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Abstract
The Foreign Exchangemarket is a significant market for speculators,
characterized by substantial transaction volumes and high volatility.
Accurately predicting the directional movement of currency pairs
is essential for formulating a sound financial investment strategy.
This paper conducts a comparative analysis of various machine
learning models for predicting the daily directional movement of
the EUR/USD currency pair in the Foreign Exchange market. The
analysis includes both decorrelated and non-decorrelated feature
sets using Principal Component Analysis. Additionally, this study
explores meta-estimators, which involve stacking multiple estima-
tors as input for another estimator, aiming to achieve improved
predictive performance. Ultimately, our approach yielded a predic-
tion accuracy of 58.52% for one-day ahead forecasts, coupled with
an annual return of 32.48% for the year 2022.

CCS Concepts
• Supervised learning by classification; • Time series analysis;
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1 Introduction
The foreign exchange (Forex) market, where currencies are ex-
changed, is the largest in the world, with an average of $5 trillion
traded daily [1]. Major participants in the Forex market include in-
stitutions, corporations, governments, and speculators. Trading in
the Forex market involves exchanging pairs of currencies. Despite
the high number of transactions and the attractive potential return,
Forex market prediction is considered hard. Fluctuations depend on
a lot of factors: economic indicators, geopolitics, human behaviors,
central bank decisions, etc. For these reasons, only 2% of traders
are successful in predicting Forex market movement correctly [2].
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Forex can be traded using Contract for Difference (CFD). A CFD
is a speculative instrument that allows a trader to bet on the rise or
fall of an underlying asset. If the bet is right, the trader wins the
difference between the price at the moment when the CFD is closed
and the moment when it is opened. If the bet is wrong, the trader
loses the difference. Thus, success in CFD trading does not hinge on
forecasting price fluctuations, but rather on accurately predicting
the asset’s directional movement. Forecasting fluctuations is a must
to determine which asset to bet on at a certain time.

In Forex trading, terms commonly used are ’bid’ and ’ask’ price.
The bid price refers to the price a buyer is willing to pay for an
asset whereas the ask price refers to the price a seller is willing to
accept for an asset. The difference between the bid and ask prices
is known as the spread. The spread is subject to fluctuations, partly
because of variation in liquidity in the market [3].
This paper presents various methods in order to predict the daily
directional movement of the Forex bid price for the EUR/USD cur-
rency pair. For clarity, the term ’direction of the pair EUR/USD’
will be used throughout this paper to refer to the direction of the
EUR/USD bid price. The contributions of this paper are significant
and include:

• A comparative analysis of 21 machine learning algorithms,
both with and without applying Principal Component Anal-
ysis (PCA) to decorrelate the input features.

• An evaluation of these 21 machine learning algorithms as
meta estimators which combine the outputs of previous base
models with input features for improved prediction.

• A comparative study of three dataset representations: basic
features, historical features, and technical indicators.

• The incorporation of several economic indicators of the
United States of America and the European Union, which
influence forex traders, as input features.

This study stands out by conducting comparisons over an ex-
tended period of time (nearly 10 years) and using recent data (up
to December 2022). Furthermore, the experimental setup is main-
tained consistent across all comparisons.

2 Related works
Yildirim et al. [4] suggested using a Long Short Term Memory
(LSTM) model to predict the EUR/USD pair’s price direction. Their
study incorporated data from the EUR/USD pair, as well as from
the DAX and S&P500 indices. They also included macroeconomic
indicators: interest rate and inflation rate for Germany, Europe
and USA. Galeshchuk and Mukherjee [5] analyzed Convolutional
Neural Networks (CNNs) along with other methods to predict price
movements of the EUR/USD, GBP/USD, and JPY/USD currency
pairs. They found that CNN outperforms all the other methods.
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Ghazali et al. [6] evaluated a Multi Layers Perceptron (MLP), a Pi-
Sigma Neural Network (PSNN), a Ridge Polynomial Neural Network
(RPNN) and a Dynamic Ridge Polynomial Neural Network (DRPNN)
to forecast the pairs EUR/USD, GBP/USD, EUR/JPY and GBP/JPY.
They found that DRPNN provides the best prediction in term of
normalized mean squared error and profit. In another noteworthy
study [7], Majhi et al. emphasized the importance of fast computa-
tion in financial world forecasting. They proposed two models: the
Functional Link Artificial Neural Network (FLANN) and the Cas-
caded Functional Link Artificial Neural Network (CFLANN). They
achieved good results in predicting 3 months ahead pairs GBP/USD,
JPY/USD and USD/INR. In their paper [8], Perla et al. introduced
a hybrid stacked AutoEncoder-based Deep Kernel based Random
Vector Functional Link Network (DKRVFLN-AE) for one-day-ahead
forecasting of various Forex pairs.

