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Abstract 
 

In this paper, three machine learning (ML)-based 

approaches—XGBoost, Artificial Neural Network (ANN), 

and Random Forest algorithms—are compared for the 

localization of lightning through the analysis of lightning-

induced voltages on power transmission lines. Across all 

methods, two sensors are employed to capture lightning-

induced voltages on power transmission lines. Numerical 

simulations demonstrate that the XGBoost algorithm 

exhibits higher efficiency in terms of location accuracy and 

computational time compared to the other algorithms. 

Additionally, the Principal Component Analysis (PCA) 

algorithm is applied to reduce the dimensionality of 

XGBoost by 50 times without compromising accuracy, 

thereby accelerating calculation time and reducing 

computational resource usage. The R2 score obtained from 

the model on test data, with a Signal-to-Noise Ratio (SNR) 

of 30 dB, exceeded 99%, and for data with an SNR of 10 

dB, it reached approximately 98%. Various configurations 

of transmission lines and sensor locations were tested, 

revealing that the accuracy of the model is dependent upon 

the transmission line configuration and sensor positions. 

 

1. Introduction 
 

Knowing the exact geolocation of a lightning strike is 

important in a wide range of research and application 

domains, including geophysical research, lightning 

warning, aviation/air traffic, weather services, insurance 

claims, power transmission and distribution, etc. [1]. The 

location of the lightning strike is generally obtained using 

the so-called lightning location system (LLS). LLSs detect 

cloud-to-ground (CG) discharge signals using 

electromagnetic VLF/LF range sensors [2].  

 

Traditional methods of lightning localization are divided 

into magnetic direction finding (MDF), time of arrival 

(TOA), time difference of arrival (TDOA), and 

interferometer (ITF) [3]. TOA is a technique that has been 

used as a method for 2D/3D localization. This method 

requires at least three sensors to work properly [3], [4]. The 

MDF technique requires at least two sensors and is used for 

2D localization [5]. 

 

More recently, methods based on Electromagnetic Time 

Reversal (EMTR) have been proposed as a means of 

locating lightning [6]. EMTR has been proven to have high 

accuracy in identifying the lightning impact point, but it 

requires at least three sensors to be accurate enough [7], 

[8]. 

 

In [1], a knowledge-based method is used to find the two-

dimensional geo-locations of lightning impact points, 

which requires two sensors, and uses induced-voltage on 

power lines. In [9], a combination of  the TDOA technique 

and artificial neural networks is proposed to locate 

lightning. Some studies have used deep learning to locate 

the lightning source [6], [10]. 

 

In [11], 3D radar data and machine learning algorithms 

such as k-nearest neighbors (KNN), random forest (RF), 

and convolutional neural networks  (CNN) are used to 

identify lightning strike locations.  

 

In this study, lightning strike detection is achieved through 

the implementation of three machine learning algorithms: 

XGBoost, Artificial Neural Network (ANN), and Random 

Forest. Due to page limitations, we present results 

exclusively for the XGBoost method. The algorithms are 

applied to lightning-induced voltage time series data 

obtained from only two sensors on two transmission lines. 

To improve computational efficiency, principal component 

analysis (PCA) is utilized for dimensionality reduction, 

leading to a significant reduction in calculation time while 

preserving model accuracy at an acceptable level. 

Furthermore, an optimization of the model is achieved by 

modifying the problem’s geometry configuration, leading 

to the selection of the best sensor arrangement. All code 

implementations are executed in Google Colab for 

accessibility and convenience. 

 

The structure of the article is outlined as follows. Section 2 

presents the methodology, including the creation of the 

database, feature selection, and model generation. Section 



3 delves into the training and testing of the generated 

model, utilizing numerical simulation results to estimate 

the lightning impact point Concluding the article, Section 

4 presents final discussions and conclusions. 

 

2. Methodology 
 

2.1 Problem geometry and data acquisition 
 

In this section, to estimate the geolocation of lightning 

impact point, we trained a machine learning model. The 

geometry of the problem is shown in Figure 1. 

 

The problem geometry is considered as a 50×50 km2 

rectangular area with two different transmission lines. Two 

voltage sensors are considered on each transmission line. 

We defined 10000 uniformly random positions for the 

source within the considered area shown in Fig. 1. The 

simulation of the lightning-induced voltages has been done 

using Rusck’s formula [12]. It should be noted that the 

generated data are characterized by a signal-to-noise ratio 

(SNR) of 30, 20, or 10 dB. 

 

 

Figure 1. Geometry of the problem. Two transmission 

lines and four voltage sensors. 

 

2.2 Data prepossessing 

 
Cut-off: To make the simulated data representative of data 

obtained by real data recorders, a 10-V threshold is 

considered for the transient voltage.  

