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Abstract
We provide a comprehensive overview of the theoretical framework surrounding
modulation spaces and their characterizations, particularly focusing on the role of
metaplectic operators and time-frequency representations. We highlight the metaplec-
tic actionwhich is hidden in their construction andguarantees equivalent (quasi-)norms
for such spaces. In particular, this work provides new characterizations via the sub-
manifold of shift-invertible symplectic matrices. Similar results hold for the Wiener
amalgam spaces.
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1 Introduction

This work is a detailed overview of the theory surrounding modulation spaces and
their characterization usingmetaplectic operators and time-frequency representations.
It covers the historical development of modulation spaces from their introduction by
Feichtinger in 1983 to recent advancements in the field and provides new results in
this framework.

Here’s a breakdown of the main points discussed:

Background:We introduce modulation spaces, which are fundamental in various
disciplines including time-frequency analysis, PDEs, quantum mechanics, and
signal analysis.
Metaplectic operators and invariance properties: We discuss the importance
of metaplectic operators and their invariance properties in characterizing modula-
tion spaces, presenting results regarding the conditions under which metaplectic
operators extend to isomorphisms on modulation spaces.
Time-frequency representations: We present various time-frequency repre-
sentations, including the short-time Fourier transform (STFT) and the Wigner
distribution, which arise as images of metaplectic operators and are called meta-
plectic Wigner distributions. We highlight their role in characterizing modulation
spaces and provide a reproducing formula for these representations.
Characterization ofmodulation spaces:Weexhibit characterizations ofmodula-
tion spaces usingmetaplecticWigner distributions. These characterizations involve
shift-invertible properties and block decompositions of symplectic matrices.
Independence of symplectic matrix blocks:We showcase a new result regarding
the independence of certain blocks of symplectic matrices in the characterization
of modulation spaces using metaplectic Wigner distributions.

Modulation and Wiener amalgam spaces were introduced by Feichtinger in [10]
(see [11, 12] for the Wiener case) in the framework of time-frequency analysis and
extended to the quasi-Banach setting by Galperin and Samarah [15] in 2004. Since the
2000s they have become popular in many different environments, ranging from PDEs
to quantum mechanics, pseudo-differential theory and signal analysis. Hundreds of
papers use these spaces as a natural framework. Since it is impossible to cite them all,
we simply refer to the textbooks [1, 6, 16].

Recently, a series of contributions have highlighted the importance of metaplectic
operators and related time-frequency representations in the (quasi-)norm characteri-
zation of these spaces [2, 3, 5, 7–9, 14, 17, 20–22], providing applications in signal
analysis, phase retrieval, and PDE’s.

A key point in this study, as observed in [14], is the invariance properties of meta-
plectic operators, asking under which conditions a metaplectic operator Â, initially
defined as a unitary operator on L2(Rd), extends to an isomorphism on the modulation
spacesMp,q

m (Rd). Recall that the metaplectic groupMp(d, R) is the two-fold cover of
the symplectic group Sp(d, R), i.e., there exists a surjective Lie group homomorphism
πMp : Mp(d, R) → Sp(d, R).
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The translation and modulation operators are defined by

Tx f (t) = f (t − x), Mξ f (t) = e2π iξ t f (t), t, x, ξ ∈ R
d .

Their composition yields the so-called time-frequency shift

π(z) f = π(x, ξ) f = MξTx f (t) = e2π iξ t f (t − x), z = (x, ξ) ∈ R
2d .

Modulation spacesMp,q
m (Rd) are classically defined in terms of the short-time Fourier

transform (STFT), i.e.,

Vg f (x, ξ) = 〈 f , π(x, ξ)g〉 =
∫
Rd

f (t)ḡ(t − x)e−2π iξ t dt, f ∈ L2(Rd ), x, ξ ∈ R
d ,

(1)

where g ∈ S(Rd)\{0} is the so-calledwindow function. The definition can be extended
to ( f , g) ∈ S ′(Rd) × S(Rd), cf. Sect. 2.2 for details.

Modulation spacesMp,q
m (Rd) are subclasses of tempered distributions f ∈ S ′(Rd),

with

f ∈ Mp,q
m (Rd) ⇐⇒ Vg f ∈ L p,q

m (R2d).

Recently, Führ and Shafkulovska [14, Theorem 3.2] (see [3] for the quasi-Banach
setting) proved the following:

Theorem 1.1 Consider 0 < p, q ≤ ∞, Â ∈ Mp(d, R), πMp( Â) = A ∈ Sp(d, R).
The following statements are equivalent:

(i) Â : Mp,q → Mp,q is well defined;
(ii) Â : Mp,q → Mp,q is well defined and bounded (in fact, it is an isomorphism);
(iii) One out of the two conditions below holds:

(iii.1) p = q,
(iii.2) p �= q and A is an upper triangular matrix.