Additionally, there has been significant research on other stock
markets that merits exploration. In [9], Di Persio and Honchar
compared a MLP, a CNN and an LSTM to predict the direction and
forecast the variation of the S&P500 stock market. They found that
CNN provides the best results compared to both MLP and LSTM,
with a mean squared error of 0.2491 in forecasting and an accu-
racy of 0.536 in classification. They further suggested combining
various methods to achieve improved results. Fischer and Krauss
proposed in [10] a comparison of LSTMwith memory-free methods,
such as Random Forest, Deep Neural Network (DNN) and logistic
regression in order to predict the direction of the S&P500 Their con-
clusion was that LSTM surpassed other methods in performance.
In a focused study on a particular ETF of the S&P500, Zhong and
Enke [11] examined the performance DNN with and without PCA
transformed dataset. They found that using a PCA transformed
dataset leads to better results.

The literature review indicates that majority of research primar-
ily utilizes historical Forex data as input features. However, both
professional and individual traders who engage in forex trading
also have access to historical data from other markets and economic
indicators, such as the Consumer Price Index (CPI), which signif-
icantly influence their trading decisions and consequently affect
Forex fluctuations. Additionally, most studies are limited to datasets
spanning three to five years, often using old data from the period
between 2000 and 2015. The variability in dataset periods compli-
cates the comparison of different strategies. Furthermore, while
the focus of many publications has been on neural network models,
machine learning models have received less attention, except for
some such as Support Vector Machine (SVM). It should be noted
that most research relies on relatively small datasets—a five-year
dataset typically contains approximately 1,250 daily samples. On
such dataset sizes, some studies, external to finance domain, tends
to show that machine learning often outperforms deep learning
[12, 13].

3 Data
The data for this paper were gathered and compiled from various
sources. They are composed of economic indicators, markets data
and Forex data. The data collection spanned from April 30, 2013,
to December 31, 2022. Data of year 2022 were used for evaluation

while data from previous years were used for training and vali-
dation. Each data sample represents one day. Samples from days
immediately before market closures were excluded from training
and evaluation (since there are no activities and the price of the
pair EUR/USD does not change).

3.1 Economic indicators
We included the following economic indicators for the United States
of America (USA) and for the European Area (EA):

• The Gross Domestic Product (GDP), which represents the
value of the goods produced and the services provided, is
released quarterly.

• TheComposite Purchasing Managers Index (Composite PMI)
is obtained by summarizing monthly surveys from private
sector companies and represents the economic trend of man-
ufacturing and service of a country.

• The CPI, measuring the evolution of consumer prices, is
released monthly.

• The CPI Year over Year (CPI YoY) which is the variation of
the CPI from a date to the same date one year earlier. It is
also known as the inflation rate.

• The interest rate fixed by central banks: these rates deter-
mine how commercial bank can borrow and lend their excess
reserves. Updates are not following a special frequency.

• The Current Account Balance (CAB) which tracks the
amount of money flow of a country. It is updated monthly.

Due to the fact that economic indicators are not actualized every
day, we had to extend data between updates. Thus, for each sample,
the value of economic indicators is the value of the last update. Even
if economic indicators are related to continuous phenomena (e.g.,
the gross domestic product of a country is increasing continuously
at every instant, not only one time at each quarter), we made the
choice to have a not continuous function based only on the last
update since traders who make transactions and impact the Forex
are not aware of the exact value of the economic indicators at each
instant but only of the update made from agencies.

