceleration signal delimited individual strides and
calculated their durations. The resulting stride interval time series was analyzed using DFA,
with box sizes ranging from 16 to N/2 (where N is the total number of strides). The DFA
analysis yields a scaling exponent (α) that indicates statistical persistence (fractal pattern)
and high complexity if between 0.7 and 1 or an anticorrelated (anti-persistent) pattern if
below 0.5.

2.5. Statistics

Our approach to characterizing gait metrics used a combination of visualization,
descriptive statistics, and further exploration techniques. For better interpretation, the
outcomes of the two segments (back and forth) were aggregated (mean). Visualization
used boxplots and univariate scatterplots (Figures 2–4) to initially explore the distribution
of the data. Descriptive statistics summarized central tendencies and variability for both
normal and metronome walking conditions across age groups, presented as means and
standard deviations in Tables 2 and 3. These tables also include standardized differences
between young and older participants (Hedges’g [73]) along with 99% confidence intervals
(CIs) calculated using bootstrapping. Further exploration, detailed in the Supplementary
Materials, included histograms and normal probability plots as well as bivariate scatterplots
with linear fits and corresponding Pearson’s correlation coefficients, allowing for more
in-depth examination of data relationships.

We employed linear mixed-effects models to analyze the impact of age and walking
conditions on gait metrics [74]. This method accounts for correlations in repeated measure-
ments for each participant and the nested data structure, as each condition involved two
walking segments (Figure 1). After visually inspecting histograms and probability plots
to confirm normality and removing outliers above three standard deviations, gait metrics
were set as dependent variables. Age group (older vs. young) and walking condition
(metronome vs. normal) were included as fixed effects through dummy variables. The
model’s random component included a slope effect to capture individual variability in
response to walking condition (participant-by-condition interaction). To evaluate if age
groups responded differently to the metronome, we included a group-by-condition inter-
action term as a fixed effect. Using maximum likelihood estimation, F-tests assessed the
significance of fixed effects (ANOVA method). If the interaction term was not significant
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(p > 0.01), it was excluded, and the model was refitted with restricted maximum likeli-
hood. Detailed analysis results are in the Supplementary Materials, and Table 4 presents
fixed-effects coefficients with 99% confidence intervals.

Figure 2. Descriptive statistics of basic gait parameters, movement intensity, and RMS ratio. Sixty
older and 42 young adults performed 4 × 200 m indoor walking tests with and without synchronizing
their steps to an isochronous metronome at their preferred cadence and walking speed. Box plots
show median, quartiles, range of data, and outliers (red crosses) representing values exceeding
1.5 times the interquartile range beyond Q1 and Q3. Individual data are shown as black dots. Average
walking speed was measured by displacement timing. Step frequency was assessed by spectral
analysis of the acceleration signal. Movement intensity is the RMS of the norm of the 3D acceleration.
RMS ratio is the ratio between the mediolateral and the norm of acceleration, which is indicative of
the lateral gait stability.

Figure 3. Descriptive statistics of the gait regularity and stability. Sixty older and 42 young adults per-
formed 4 × 200 m indoor walking tests with and without synchronizing their steps to an isochronous
metronome at their preferred cadence and walking speed. Box plots show median, quartiles, range of
data, and outliers (red crosses) representing values exceeding 1.5 times the interquartile range beyond
Q1 and Q3. Individual data are shown as black dots. The autocorrelation function (ACF) method
was used to assess the step regularity and the stride regularity. Short-term logarithmic divergence
exponents (maximal Lyapunov exponents) of the mediolateral (ML) acceleration, representative of
the local dynamic stability (LDS), were assessed using Rosenstein’s algorithm.
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Figure 4. Descriptive statistics of the attractor complexity index (ACI) and the gait complexity
(DFA). Sixty older and 42 young adults performed 4 × 200 m indoor walking tests with and without
synchronizing their steps to an isochronous metronome at their preferred cadence and walking
speed. Box plots show median, quartiles, range of data, and outliers (red crosses) representing values
exceeding 1.5 times the interquartile range beyond Q1 and Q3. Individual data are shown as black
dots. Long-term logarithmic divergence exponents (maximal Lyapunov exponents) of the vector
norm (N), the anteroposterior (AP), and the vertical (V) accelerations, representative of ACI, were
assessed using Rosenstein’s algorithm. Scaling exponents (α, correlation structure) were computed
based on the stride intervals measured by the foot-mounted accelerometer. The detrended fluctuation
analysis (DFA) was applied.

Table 2. Descriptive statistics of the normal walking condition.