 

Feature selection: It must be considered that the most 

valuable features in the lightning-induced waveform are in 

its early time. Therefore, to reduce the number of features 

to maintain system resources, the time window was 

selected to include only 2000 primary features of the 

induced lightning voltage wave to train the model. 

Furthermore, due to the cost reduction caused by sensor 

installation, finally used one sensor per transmission line. 

It should be noted that the data of two sensors were merged 

according to the following equation after extracting the 

features. 
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where the indices A and B refer to the desired sensors and 

�����  is the data used in the next steps. Therefore, the 

number of features selected up to this step is 4000. 

 

Normalization: Data normalization is one of the most 

important stages of data prepossessing. At this step, all the 

data were divided by the maximum value so that all the data 

were in the range of 0 and 1. 

 

Train-Test splitting data: In order to evaluate the trained 

model, it is necessary to divide the data set into two parts, 

train and test data. We chose the segmentation ratio of 20 

and 80 percent for test and training data, respectively. 

 

Dimensionality reduction: PCA is a technique for 

reducing the dimensionality of data [13]. By reducing the 

number of features, PCA can help to: 

 

- reduce the risk of overfitting a model to noisy features. 

 

- Speed-up the training of a machine learning algorithm. 

 

- Make simpler data visualizations. By adjusting 

n_components = 80 in the scikit-learn library, we reduced 

the number of input features from 4000 to 80. 

 

2.3 Machine learning implementation 
 

We have implemented three ML-based methods, namely, 

ANN, Random Forest, and XGBoost. Due to page 

limitations, we have provided the results specifically for 

the XGBoost method. XGBoost is a scalable end-to-end 

tree boosting system [14]. It is an implementation of 

gradient-boosting decision. It is a robust machine-learning 

algorithm that can help to understanding data and make 

better decisions. The XGBoost algorithm is called gradient 

boosting since the objective function is optimized using the 

gradient descent algorithm before each new model is added 

[1]. The objective function consists of two terms: The loss 

factor, which is the measure of the predictive power, and 

the regularization factor, which controls the complexity of 

the model and helps to avoid overfitting.  

 
The XGBoost python package is used to build the 

classifier. The XGBoost tuned hyperparameters are: 

n_estimators = 400, max_depth = 60, eta = 0.045, 

subsample = 0.6, and colsample_bytree = 0.7.  

The next step is to select a pair of sensors whose 

information leads to the generation of a high-accuracy 

model. 

 
Table 1 shows the accuracy of the trained model using the 

data from six different pairs of sensors. According to Table 

1, the best performance of the model is obtained using 

sensors 2 and 3. It is also shown that the calculation time is 

greatly reduced when using the PCA method, from more 



than half an hour without using PCA method to less than 

90 seconds with PCA. 

 

Table 1. Accuracy of each trained model on the test data 

of selected pair of voltage sensors 

Selected sensors no. 1&2 1&3 1&4 2&3 2&4 3&4 

Accuracy (R2 

Score) 

0.93 0.92 0.99 0.99 0.92 0.93 

PCA and fit time 

(sec) 
88 91 85 86 89 85 

Fit time Without 

PCA (sec) 
1930 1870 1857 1856 1863 1898 

 

3. Evaluation of the machine learning model 
 

In this study, the evaluation of various machine learning 

algorithms, including ANN, Random Forest, and 

XGBoost, was conducted to ensure the selection of a robust 

and suitable model for lightning localization. Ultimately, 

the XGBoost algorithm was chosen as the primary machine 

learning algorithm due to its commendable accuracy and 

high efficiency. Subsequent activities in the study were 

carried out exclusively using XGBoost. 

 

After selecting the model as well as the voltage sensors, the 

model was trained again. Before the model training step, 

20% of the data were randomly separated by the scikit-

learn train_test_split function as test data. the 10,000 

simulated data, 8,000 were used as training data and 2,000 

as test data. Also, to achieve the smallest feature 

dimensions, a process of finding the best accuracy in the 

smallest dimensions was implemented. Figure 2 shows the 

accuracy graph for configuration related to Figure 1. This 

layout is one of several layouts studied by the authors, 

which has been discussed more because of its specific 

results. This graph is related to the results of sensors 2 and 

3. In this paper, two criteria R2 Score and Root mean 

squared error (RMSE) are used to evaluate the accuracy of 

the model. R2 score indicates the percentage of the 

variance in the dependent variable that the independent 

variables explain collectively. It is a statistical measure that 

shows how close the regression line is to the actual data. 