Additionally, it is known that updates of economic indicators by
agencies lead to increased volatility in the Forex market [14]. In
this way, to capture this behavior, we also included the number of
days since the last update for every economic indicator.

3.2 Market indices
Several market indices were included to reflect economic fluctua-
tions in the USA and the EA:

• CAC40: index of the 40 most important French stocks.
• DAX: index of the 40 most important German stocks.
• STOXX50: index of the 50 most important Euro zone stocks.
• STOXX600: index of the 600 most important Euro zone

stocks.
• DJI: index of the 30 most important New York stocks.
• NASDAQ Composite: index of more than 2500 Nasdaq

stocks.
• NASDAQ100: index of the 100 most important Nasdaq non-

financial stocks.
• RUSSELL2000: index of the 2000 smallest Russell 3000 stocks.
• S&P500: index of the 500 most important American stocks.
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Figure 1: EUR/USD volume distribution before (left) and after (right) squared root transformation.

For each market index, the open price, close price, lowest and
highest price, and daily transaction volume were included.

3.3 Forex pairs
The open price, close price, lowest and highest price, and daily trans-
action volume were included for each of the following Forex pairs:
AUD/USD, EUR/AUD, EUR/CAD, EUR/CHF, EUR/GBP, EUR/JPY,
EUR/NZD, EUR/USD, GBP/USD, NZD/USD, USD/CAD, USD/CHF,
USD/JPY.

4 Preprocessing
4.1 Target
We define the direction of the Forex at a given day t as following:

�8A42C8>= (C) =
{
1 8 5 2;>B4 ?A824 (C + 1) > 2;>B4 ?A824 (C)
0 8 5 2;>B4 ?A824 (C + 1) ≤ 2;>B4 ?A824 (C)

4.2 Data transformation
Due to the fact that the distribution of some features was not well
designed, we applied a step of data transformation. Specifically, a
log transformation was applied to the European Area’s CPI Year
over Year (YoY), and a square root transformation was used for
the central banks’ interest rates and the trading volumes of mar-
ket indices and Forex pairs. Figure 1 illustrates the differences
in the EUR/USD trading volume distribution before and after the
transformation.

4.3 Data representation
Our research explored three distinct data representation methods,
denoted as dataset 1, dataset 2, and dataset 3. Dataset 1 was com-
posed exclusively of daily data. Dataset 2 combined daily data with
the preceding 90 days’ data. Dataset 3 incorporated daily data along
with technical indicators from time series of market indices and
Forex pairs [15, 16]. Technical indicators are summarized in Table
1.

4.4 Date encoding
Dates provide valuable information when encoded effectively. Two
encoding methods were proposed, depending on the prediction
model used:

Figure 2: Day encoding using sinus and cosine for one month
of 31 days.

• Tree-based models: dates were expressed as one integer for
the day, one integer for the month and one for the weekday.
We chose not to encode date in a one hot encoding fashion
to avoid adding to many feature dimensions. Furthermore,
tree-based methods are basically working well with ordinal
data.

• For other models, dates were encoded using sine and cosine
functions for the day, month, and weekday. Figure 2 shows
an example of day encoding for one month of 31 days.

5 Approach
5.1 Models
In our study, we evaluated a variety of machine learning models,
including:

• Logistic regression.
• K-Nearest Neighbors (KNN).
• Support Vector Machine (SVM) with different kernel (linear,

radial basis function (RBF), sigmoid and polynomial).
• Decision tree.
• Bagging decision tree.
• Bagging logistic regression.
• Bagging KNN.
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Table 1: Technical indicators derivate from Forex and market time series

Name Formula Range

Simple N days moving average (close
price)

1
#

∗
#−1∑
8=0

� (C − 8) # . ∈[3, 7, 14, 30, 60, 90]

Weighted N days moving average
(close price)

∑# −1
C=0 (#−8 )∗� (C−8 )∑# −1

8=0 (#−8 ) # . ∈[3, 7, 14, 30, 60, 90]

Simple N days moving average
(volume)