This result can be lifted to weighted modulation spaces Mp,q
m if the weight m

satisfies m � m ◦ A−1.
From [16, Lemma 9.4.3] we infer the action of the STFT on themetaplectic operator

Â such that πMp( Â) = A:

|Vg( Â f )(x, ξ)| = |VÂ−1g f (A
−1(x, ξ))|. (2)

The equality above shows the interaction between Â : Mp,q(Rd) → Mp,q(Rd)

and DA : L p,q(R2d) → L p,q(R2d), where DAF(z) := F(A−1z), highlighted by the
diagram below.
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Mp,q(Rd) Vg(Mp,q(Rd)) L p,q(R2d)

Mp,q(Rd) VÂ−1g(M
p,q(Rd)) L p,q(R2d)

Vg

Â DA
VÂ−1g

(3)

Then, Theorem 1.1 is a direct consequence of the result below [14, Theorem 3.3].

Theorem 1.2 For 0 < p, q ≤ ∞, A ∈ Sp(d, R), the following statements are equiv-
alent:

(i) DA : L p,q(R2d) → L p,q(R2d) is everywhere defined.
(ii) DA : L p,q(R2d) → L p,q(R2d) is everywhere defined and bounded.
(iii) DA : VÂ−1g(M

p,q) → L p,q(R2d) is everywhere defined.

(iv) DA : VÂ−1g(M
p,q) → L p,q(R2d) is everywhere defined and bounded.

(v) One out of the two conditions below holds:

(v.1) p = q,
(v.2) p �= q and A is an upper triangular matrix.

A clarifying example, provided by [14], is the following: for p �= q, consider two
radially symmetric functions f ∈ L p(Rd)\Lq(Rd) and g ∈ Lq(Rd)\L p(Rd), and
consider the standard symplectic matrix:

J =
(

0d×d Id×d

−Id×d 0d×d

)
, (4)

where Id×d ∈ R
d×d is the identity matrix, whereas 0d×d is the matrix of R

d×d having
all zero entries. The tensor product ( f ⊗ g)(x, ξ) = f (x)g(ξ) is in L p,q(R2d), but
(g⊗ f )(x, ξ) = DJ ( f ⊗g)(x, ξ) /∈ L p,q(R2d), hence DJ : L p,q(R2d) → L p,q(R2d)

is not well defined.
The proof of Theorem 1.2 for p �= q lies on the following issue:

Theorem 1.3 If S ∈ GL(d, R) is an upper triangular matrix and 0 < p, q ≤ ∞,
then

DS : L p,q(R2d) → L p,q(R2d)

is, up to a constant CS > 0, a norm-preserving isomorphism with bounded inverse
D−1

S = DS−1 .

Notice that the matrix S does not need to be symplectic, but only invertible.
These results have inspired new characterizations of modulation spaces via time-

frequency distributions built by using metaplectic operators: the so-called metaplectic
Wigner distributions, defined as follows.

For Â ∈ Mp(2d, R), with πMp(Â) = A ∈ Sp(2d, R) (notice that the number
of variables is doubled!) we call the metaplectic Wigner distribution WA( f , g) the
time-frequency representation
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WA( f , g) = Â( f ⊗ ḡ), f , g ∈ L2(Rd). (5)

Examples are the STFT, the (cross-)τ -Wigner distribution:

Wτ ( f , g)(x, ξ) =
∫
Rd

f (x + τ t)ḡ(x − (1 − τ)t)e−2π iξ t dt, x, ξ ∈ R
d ; (6)

in particular, the Wigner transform, defined as

W ( f , g)(x, ξ) =
∫
Rd

f

(
x + t

2

)
ḡ

(
x − t

2

)
e−2π iξ t dt, f , g ∈ L2(Rd ), x, ξ ∈ R

d .

(7)

For their related metaplectic operators Â and symplectic matrix πMp(Â) = A we
refer to the following section.

Similarly to the STFT, these time-frequency representations enjoy a reproducing
formula, cf. [3, Lemma 3.6]:

Lemma 1.4 Consider Â ∈ Mp(2d, R), with πMp(Â) = A ∈ Sp(2d, R), γ, g ∈
S(Rd) such that 〈γ, g〉 �= 0 and f ∈ S ′(Rd). Then,

WA( f , g) = 1

〈γ, g〉
∫
R2d

Vg f (w)WA(π(w)γ, g)dw, (8)

with equality in S ′(R2d), the integral being intended in the weak sense.

From the right-hand side we infer that the key point becomes the action of WA on
the time-frequency shift π(w), which can be computed explicitly. For, assume thatA
has got the block decomposition

A =

⎛
⎜⎜⎝
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎞
⎟⎟⎠ (9)

and consider its sub-matrix

EA =
(
A11 A13
A21 A23

)
, (10)

then
|WA(π(w) f , g)(z)| = |WA( f , g)(z − EAw)|, f , g ∈ L2(Rd). (11)

The equality above suggests the following definition.

Definition 1.5 Under the notation above, we say that WA (or, by abuse, A) is shift-
invertible if EA ∈ GL(2d, R).
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The representation formula (8) and the invertibility property enjoyed by EA (which
plays the role of thematrix S in Theorem1.3) are themain ingredients for the character-
ization of modulation spaces via metaplectic Wigner distributions, proved in Theorem
3.7 of [3].