Normal Walking

Older Participants Young Participants Effect
Size Confidence Intervals

N Mean SD N Mean SD g CI Low CI High

Basic gait
parameters

Walking speed (m/s) 58 1.27 0.24 42 1.43 0.15 −0.80 −1.25 −0.36
Step frequency (Hz) 59 1.89 0.15 42 1.90 0.09 −0.11 −0.60 0.38

Variability
measures

Movement intensity (g) 59 0.29 0.10 42 0.35 0.09 −0.58 −1.12 −0.08
RMS ratio 59 0.66 0.14 42 0.65 0.13 0.08 −0.39 0.6

Step regularity 59 1.11 0.29 42 1.37 0.22 −0.97 −1.49 −0.54
Stride regularity 59 1.17 0.30 42 1.42 0.24 −0.91 −1.39 −0.47

Local
dynamic
stability

LDS-ML 59 1.29 0.32 42 1.15 0.42 0.38 −0.15 0.99

Attractor
complexity

index

ACI-N 59 0.028 0.010 42 0.033 0.006 −0.53 −1.06 −0.07
ACI-AP 59 0.022 0.009 42 0.028 0.006 −0.77 −1.33 −0.31
ACI-V 59 0.027 0.010 42 0.033 0.006 −0.69 −1.23 −0.24

Foot ac-
celerometer Scaling exponent (DFA) 60 0.74 0.17 42 0.77 0.17 −0.19 −0.73 0.31

Sample size (N), mean, standard deviation (SD), standardized effect size (Hedges’ g) of the difference between age
groups, and 99% confidence interval (CI) of the effect size. Results in bold are statistically significant. RMS: root
mean square; LDS: local dynamic stability; ACI: attractor complexity index; DFA: detrended fluctuation analysis.
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Table 3. Descriptive statistics of the metronome walking condition.

Metronome Walking

Older Participants Young Participants Effect
Size Confidence Intervals

N Mean SD N Mean SD g CI Low CI High

Basic gait
parameters

Walking speed (m/s) 58 1.26 0.24 42 1.42 0.14 −0.77 −1.23 −0.34
Step frequency (Hz) 59 1.90 0.15 42 1.90 0.09 −0.06 −0.55 0.46

Variability
measures

Movement intensity (g) 58 0.31 0.11 42 0.35 0.09 −0.46 −1.03 0.03
RMS ratio (%) 58 0.65 0.15 42 0.64 0.12 0.11 −0.41 0.64

Step regularity (N/A) 58 1.09 0.27 42 1.35 0.21 −1.02 −1.57 −0.57
Stride regularity (N/A) 58 1.15 0.28 42 1.41 0.20 −1.01 −1.51 −0.57

Local
dynamic
stability

LDS-ML 58 1.25 0.34 42 1.16 0.38 0.25 −0.26 0.81

Attractor
complexity

index

ACI-N 58 0.020 0.010 42 0.029 0.010 −0.87 −1.37 −0.38
ACI-AP 58 0.016 0.008 42 0.024 0.01 −0.95 −1.47 −0.46
ACI-V 58 0.020 0.010 42 0.028 0.01 −0.92 −1.46 −0.42

Foot ac-
celerometer Scaling exponent (DFA) 60 0.39 0.22 42 0.46 0.18 −0.33 −0.91 0.18

Sample size (N), mean, standard deviation (SD), standardized effect size (Hedges’ g) of the difference between age
groups, and 99% confidence interval (CI) of the effect size. Results in bold are statistically significant. RMS: root
mean square; LDS: local dynamic stability; ACI: attractor complexity index; DFA: detrended fluctuation analysis.

To compare effect sizes across gait measures, we performed additional analyses using
mixed-effects models with standardized coefficients. We standardized the dependent
variables by subtracting the mean and dividing by the standard deviation, allowing fixed-
effects coefficients to be expressed in standard deviation units for direct comparability. As
in the initial analyses, the models included dummy variables for group and condition along
with random slopes for the condition-by-participant interaction. To refine our results, we
included preferred walking speed as a continuous covariate, helping to clarify distinctions
among the three gait metric categories (speed-independent, speed-surrogate, and mixed).
Results are shown in Figure 5.

In our analysis, 10 gait metrics derived from lumbar and foot accelerometers were
analyzed using linear mixed-effects models. These gait metrics are expected to exhibit
some degree of interdependence. To account for the potential inflation of Type I error due
to the increased number of parallel statistical tests, we chose a significance threshold of 0.01.
We believe that a more stringent correction method such as Bonferroni, which assumes
independence between tests, may be overly conservative in this context. A 0.01 threshold
balances the need to control for false discovery while maintaining sufficient statistical
power (reducing Type II error).