1
#
∗

#−1∑
8=0

+ (8) # . ∈ [3, 7, 14, 30, 60, 90]

Weighted N days moving average
(volume)

∑# −1
8=0 (#−8 )∗+ (C−8 )∑# −1

8=0 (#−8 ) # . ∈ [3, 7, 14, 30, 60, 90]

Momentum N days � (C) − −� (C − −# ) # . ∈ [1, 2, 3, 7, 14, 30, 60, 90]
Stochastic K% N days 100∗ � (C )−!! (C, C−# )

�� (C, C−# )−!! (C, C−# ) # . ∈ [1, 2, 3, 7, 14, 30, 60, 90]

Stochastic D% N days 1
#

#−1∑
8=0

 %(C) # . ∈ [1, 2, 3, 7, 14, 30, 60, 90]

RSI N days 100 – 100

1+
∑# −1
8=0

*? (C−8 )
#∑# −1

8=0
�F (C−8 )

#

# . ∈ [7, 14, 30, 60, 90]

Larry William’s R% N days 100∗ � (C− # )−� (C )
� (C− # )−! (C− # ) # . ∈ [1, 2, 3, 7, 14, 30, 60, 90]

A/D Oscillator � (C )−� (C−1)
� (C )−! (C )

CCI N days " (C )−(" (C )
0.015∗� (C ) # . ∈ [7, 14, 30, 60, 90]

ROC close N days 100∗ � (C )
� (C−# ) # . ∈ [1, 2, 3, 7, 14, 30, 60, 90]

Disparity N days 100 ∗ � (C )
1
#
∗ ∑# −1

8=0 � (C−8 ) # . ∈ [3, 7, 14, 30, 60, 90]

OSCP N/M days
∑# −1

8=0 � (C−8 )− ∑"−1
8=0 � (C−8 )∑# −1

8=0 � (C−8 ) N, M ∈ [(3, 7), (7, 14), (14, 30), (30, 60),
(60, 90)]

MACD N days fast M days slow �"�# (C ) − �"�" (C ) N, M ∈ [(7, 21), (12, 26), (20, 34)]
MACD N days fast M days slow P
days signal

�"�% ("���#" (C ) ) N, M, P ∈ [(7, 21, 4), (12, 26, 9), (20,
34, 17)]

C(i), V(i), H(i) and L(i) are the closing price, the traded volume, the highest price and the lowest price of the day i. HH(i, j) and LL(i, j) are the
highest price and the lowest price of the days between i and j. Up(i) and Dw(i) are the upward and downward price change of the day i.

" (C) = � (C )+! (C )+� (C )
3 , (" (C) = 1

#

#−1∑
8=0

" (C − 8), � (C) = 1
#

#−1∑
8=0

" (C − 8) − (" (C), EMA is the Exponential Moving Average.

• Bagging SVM with different kernel (linear, RBF, sigmoid and
polynomial).

• Random forests.
• Extra trees.
• Gradient boosting.
• Histogram gradient boosting.
• CatBoost [17].
• LightGBM [18].
• XGBoost [19].

Each model underwent analysis both with and without feature
decorrelation. Feature decorrelation was accomplished using PCA
[20], without reducing dimensions.

We also studied the use of meta estimators [21] (i.e. a model that
used the output of other models as features to improve prediction).
All the previous listedmodels were tested asmeta estimators. Figure
3 shows an example of a meta estimator.

Prior to inputting data into the models, we also considered ap-
plying data scaling, tailored to the type of model:

• Standardization was planned as a preliminary step before
feeding data into PCA (as the initial stage before the models).

• For models such as SVM, logistic regression, and their respec-
tive bagging versions, standardization was applied before
data input.

• For other models, normalization was considered before feed-
ing the model

5.2 Hyperparameter tuning and feature
selection

Weperformed a step of hyperparameter tuning and feature selection
using Bayesian Search [22]. For every model, 3 parallel searches
are used. The first one focused solely on managing model hyper-
parameters. The second was able to manage the feature selection
of feature categories (for example CAC40 data, DAX data etc.) in
addition to model hyperparameter. The final one was tasked with
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Table 2: Results of models without PCA.