RMSE measures the average difference between values 

predicted by a model and the actual values. It provides an 

estimation of how well the model is able to predict the 

target value. According to the type of deployment of lines 

and selected sensors, the accuracy of the generated model 

is 99%. Its RMSE value is 1391 meters. As can be seen 

from Fig. 2, the accuracy along the x and y axes are 

different. The value of RMSE along the x-axis is 264 

meters and along the y-axis is 1853 meters. Also, higher 

location errors along the x-axis can be observed for 

lightning strikes in the immediate vicinity of the sensors. 

 

3.1 Impact of the geometry configuration 

 
As mentioned earlier, the model training operation was 

done using a pair of sensors. According to Table 1, six 

different pairs of sensors in different locations were 

considered for training the models. It should be noted that 

the use of only one sensor or two sensors at a close distance 

from each other leads to a large error. The reason for this 

large error is that the use of only one sensor or two closely 

located sensors result in an ambiguity and cannot separate 

the occurrence of lightning on both sides of the 

transmission line.  

 

In this paper, to investigate different layouts of 

transmission lines and their effect on the performance of 

the model, several layouts were investigated and it was 

observed that if the transmission lines are perpendicular to 

each other and in line with the sides of the geometry of the 

problem so that the area is covered by them, the model 

achieves better performance. Furthermore, if the lines are 

placed on the sides of the considered area, the accuracy 

increases. The results of four layouts, two lines parallel and 

perpendicular to each other as well as lines perpendicular 

to each other and on the side of the geometry of problem, 

are shown in Table 2. In the final layout of the transmission 

lines and sensors, according to Table 2, the accuracy of the 

model is 99.9 % and the RMSE error reached 400 meters. 

 

 

Figure 2. Model evaluation results for (a) the x-coordinate 

and (b) the y-coordinate of geometry configuration of  

Figure 1 (sensors 2&3) 

 

3.2 Sensitivity to the Noise Level 
 

The model training operation was performed using noisy 

data with an SNR of 30 dB. We repeated the training 

considering SNRs of 20 and 10 dB. In these cases, the 

accuracy of the model was still remarkable. For an SNR of 

10 dB, the model achieved 98% accuracy. 

 

 

 



4. Conclusion  
 

In this paper, we showed the efficiency of the XGBoost 

algorithm to find the lightning location using noisy induced 

voltage data on power transmission lines. Notably, its 

robust performance is demonstrated even in the presence of 

noisy data. Using only two sensors, reducing the 

dimensions of features from 4000 to 80 by the PCA 

algorithm, and data with an SNR of 30 dB, the proposed 

model achieved 99% accuracy. Dimensionality reduction 

significantly increased the speed of calculations. It was also 

shown that the location of sensors and the configuration of 

the transmission lines can impact the performance of the 

model. 

 

Table 2. Results of some lines and sensors layouts in 

problem geometry 

Parallel transmission lines, TL1: X=12.5km  ,  TL2: X=37.5km 

Sen1:(12.5km,37.5km), Sen2:(12.5km,12.5km), Sen3:(37.5km,37.5km), 

Sen4:(37.5km,12.5km) 

 sen1&

2 

sen1&

3 

sen1&

4 

sen2&

3 

sen2&

4 

sen3&

4 

R2  0.926 0.921 0.989 0.990 0.923 0.927 

RMSE 3791.3

8 

4098.9

9 

1323.7

9 

1391.5

1 

3960.4

1 

3951.0

9 

perpendicular transmission lines: TL1: Y=5km  ,  TL2: X=5km 

Sen1:(10km,5km), Sen2:(45km,5km), Sen3:(5km,10km), Sen4:( 5km,45km) 

 sen1&

2 

sen1&

3 

sen1&

4 

sen2&

3 

sen2&

4 

sen3&

4 

R2  0.992 0.992 0.993 0.993 0.994 0.992 

RMSE(m

) 

1277.5 1238.0

6 

1129.6

6 

1093.4

5 

1037.0

4 

1277.5 

perpendicular transmission lines: TL1: X = 25km  ,  TL2: Y=25km 

Sen1:(25km,37.5km), Sen2:(25km,25km), Sen3:(12.5km,25km), 

Sen4:(37.5km,25km) 

 sen1&

2 

sen1&

3 

sen1&

4 

sen2&

3 

sen2&

4 

sen3&

4 

R2  0.452 0.960 0.965 0.975 0.970 0.467 

RMSE 10736.

3 

2593.0

3 

2548.9

6 

1946.2 2441.9

8 

10646.

4 

Perpendicular transmission lines: TL1: Y=0 , TL2:  X = 0 

Sen1:(0km,0km), Sen2:(50km,0km), Sen3:(0km,0km), Sen4:(0km,50km) 

 1&2 1&3 1&4 2&3 2&4 3&4 

R2  0.998 0.998 0.999 0.999 0.998 0.997 

RMSE 658.39 513.19 447.0 400.02 374.6 681.36 
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