The second phase of the ACIER study aimed to recruit 100 participants (60 older
adults, 40 young adults). As detailed in the companion article on the first phase [52],
prior treadmill experiments suggested a strong metronome effect on ACI, with an effect
size > 2 [67], indicating that a small sample (N < 10) would suffice to detect this primary
effect. Our secondary goal was to examine age-related differences in ACI, guiding our
sample size calculation. Due to limited data on ACI variability and age responsiveness, we
referenced studies using the scaling exponent from DFA. However, a meta-analysis of eight
DFA studies [20] showed significant heterogeneity in scaling exponents and age effects with
effect sizes from −1.26 to +1.14 (mean ES = −0.20), likely due to differing measurement
methods and algorithm parameters. Moreover, most included studies focused on older
adults younger than our sample of older participants. The study with the oldest participants
(mean age 76) reported an effect size of −1.26 [75]. Another recent study, with a robust
methodology, compared 23 older adults (mean age 72) to 22 younger controls and reported
an effect size of −0.91 [76]. Given these findings, we conservatively set an expected effect
size of −0.7. To achieve 80% power with a 1% alpha level and a minimum effect size of −0.7,



Sensors 2024, 24, 7427 11 of 23

we calculated a sample size of 90 (36 young, 54 older). We increased this to 100 participants
(60 older, 40 young) to account for potential data loss and dropouts.

Table 4. Inferential statistics.

Multiple Mixed-Effects Regression Models (Fixed Effects)

Group (Older vs. Young) Condition (Normal vs. Metronome)

Coef. CI Low CI High Coef. CI Low CI High

Basic gait
parameters

Walking speed −0.167 −0.28 −0.06 0.000 −0.015 0.016
Step frequency −0.012 −0.078 0.054 0.002 −0.006 0.010

Variability
measures

Movement intensity −0.056 −0.104 −0.007 0.013 0.003 0.023
RMS ratio 0.013 −0.057 0.083 −0.001 −0.021 0.008

Step regularity −0.253 −0.379 −0.118 −0.013 −0.043 0.025
Stride regularity −0.249 −0.295 −0.109 −0.009 −0.051 0.010

Local dynamic
stability LDS-ML 0.111 −0.068 0.290 −0.017 −0.076 0.043

Attractor
complexity

index

ACI-N −0.0063 −0.0102 −0.0024 −0.0067 −0.0095 −0.0038
ACI-AP −0.0069 −0.0102 −0.0035 −0.0055 −0.0079 −0.0030
ACI-V −0.0071 −0.0110 −0.0033 −0.0067 −0.0094 −0.0039

Foot
accelerometer Scaling exponent (DFA) −0.047 −0.113 0.018 −0.335 −0.406 −0.264

Gait metrics were introduced as dependent variables. Group membership (young or older) and condition (normal
or metronome) were introduced as categorical independent variables. Regression coefficients (coef.) are presented
with their 99% confidence intervals. Results in bold are statistically significant. RMS: root mean square; LDS: local
dynamic stability; ACI: attractor complexity index; DFA: detrended fluctuation analysis.

Figure 5. Inferential statistics: mixed-effect linear models. Sixty older and 42 young adults performed
4 × 200 m indoor walking tests with and without synchronizing their steps to an isochronous
metronome at their preferred cadence and walking speed. Ten multiple regression models were fitted
to the gait metrics obtained from the walking tests with the lower back accelerometer and the foot
accelerometer (scaling exponent only). Two independent categorical variables were introduced: group
membership (older or young) and walking conditions (normal or metronome walking). In addition,
the preferred walking speed was introduced as a continuous covariate. The data were standardized.
The absolute values of the regression coefficients (fixed effects) and their 99% confidence intervals are
presented graphically, with negative coefficients drawn in red and with dashed lines. The values of the
coefficients are added on the top of each line. ACI: attractor complexity index; ACF: autocorrelation
function; LDS: local dynamic stability; DFA: detrended fluctuation analysis; RMS: root mean square;
N: norm; AP: anteroposterior; V: vertical; ML: mediolateral.



Sensors 2024, 24, 7427 12 of 23

3. Results
3.1. Participants

Between the second semester of 2022 and June 2023, 42 young adults, including
16 males (38%) and 26 females (62%), participated in the indoor walking test. Their
mean age was 27 years (SD = 5.9), with a body mass of 68.9 kg (SD = 17.7) and height
of 1.71 m (SD = 0.08). For the older adult group of Phase 1 (N = 60), the mean age was
76 years (SD = 6), body mass was 74 kg (SD = 16), and height was 1.68 m (SD = 0.08), with
60% females (n = 36) and 40% males (n = 24).

3.2. Data Visualization and Cleaning

There were no missing data for gait parameters within the young adult group. Detailed
breakdowns of sample size for each variable are presented in Tables 2 and 3.

Overall, the dependent variables showed no large deviations from normality, as
revealed by boxplots, scatter plots, and histograms (Figures 2–4 and Supplementary Ma-
terials). However, speed, RMS, and RMS ratio exhibited some degree of skewness when
probability plots were considered (Supplementary Materials). We consider these minor de-
viations acceptable because linear mixed models are robust against violations of normality
assumptions [77]. No data points were identified as outliers.