Model name Dataset 1 Dataset 2 Dataset 3
Monthly Annually Monthly Annually Monthly Annually
Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro.

Logistic regression 53.7 9.2 51.4 29.5 53.3 13.7 51.1 8.0 50.4 2.6 50.4 6.4
KNN 54.3 15.5 49.8 -1.5 48.8 11.2 53.3 21.9 50.8 4.8 52.0 4.3
SVM linear kernel 54.0 20.4 53.0 16.8 52.0 6.1 49.8 19.8 50.8 8.3 52.0 18.0
SVM RBF kernel 53.0 -2.0 49.5 -5.8 49.2 -8.9 52.4 2.5 52.4 -3.5 50.4 -6.8
SVM sigmoid kernel 50.4 15.7 51.1 13.9 51.1 -1.0 53.7 11.5 50.4 0.8 50.8 3.5
SVM polynomial
kernel

50.1 -1.1 52.0 4.7 46.6 -15.8 51.7 10.8 56.2 21.5 51.1 -4.4

Decision tree 55.9 14.8 51.4 7.3 56.5 5.1 49.2 0.8 50.1 3.8 52.0 10.5
Bagging decision tree 48.8 -14.8 47.9 -2.6 53.0 10.6 52.4 -1.5 52.7 2.6 54.9 18.7
Bagging logistic
regression

54.3 17.3 51.1 5.6 54.9 20.0 50.4 6.2 50.4 5.3 50.4 7.4

Bagging KNN 54.0 10.1 51.1 6.3 49.8 19.6 55.9 25.3 46.9 -14.7 46.9 -11.7
Bagging SVM linear
kernel

54.3 19.9 54.0 20.2 53.7 15.7 50.8 6.7 48.5 3.6 49.8 5.2

Bagging SVM RBF
kernel

52.4 12.0 53.3 26.2 48.2 -12.3 52.0 7.3 49.2 7.6 45.3 -8.2

Bagging SVM
sigmoid kernel

49.2 17.0 54.0 22.2 48.2 17.2 51.4 1.9 50.8 9.4 49.8 6.3

Bagging SVM
polynomial kernel

49.5 -1.6 49.8 -4.0 54.9 10.0 51.4 -0.0 52.0 1.2 51.4 -4.0

Random forests 50.4 -2.5 50.8 9.6 49.8 -6.7 48.5 -10.0 50.1 -8.1 51.4 8.2
Extra trees 48.8 -8.1 48.5 -5.7 52.0 2.7 54.3 1.1 50.8 -9.2 48.2 -7.0
Gradient boosting 51.1 -6.0 48.8 -7.2 51.7 -13.4 49.5 -5.7 50.1 -3.8 51.1 0.6
Histogram gradient
boosting

53.3 10.2 49.2 5.7 49.2 1.5 51.1 6.4 54.6 -2.7 58.5 12.4

CatBoost 51.4 -10.7 51.4 3.5 47.5 -20.3 45.0 -3.6 49.8 -1.9 48.5 -7.5
LightGBM 52.7 3.2 52.4 0.9 49.2 -0.9 53.7 20.8 51.7 3.5 47.5 -13.0
XGBoost 49.8 3.7 49.2 -1.2 46.6 -4.1 48.5 0.6 49.2 -13.2 53.0 0.9

Figure 3: Example of meta estimator where a SVM (fit on
dataset 1), a XGBoost (fit on dataset 2) and a KNN (fit on
dataset 3) are used in first stage and then a SVM is used to
predict based on the input data of dataset 3 and the prediction
of the 3 models of the first stage.

conducting comprehensive feature selection (for example CAC40
low price, DAX volume) along with model hyperparameters tuning.

Throughout the search process, information from the first search
was transferred to the second, and knowledge from the second
search was passed on to the third. In essence, when the first search

identifies a suitable set of hyperparameters for a model that fits
the entire feature set, it shares this information with the second
search. Subsequently, the second search can leverage this informa-
tion to enhance precision and adapt feature selection accordingly.
This pattern continues between the second and third search. We
adopted this approach to accelerate the convergence of the third
search. Indeed, the third search has a huge search space to explore.
Supplying valuable points within this complex space through a less
complex search aids in enhancing the comprehension of the third
search space. Figure 4 illustrates the scope of each search and the
communication between them.