3.3. Descriptive Statistics
3.3.1. Age Effects

Examination of differences between the older and the young group (Tables 2 and 3)
revealed that older people walked under non-cued (normal) condition with a lower speed
(ES = −0.80) and lower movement intensity (RMS ES = −0.58). They also had lower step
regularity (ES = −0.97) and stride regularity (ES = −0.91) as well as a lower ACI along
both axes (ES = −0.77 and −0.69) and when considering the vector norm (ES = −0.53).
Standardized differences between age groups measured from the metronome walking
condition were mostly slightly higher: speed ES = −0.77; step regularity ES = −1.02; stride
regularity ES = −1.01; ACI-AP ES = −0.95; ACI-V ES = −0.92; ACI-N ES = −0.87. In
contrast, movement intensity, as measured by RMS, showed a lower contrast between
age groups in metronome walking (RMS ES = −0.46). Other gait metrics showed smaller
differences between age groups, with absolute ES values not exceeding 0.38.

3.3.2. Metronome Effects

Examination of the differences between the normal and metronome walking con-
ditions showed that only the ACIs and scaling exponents (DFA) were substantially al-
tered. For the older group, the relative changes were: ACI-AP = −27% (ES = −0.74),
ACI-V = −26% (ES = −0.78), and ACI-N = −30% (ES = −0.82). The scaling exponent
showed a relative difference of −47% (ES = −1.75). In the younger group, the relative
changes were: ACI-AP = −14% (ES = −0.57), ACI-V = −15% (ES = −0.63), and ACI-
N = −13% (ES = −0.52). The relative difference for the scaling exponent was −40%
(ES = −1.79).

3.3.3. Correlations

Analysis of correlations between gait metrics across groups and conditions revealed
some recurrent patterns of associations (Supplementary Figures). For young participants,
we found moderate correlations between ACI and scaling exponents when both conditions
were aggregated, aligning with previous findings in older adults [52]. The aggregated
results (N = 84) were ACI-N r = 0.45; ACI-AP r = 0.45; ACI-V r = 0.45. Similarly, in the
metronome walking condition (N = 42), moderate correlations were observed (ACI-N
r = 0.51; ACI-AP r = 0.49; ACI-V r = 0.46). However, in the normal walking condition, the
correlations were weaker and not significant (p > 0.05). The normal condition data (N = 42)
showed ACI-N r = 0.21; ACI-AP r = 0.18; ACI-V r = 0.19. When analyzing the entire dataset
(both groups and conditions combined), the correlations between ACI and scaling exponent
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were significant, even with a stricter threshold (p < 0.01). The combined data (N = 204)
yielded ACI-N r = 0.52; ACI-AP r = 0.45; ACI-V r = 0.50.

Unlike older participants [52], young participants did not exhibit significant correla-
tions between ACI and walking speed for either axis (r = −0.19 to 0.11) or the norm (r = 0.00
to 0.10) across conditions. Similarly, for older participants, a robust positive association
was observed between ACI and stride regularity as well as step regularity (r = 0.58 to 0.68).
In contrast, this association was weaker in younger participants (r = 0.16 to 0.31).

In examining other relevant associations between gait metrics and preferred walking
speed, stride frequency (SF) showed a moderate to strong correlation with speed (r = 0.43
to 0.69 across groups and conditions), consistent with expectations. Similarly, movement
intensity (RMS) was robustly correlated with speed (r = 0.73 to 0.79). In contrast, gait
parameters such as scaling exponents (r = −0.10 to 0.19), LDS (r = −0.28 to 0.04), and
ACI-AP (r = −0.19 to 0.34) exhibited negligible associations with walking speed. Further-
more, differences were observed between age groups. The older participants showed a
moderate correlation between speed and step regularity (r = 0.42 to 0.58), while the younger
participants showed minimal to no correlation (r = 0.00 to 0.21).

3.4. Inferential Statistics

The primary hypothesis of this study was that ACI would be specifically sensitive
to metronome walking, in contrast to other gait parameters measured by the lumbar ac-
celerometer. Linear mixed-effects regression analyses confirmed this hypothesis. When
controlling for age group, models that included the anteroposterior axis (ACI-AP), ver-
tical axis (ACI-V), and norm (ACI-N) exhibited significant regression coefficients (t-test,
p < 0.0001; Table 4 and Supplementary Materials). This conclusion held true even after
adding walking speed as a covariate (Figure 5). Scaling exponents obtained from the foot
accelerometer, used as a reference metric, showed similar responsiveness to metronome
walking (Table 4 and Figure 5). Conversely, other gait metrics remained largely unaffected
by synchronization to the metronome. However, movement intensity (RMS) exhibited
significant sensitivity to the metronome (p = 0.002), although the association was very weak
(Figure 5). The regression model predicted a relative difference of 3.8%.