Hyperparameter tuning and feature selection were performed
using an 8-fold rolling cross validation approach. Data from
2013/11/26 to 2019/12/31 were used only for training and data from
2020/01/01 to 2021/12/31 were used first for validation (using seg-
ments of 3 months) then added to training set before next validation
segments. Slicing method is presented in Figure 5. We used accu-
racy as the criterion to evaluate the best set of hyperparameters
and features.
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Figure 4: Bayesian searches and knowledge transfer between
searches. Yellow indicates the scope of searches.

Figure 5: 8 folds rolling cross validation. Green indicates
training data and orange validation data.

5.3 Evaluation
To evaluate the different models that we have studied, we consid-
ered two metrics: accuracy and profit. We defined profit as follows,
with P(0) = 0:

% (C) =
C∏
8=1

1~?A43 (8 )=1∗
� (8)

� (8 − 1) + 1~?A43 (8 )=0 ∗
� (8 − 1)
� (8)

We proposed two distinct approaches for model evaluation. The
first one consisted of using all the training and validation data to
fit models and to evaluate them on 2023 data. The second consisted
of using all the training and validation data to fit models and to
evaluate them on January 2023 data. Subsequently, models were
retrained using the training and validation data, augmented with
data from January 2023, and then evaluated on data from February
2023, and so forth.

6 Results
In this study, histogram gradient boosting achieved the highest
prediction accuracy, scoring 58.52%. Logistic regression achieved
the best profit, yielding an annual return of 29.54% (Table 2). Using
PCA prior to model input resulted in lower accuracy and profit.
Indeed, when using PCA, the highest achieved accuracy was 54.98%,
and the greatest profit was 24.05% (Table 3). By utilizing data
and predictions from basic models, meta estimators achieved an
accuracy of 57.23%, slightly lower than that of the basic estimators.

Figure 6: Distribution of the accuracy discriminated by the
dataset type for models without PCA, with PCA and meta
estimators.

Figure 7: Distribution of the profit discriminated by the
dataset type for models without PCA, with PCA and meta
estimators.

However, meta estimators led to a better profit, reaching a 32.48%
annual return (Table 4).

In general, meta estimators led to better accuracy, as we can
observe in Figure 6. Whether for models with PCA, without PCA or
meta estimators, dataset 3 reached the best accuracy. This highlights
the fact that feature engineering with domain knowledge enhances
the models’ understanding of the problem. We can also observe
that using PCA led to global worse results in term of accuracy. We
hypothesize that the application of PCA prior to model input leads
to a less effective representation of temporal relationships in the
data.

In term of profit, basic models without PCA reached in mean the
best annual returns even if they generally provided an accuracy
slightly lower than meta estimators (see Figure 7). Importantly, it
should be noted that accuracy and profit do not necessarily corre-
late. A model may succeed in more daily trades than another yet
underperforms in terms of profit, succeeding in low-value trades
while failing in high-value ones. Figure 8 displays a comparison
of the daily trade performance of a meta estimator decision tree
(accuracy = 55.31 % / profit = 32.48 %) versus a meta estimator SVM
with kernel polynomial (accuracy = 55.63 % / profit = 4.25 %). As
observed in the figure, the mean of the distribution of the decision
tree is much higher than that for SVM, despite the SVM’s higher
accuracy (the SVM distribution has a bigger median but a lower
mean).

The profit generated by the best-performing meta estimator, a
decision tree based on dataset 3, throughout 2022 is depicted in
Figure 9.
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Table 3: Results of models with PCA.

Model name Dataset 1 Dataset 2 Dataset 3
Monthly Annually Monthly Annually Monthly Annually
Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro.