The secondary objective of this study was to assess the ability of the ACI to char-
acterize aging gait patterns. Regression models (Table 4 and Supplementary Materials)
demonstrated a significant effect of age groups on ACI-N (p < 0.001), ACI-AP (p < 0.0001),
and ACI-V (p < 0.0001). Figure 5 illustrates the effectiveness of the ACI in discriminating
between older and younger adults compared to other gait metrics. The figure displays
standardized coefficients that indicate the strength of association, adjusted for speed and
condition. These coefficients are ranked from highest (top) to lowest (bottom) group effect.
Step and stride regularity and ACI-AP exhibited similar magnitudes. ACI-V and ACI-N
showed slightly lower beta coefficients. The remaining gait metrics did not show a signifi-
cant response to age groups. However, note that the wide confidence intervals (Table 4 and
Figure 5) may suggest insufficient statistical power, which could potentially mask truly
relevant effects.

Finally, to further explore the responsiveness of gait metrics, we investigated their
associations with preferred walking speed. Figure 5’s right subplot presents the covariances
between walking speed and each gait metric after adjusting for age and condition effects.
Movement intensity (RMS) and SF were the parameters with the strongest correlations
with speed. Weaker yet significant associations were observed for stride and step regularity
as well as ACI-V and ACI-N. Conversely, ACI-AP, LDS, scaling exponent, and RMS ratio
did not show significant associations with preferred walking speed.

4. Discussion

The second phase of the ACIER study was designed to test the hypotheses that (1) the
novel ACI metric is sensitive to changes in attentional demands during walking tasks
compared to other linear and nonlinear gait metrics and (2) the ACI metric differs between
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young and older adults. Our results support the primary hypothesis by demonstrating
a specific sensitivity of the ACI compared to other gait metrics derived from the lumbar
accelerometer when participants walked in synchrony with a metronome compared to
normal walking. Consistent with the secondary hypothesis, the ACI, along with step and
stride regularity, demonstrated a significant ability to discriminate between older and
younger adults.

4.1. ACI and Metronome Walking

Building on the responsiveness of the ACI to metronome walking observed in older
adults (Phase I [52]), this study extended these findings to young adults (Tables 2–4 and
Figure 5). We also found a significant correlation between the ACI and the reference
standard (scaling exponent of the stride interval time series) in young adults (see Sup-
plementary Materials). These findings are consistent with prior studies showing similar
responsiveness to voluntary synchronization and correlations with the reference standard
(DFA) in both treadmill [34,53,67,78] and overground [79] walking studies. Our previous
modeling study demonstrated a 66% reduction in ACI when comparing correlated ver-
sus anticorrelated time series after artificially altering real gait acceleration signals [34].
Descriptive statistics (Tables 2 and 3) revealed a trend for younger individuals to have
smaller differences in ACIs between normal and metronome walking compared to older
adults (−26% to −29% vs. −12% to −15%, Tables 2 and 3). This age-related discrepancy
is consistent with the observed differences in scaling exponents (Tables 2 and 3, young:
−40%, older: −47%). This finding may parallel observations in treadmill walking, where
lower scaling exponents are associated with tasks requiring tighter gait synchronization
and potentially higher brain processing load [48]. Similarly, in our study, synchronizing
gait with the metronome may demand more attention from older adults than younger
participants. However, the regression analyses considering within-subject correlations did
not show a significant condition-by-group interaction (p > 0.05, Supplementary Materials,
ANOVA F-tests). This lack of interaction may be due to insufficient statistical power, as
detecting interaction effects often requires much larger sample sizes [80]. Future studies
with adequate power are needed to explore this potential age effect.

4.2. Other Gait Metrics and Metronome Walking

Our study’s key contribution is the specific sensitivity of ACI to metronome walking,
which sets it apart from other gait variability measures typically used in unsupervised
conditions. Specifically, walking in synchrony with an isochronous metronome tuned
as the preferred SF did not impact gait regularity, as assessed by ACF. Likewise, other
gait metrics, including the RMS ratio and LDS, were unaffected by metronome walking.
However, we observed a small (+4%) but significant increase in movement intensity (RMS)
during this condition, even after accounting for potential within-participant correlations
and adjusting for age group and speed using mixed effects models (Figure 5). While a type
I error cannot be completely excluded, a plausible explanation is that participants may
have unconsciously adjusted their gait by striking their heels more forcefully to match the
metronome, resulting in higher peak accelerations and a slight increase in RMS.

4.3. Preferred Walking Speed and Age Effects

Walking speed is a valuable health biomarker [81]. Age-related conditions can limit
gait speed in older adults. These conditions include sarcopenia (muscle loss [82]), reduced
cardiorespiratory fitness [83], increased energetic cost [84], mitochondrial dysfunction [85],
joint stiffness [86], or impaired sensory feedbacks [87]. As a result, older adults typically
have a slower preferred walking speed than younger adults, which was confirmed in
our study. Indeed, we found that older participants had an average speed of 1.27 m/s
(Tables 2 and 3), which is consistent with the reference value of 1.30 m/s reported for
highly functional older individuals (mean age 79 years) in a recent large-scale study with a
comparable socio-cultural context (Germany, [88]). In contrast, the walking speed of the
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younger participants was 1.43 m/s, which is slightly higher than the reference value of
1.37 m/s for adults between 20 and 40 years of age calculated from the data of a meta-
analysis including 23,000 individuals measured worldwide [89]. Overall, we observed an
11% relative difference between young and older participants. This difference was highly
significant in both the descriptive statistics (standardized ES: −0.77) and in the multiple
regression analysis adjusted for walking condition (regression coefficient b = −0.167 m/s,
t-test p < 0.0001, Table 4 and Supplementary Materials).

4.4. Movement Intensity and Age Effects

In our effort to establish an analytical framework for categorizing gait metrics based
on their correlation with observed preferred walking speed, we anticipated that both move-
ment intensity (RMS of lumbar acceleration) and SF would fall into the speed-surrogate
category. Single lumbar accelerometer gait analysis often utilizes simple gait models like the
inverted pendulum to approximate walking speed (Table 1). Inverted pendulum models
are typically derived through a double integration procedure of the trunk acceleration to
estimate step lengths [90]. It is noteworthy that RMS captures the average amplitude of
the signal, which is somewhat analogous to integrating the signal. In experimental studies
involving subjects walking across a wide spectrum of speeds, a curvilinear relationship
was observed between acceleration RMS and walking speed [70,91]. Our results support
this finding, showing a strong correlation between RMS and preferred walking speed
(correlation coefficients: 0.73–0.79, Supplementary Figures) across age groups. We confirm
therefore that older participants exhibit lower RMS values compared to their younger
counterparts (Tables 2 and 3). The regression model shows a significant effect for age group
adjusted for walking conditions (Table 4), with the age effect disappearing when adjusted
for walking speed (Figure 5), consistent with the strong RMS–speed relationship. However,
while RMS shows promise as a walking speed surrogate, its sensitivity to factors beyond
velocity, like surface type [92] and slope [93] suggests caution in using it as a robust proxy
in unsupervised settings.

4.5. Step Frequency and Age Effects

As a second speed-surrogate metric, SF, which is biomechanically related to walking
speed as the product of cadence and step length, also showed a systematic correlation
with walking speed (Supplementary Figures). However, the strength of this association
across groups and conditions (r = 0.43 to 0.69) was weaker than that observed for RMS
(r = 0.73 to 0.79). In contrast to RMS, SF did not differ significantly between young and
older participants (1.89 vs. 1.90), as confirmed by the multiple regression analyses (Table 4
and Figure 5). This finding is consistent with the expected pattern in which older adults
typically have shorter step lengths compared to younger adults [2], resulting in a similar
cadence despite their reduced preferred walking speed (Table 2). Although SF may serve
as a surrogate for walking speed, its utility in characterizing age-related gait changes in
unsupervised settings seems therefore limited. However, more research is needed to further
evaluate the usefulness of SF in assessing fall risk.

4.6. RMS Ratio and Age Effects

To attenuate the speed sensitivity of RMS, the RMS ratio has been proposed as a
metric for gait quality assessment [62]. This approach aimed to normalize the mediolateral
acceleration RMS by the global RMS of the vector magnitude, potentially revealing gait
instability in the frontal plane. While several studies have investigated this hypothesis, the
results have been mostly inconclusive [63,94,95]. In our large study including 100 subjects
of various ages, we found no significant change in RMS ratio across the lifespan [56]. Here,
too, we observed that RMS ratio was not different between young and older participants
(Tables 2–4 and Figure 5). Although the concept of RMS normalization initially appeared
promising, the use of the RMS ratio to characterize age-related gait changes seems to have
limited utility.
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4.7. Gait Regularity and Age Effects

Our results show a significant difference in step and stride regularity between age
groups, as measured by the ACF analysis. The ES for normal walking was large (−0.97
and −0.91, Table 2), which was further supported by the results of the multiple regression
analyses (Table 4 and Figure 5). This is consistent with previous research highlighting
similar age-related reductions in regularity [96,97]. In particular, the previous work by
Auvinet et al. [98], which characterized gait patterns across different age groups, reported a
substantial difference in stride regularity (standardized ES = −1.22) between the youngest
(20–29 years) and oldest (>70 years) cohorts, although no significant change was found
across the lifespan. This observed change in acceleration signal regularity with age suggests
that a convergence of musculoskeletal and neurological deficits may limit the ability to
maintain consistent gait patterns across strides. Note also that a correlation was observed
between ACI and ACF measures in the older group specifically (Supplementary Materials,
r = 0.58 to 0.68). This supports the hypothesis that both gait regularity and ACI are
concomitant signs of gait quality degradation in older adults. Regarding the categorization
of step and stride regularity according to their associations with walking speed, they can
be considered as mixed metrics. Indeed, while only weak correlations were observed in the
young group (r = 0.0 to 0.36, Supplementary Figures), stronger associations were observed
in the older group (r = 0.42 to 0.58).