Logistic regression 51.7 20.7 50.4 6.2 51.1 -0.8 50.8 0.6 52.0 7.5 48.2 -9.4
KNN 53.3 8.2 54.0 7.3 53.3 13.3 49.8 -0.0 48.5 0.7 49.2 -5.8
SVM linear kernel 51.7 18.7 47.2 6.6 50.4 -1.0 53.0 6.6 49.5 -0.4 51.4 8.7
SVM RBF kernel 50.8 4.4 49.5 -4.3 50.8 2.3 52.0 8.5 51.1 6.2 50.4 6.2
SVM sigmoid kernel 48.8 4.5 48.5 -8.6 53.0 -1.4 51.1 1.0 50.8 -19.1 49.2 8.0
SVM polynomial
kernel

51.7 2.2 51.7 3.4 52.4 -6.2 50.1 -1.3 49.2 0.1 49.8 4.6

Decision tree 46.9 -3.6 49.8 -0.9 54.3 24.0 49.8 -4.2 50.1 -7.0 48.8 -5.4
Bagging decision tree 52.0 2.1 50.8 -0.6 47.9 -8.8 49.5 -14.8 47.2 -15.5 52.4 12.3
Bagging logistic
regression

51.4 2.4 50.4 6.2 54.0 11.3 54.6 9.2 53.0 6.0 50.1 -4.0

Bagging KNN 52.4 22.8 50.8 5.0 50.1 -1.1 52.0 -2.4 48.8 5.2 47.2 5.6
Bagging SVM linear
kernel

49.2 -7.5 50.4 6.2 49.2 -10.4 54.0 8.2 51.7 4.9 50.4 6.4

Bagging SVM RBF
kernel

51.7 0.7 51.7 4.4 49.8 5.8 51.1 2.9 50.1 10.9 48.8 -3.5

Bagging SVM
sigmoid kernel

51.7 16.5 49.5 5.2 49.2 -1.7 50.4 5.0 50.1 1.3 53.0 16.8

Bagging SVM
polynomial kernel

53.3 17.8 50.8 2.9 50.8 -3.9 52.7 -0.5 51.4 9.6 53.7 6.3

Random forests 48.2 -16.6 46.6 -17.9 49.2 -0.2 48.5 0.0 50.1 2.8 51.1 7.3
Extra trees 45.6 -19.5 49.5 -11.1 54.3 16.3 43.7 -13.7 50.8 0.0 54.9 -3.8
Gradient boosting 53.7 15.4 51.7 2.8 49.2 -5.6 46.9 -10.9 52.4 0.9 45.0 -8.1
Histogram gradient
boosting

47.5 -13.8 48.2 -10.4 52.0 6.9 52.4 16.7 53.7 7.5 48.5 -3.3

CatBoost 49.5 -0.8 47.2 -18.8 50.4 3.6 48.5 -12.1 45.9 -12.4 48.2 -2.3
LightGBM 52.4 4.2 51.4 3.9 52.0 1.5 45.9 -6.9 52.0 16.7 51.1 13.9
XGBoost 50.8 12.9 53.3 11.3 53.0 10.0 53.3 5.8 50.4 1.6 48.2 -5.2

Figure 8: Comparison of the distribution of the daily return
(P(t) – P(t-1)) of the meta estimator decision tree (left) and
themeta estimator SVMwith polynomial kernel (right), both
based on dataset 3. The blue vertical line indicates the mean
of the distribution.

7 Conclusion
This paper presents a comparison of various machine learning
models, analyzed both with and without feature decorrelation em-
ploying PCA. Additionally, the study explored the use of meta
estimators, which demonstrated higher accuracy than basic models.
Overall, our approach yielded an accuracy of 58.52% and an annual
return of 32.48% on the year 2022. It was observed that, in terms
of accuracy, feature engineering informed by domain knowledge
produced the most favorable results. Despite the promising out-
comes obtained, we believe that machine learning approaches have
the potential to yield even more impressive results. A notable lim-
itation in predicting daily direction lies in considering economic
indicators at midnight, whereas these indicators are actually re-
leased at various times during the day. Considering that the release
of these indicators leads to high volatility in the Forex market, our
models may not fully capture this volatility when predicting daily
direction. Hence, refining predictions to an hourly or minute basis
represents a promising avenue for future improvements. Another
potential area for improvement would be to incorporate forecasts
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Table 4: Results of meta estimators.