4.8. Local Dynamic Stability and Age Effects

LDS is a popular nonlinear gait variability metric that reflects gait robustness to
perturbations and is considered a predictor of fall risk [22,66]. Unlike the ACI, where higher
values indicate better gait quality, higher LDS results correspond to greater instability and a
degraded gait pattern [19,34]. Therefore, it is expected that older adults, who have a higher
risk of falling, will exhibit higher short-term divergent exponents compared to younger
individuals. This assumption is partially supported by observational studies. However,
definitive conclusions are hindered by methodological inconsistencies in measurement
methods, algorithm implementations, and experimental designs [21]. Our 2015 study
investigated changes in gait stability between the ages of 20 and 70 in 100 participants
using the same LDS calculation as this work. Our model predicted a 13% higher LDS-ML at
age 75 than at age 25 [56]. Previous studies have also reported varying relative differences
between younger and older cohorts: +40%, graphical estimation [99]; +10% [100]; +7% [101];
+6%, non-significant [102]; +5%, non-significant [103]; and +2%, non-significant [40]. The
observed relative difference in the present study was +14% during normal walking and +8%
during metronome walking (Tables 2 and 3), which is consistent with previous research.
However, the null hypothesis of no difference between age groups could not be rejected
due to large confidence intervals (Table 4 and Figure 5). Further research is necessary to
specifically determine the discriminatory power of the LDS in identifying individuals at
risk of falls compared to those who are not.

4.9. Attractor Complexity Index and Age Effects

Our findings (Tables 2–4, Figure 5) strongly support the hypothesis that the ACI can
distinguish age-related changes in the gait patterns. This new discovery has no direct
precedent in the literature given that ACI has only been recently proposed as a gait metric
for replacing DFA in gait analyses under free-living conditions [34,52,53]. Based on the
mixed-effects models outcomes (Table 4), we can predict a relative change of −24% between
the young and older populations. To put this in perspective, we found a contrast of −18%
between healthy adults and adults suffering from chronic pain of lower limbs using ACI
(still referred to as LDS-L in this 2017 study [60]) in unsupervised gait analysis. This
comparison is instructive because chronic pain patients may use greater voluntary control
of limb movements to adopt a less painful gait (antalgic gait [4,41,104]), possibly similar to
the increased cognitive interference observed in older adults.
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In the initial phase of the ACIER study, which focused exclusively on older adults, our
analysis showed that the ACI measured in the frontal plane (ACI-ML) was inadequate for
assessing gait correlation structure [52], while both ACI-AP and ACI-V could be used inter-
changeably. We further hypothesized that ACI-N, as an orientation-free metric, could be
beneficial in unsupervised gait analyses, where maintaining a consistent sensor positioning
can be challenging. However, including the results from the young adult cohort yielded a
more nuanced interpretation. ACI-AP showed greater sensitivity to age-related changes
than ACI-V and ACI-N (Figure 5). Additionally, ACI-AP emerged as a speed-independent
metric, whereas ACI-V and ACI-N correlated with walking speed, especially in older adults
(Supplementary Figures). Although the pronounced sensitivity of the ACI-AP warrants
further investigation, it is plausible that acceleration pattern within the sagittal plane—
aligned with the displacement of the body—may hold information for the regulation, and
thus for the correlation structure, of stride length and duration. In contrast, such regulatory
information may be less apparent in accelerations occurring perpendicular to the direction
of movement.

4.10. Scaling Exponent and Age Effects

In contrast to the observed age-related differences in ACI, scaling exponents derived
from foot acceleration data using DFA did not show significant age group differences in the
mixed model analysis (p = 0.06, Supplementary Materials, t-test). This lack of significance
may be due to limitations of the DFA method, as highlighted in our companion article
regarding its potential inaccuracy at short measurement times [52]. Although the observed
standardized difference between age groups in normal walking (effect size = −0.19, Table 2)
lacks statistical significance, it aligns with the findings of the above-mentioned meta-
analysis (ES = −0.20, combining eight studies [20]). This suggests that ACI (ES = −0.77,
Table 2) may be more effective than DFA in detecting age-related changes in gait pat-
terns, particularly in shorter walking bouts or in unsupervised settings. However, further
independent studies are needed to consolidate this observation.

4.11. Gait Metrics and Age-Related Decline in Walking Abilities

Overall, our findings reinforce the notion that reliance on a single metric may not ade-
quately capture the complexity of age-related decline in walking abilities. A comprehensive
suite of both linear and non-linear gait metrics derived from acceleration signals appears to
be essential to identify the various age-related adaptations in gait patterns. We propose
that the ACI-AP, considered as a speed-independent metric, could reveal subtle changes
in the automated control of gait—a modification not necessarily associated with reduced
walking speed. At the same time, metrics of step and stride regularity, which we categorize
as mixed metrics, could reveal difficulties in maintaining a consistent gait pattern from one
stride to the next. This inconsistency could be caused by a reduced lower limb strength,
potentially leading in parallel to a reduced preferred walking speed.

5. Strengths and Limitations

The inclusion of community-dwelling older adults ages 65+ years is a key strength of
our study, as this population represents both those at a high risk of falls and a prime target
for primary fall prevention efforts, aligning with research showing the effectiveness of early
intervention in active, independently living seniors [24,105]. The use of a standardized
indoor circuit of substantial length (2 × 205 m) performed in a “real” building is also a
strength of the study, as it provides a more ecologically valid setting than treadmill walking
or short walks in a gait laboratory while still allowing for control over environmental factors
that could introduce bias in outdoor settings. Additionally, this setup enabled the direct
measurement of walking speed by timing participants’ walks. Finally, the use of metronome
walking as a method to specifically increase the attentional load dedicated to gait control is
also a positive point. Compared to traditional dual-tasking experiments used to manipulate
attention [106], metronome walking can be sustained for longer durations without fatigue,
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allowing for more extended gait analyses. Additionally, metronome walking poses fewer
safety risks for individuals prone to falling, as it does not introduce the same level of
distraction or complexity as dual-task conditions [107].

Our study also had several limitations. The use of a metronome to increase attentional
demand is not a standard practice for testing gait automaticity. Although the introduc-
tion provides strong evidence suggesting metronome walking may increase attentional
requirement, this relationship needs further confirmation through additional research.
The selection of gait metrics for comparison with ACI was based on their applicability in
unsupervised contexts, as outlined in Table 1. While this choice was somewhat arbitrary
and not exhaustive, it was necessary to limit the number of metrics to maintain a low false
discovery rate given our sample size. Further research is warranted to comprehensively
evaluate ACI’s performance against a broader range of gait metrics. The present study
was limited by the relatively short duration of gait assessment and the absence of repeated
measurements across different days and contexts (e.g., outdoor walking, fast walking, slope
walking). While previous research has examined the reliability of ACI between measures
separated by 9 days [108] and in unsupervised settings over 7 days of measurement [60],
further validation in ecological contexts is warranted. Future studies should aim to assess
ACI’s performance over longer durations and in a variety of real-world walking conditions
to more comprehensively evaluate its utility as a gait analysis tool.

6. Conclusions

In conclusion, ACI shows a unique sensitivity to metronome walking in both young
and older adults. This suggests that ACI specifically captures changes in gait control
associated with increased attentional demands during synchronized walking. Second, ACI
appears to be a valuable tool for discriminating age-related differences in gait patterns.
This finding is consistent with the observed differences in step and stride regularity, further
highlighting the potential of ACI as a complementary marker of gait quality decline in older
populations and thus as a tool for identifying older adults at risk for falls. In addition, due
to the relative ease of measuring ACI, it could be used to evaluate practical interventions,
such as in the recent clinical trial aimed at restoring gait automaticity in older adults that
began in parallel with the ACIER study [109]. The broader implications of these findings
go beyond fall risk assessment. The sensitivity of ACI to attentional load during gait opens
new avenues for investigating the complex interplay between cognitive function and motor
control of human locomotion, which may help to gain deeper insights into the mechanisms
underlying gait disorders.

Building on these promising findings, the next phase of the ACIER study will focus
on the clinical utility of the ACI for fall risk assessment. We will use a retrospective
approach to differentiate between participants who have recently fallen and those who
have not. This will involve the analysis of gait data collected in the first phase of the ACIER
study and the comparison of ACI scores between these two groups of older individuals.
Furthermore, to extend our understanding of ACI in more ecological contexts, we have
already collected acceleration data from older participants performing 10 min free walks in
an urban environment, which will provide valuable insights into the applicability of ACI
in real-world settings. Subsequently, the final phase will use a prospective approach with a
longitudinal design and survival analysis. This involves following older participants over
a two-year period to assess the association of ACI and other gait measures with time to
first and second falls.

By addressing these future directions, the ACIER study can significantly contribute
to the development of novel and reliable gait assessment tools using readily available
wearable sensors, ultimately aiding in fall prevention strategies and improving mobility
monitoring in older adults.
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