Model name Dataset 1 Dataset 2 Dataset 3
Monthly Annually Monthly Annually Monthly Annually
Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro. Acc. Pro.

Logistic regression 53.7 3.6 50.4 -5.0 54.3 2.7 51.7 -6.2 53.7 7.8 53.0 0.0
KNN 54.9 4.0 54.9 -2.4 54.6 11.6 51.4 -1.9 54.6 7.4 50.8 -12.5
SVM linear kernel 53.7 7.3 52.4 -8.0 53.0 6.2 53.0 -2.4 52.0 -0.2 54.0 7.0
SVM RBF kernel 53.3 -0.7 47.5 -14.8 54.9 12.5 53.0 1.0 52.0 -0.2 51.4 -2.6
SVM sigmoid kernel 52.7 -4.2 51.4 -2.9 53.3 1.5 47.5 -12.1 54.3 8.4 51.7 -8.4
SVM polynomial
kernel

54.6 12.3 52.0 -5.7 54.9 16.1 48.2 -4.6 51.7 4.5 55.6 4.2

Decision tree 55.6 2.0 54.3 5.2 51.4 4.5 54.0 9.9 55.3 32.4 48.8 -5.3
Bagging decision tree 54.0 2.3 50.4 -4.0 53.7 8.1 53.3 1.1 53.3 3.0 52.0 -8.8
Bagging logistic
regression

53.3 1.5 50.8 -2.0 53.7 5.8 53.7 2.1 54.3 4.7 54.9 3.1

Bagging KNN 53.7 7.5 51.1 -9.1 55.3 11.2 53.0 6.9 53.3 5.7 52.7 -0.8
Bagging SVM linear
kernel

55.6 9.5 53.3 -1.8 54.3 7.7 51.4 -9.1 54.3 7.5 53.3 -0.2

Bagging SVM RBF
kernel

54.3 1.9 51.1 -6.6 52.4 2.8 50.4 -4.0 52.4 -1.8 48.5 -8.7

Bagging SVM
sigmoid kernel

55.3 13.7 52.4 2.6 55.9 17.4 51.4 1.5 55.3 10.1 51.1 4.3

Bagging SVM
polynomial kernel

55.6 3.4 49.2 -11.4 54.9 0.7 52.6 2.9 57.2 7.1 54.0 13.5

Random forests 55.3 7.1 54.3 2.9 51.1 -4.2 54.0 -2.0 55.3 12.1 52.7 0.2
Extra trees 51.1 -3.4 49.5 -3.9 54.6 6.3 52.7 4.7 54.9 7.9 54.9 3.9
Gradient boosting 56.2 10.9 51.1 -8.8 54.0 4.8 48.5 -10.5 54.3 1.4 49.8 -4.5
Histogram gradient
boosting

53.3 7.9 52.7 -0.5 53.3 7.9 52.7 -0.5 53.3 7.9 52.7 -0.5

CatBoost 47.9 -8.2 46.3 -18.9 52.7 5.6 48.2 -10.6 47.9 -0.7 48.2 -9.9
LightGBM 50.8 10.3 47.2 -9.2 49.2 -3.5 47.9 -10.9 48.8 -12.7 47.2 -16.7
XGBoost 47.2 -18.6 46.9 -14.2 51.4 -5.9 46.6 -17.9 50.1 -5.6 47.9 -12.8

Figure 9: Evolution of the profit during year 2022 with the
meta estimator decision tree based on dataset 3.

of economic indicators (depending on the indicator, some previ-
sions are done with a double/triple frequency than the ground truth
release).
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Data sources and code
In the interests of transparency and reproducibility, we listed below
the origins of the data we used:

• Economic indicators:
• https://fred.stlouisfed.org/
• https://macrovar.com/
• https://www.investing.com/
• https://data.bls.gov/
• https://data.oecd.org/
• https://www.ecb.europa.eu/
• Market data:
• https://finance.yahoo.com/
• Forex data:
• https://www.dukascopy.com/

Code is also available on demand by contacting the first author.
NB: Some of the sources require to create an account to get

access to the data