Theorem 1.6 Let WA be shift-invertible with EA upper triangular. Fix a non-zero
window function g ∈ S(Rd). If m � m ◦ E−1

A , 1 ≤ p, q ≤ ∞,

f ∈ Mp,q
m (Rd) ⇔ WA( f , g) ∈ L p,q

m (R2d), (12)

with equivalence of norms.
If p = q the matrix EA does not need to be upper triangular.

For the quasi-Banach modulation spaces, the characterization above still holds
true, but the proof is obtained by different methods. The main issue is to understand
which symplectic matrices give a sub-matrix EA invertible, so that the corresponding
distributions WA can characterize modulation spaces.

First, let us introduce the chirp function related to the symmetric matrix C ∈
R
2d×2d , defined as

�C (t) = eπ i t ·Ct , t ∈ R
d

and, for E ∈ GL(d, R), the dilation operator TE (which is a metaplectic operator, see
below)

TE := | det(E)|1/2 f (E ·).

The answer to our problem is contained in the recent contribution [4] and can be
summarized as follows:

Theorem 1.7 Let WA be a shift-invertible metaplectic Wigner distribution with A ∈
Sp(2d, R). Then the symplectic matrix A can be split into the product of four sym-
plectic matrices:

A = DE−1
A
VMA+LV

T
L Lift(GA),

see Sect.3 for their definition. The corresponding WA becomes

WA( f , g) = TE−1
A

�MA+LVδ̂Ag f , f , g ∈ L2(Rd).

δ̂A ∈ Mp(d, R) is called deformation operator and can be explicitly computed, see
Sect.3 for details.

Roughly speaking, the result above says that
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WAis shift-invertible if and only ifWAis a STFT

up to linear change of variables and products-by-chirps.

The invariance of L p,q(R2d) spaces under dilations by upper-triangular matrices
stated in Theorem 1.3 suggests that any dilation of this type, applied to the STFT, give
equivalent modulation norms.

The characterization of Theorem 1.7 clearly depends on the blocks of A, does not
clarify whether EA, MA and GA can be chosen independently of each other. The
main result of this work expresses their independence:

Theorem 1.8 For every E ∈ GL(2d, R), C ∈ Sym(2d, R) and δ ∈ Mp(d, R), the
metaplectic Wigner distribution:

WA( f , g)(z) = | det(E)|−1�C (E−1z)V
δ̂g f (E

−1z), f , g ∈ L2(Rd), z ∈ R
2d

(13)
is shift-invertible. Conversely, for every shift-invertible WA there exist E ∈
GL(2d, R), C ∈ R

2d×2d symmetric and δ̂ ∈ Mp(d, R) such that (13) holds.

This issue is proven in Sect. 3.

2 Preliminaries

Notation. We denote by xy = x · y the scalar product on R
d . The space S(Rd)

is the Schwartz class whereas its dual S ′(Rd) is the space of temperate distribu-
tions. The brackets 〈 f , g〉 are the extension to S ′(Rd) × S(Rd) of the inner product
〈 f , g〉 = ∫

f (t)g(t)dt on L2(Rd) (conjugate-linear in the second component). A
point in the phase space (or time-frequency space) is written as z = (x, ξ) ∈ R

2d ,
and the corresponding phase-space shift (time-frequency shift) acts as π(z) f (t) =
e2π iξ t f (t − x), t ∈ R

d .

The notation f � g means that there exists C > 0 such that f (x) ≤ Cg(x) for
every x . The symbol �t is used to stress that C = C(t). If g � f � g (equivalently,
f � g � f ), we write f � g. Given two measurable functions f , g : R

d → C,
we set f ⊗ g(x, y) := f (x)g(y). If X(Rd) is any among L2(Rd),S(Rd),S ′(Rd),
X ⊗ X is the unique completion of span{x ⊗ y : x ∈ X(Rd)} with respect to the
(usual) topology of X(R2d). Thus, the operator f ⊗ g ∈ S ′(R2d) characterized by its
action on ϕ ⊗ ψ ∈ S(R2d)

〈 f ⊗ g, ϕ ⊗ ψ〉 = 〈 f , ϕ〉〈g, ψ〉, ∀ f , g ∈ S ′(Rd),

extends uniquely to a tempered distribution of S ′(R2d). The subspace span{ f ⊗ g :
f , g ∈ S ′(Rd)} is dense in S ′(R2d).
GL(d, R) stands for the group of d × d invertible matrices, whereas Sym(d, R) =

{C ∈ R
d×d C is symmetric}.
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2.1 Weightedmixed norm spaces

From now on v is a continuous, positive, even, submultiplicative weight function on
R
2d , that is, v(z1 + z2) ≤ v(z1)v(z2), for every z1, z2 ∈ R

2d . A weight m on R
2d is

v-moderate if m(z1 + z2) � v(z1)m(z2) for all z1, z2 ∈ R
2d .

We writem ∈ Mv(R
2d) ifm is a positive, continuous, even and v-moderate weight

function on R
2d . Important examples are the polynomial weights

vs(z) = (1 + |z|)s, s ∈ R, z ∈ R
2d . (14)

Two weights m1,m2 are equivalent if m1 � m2. For instance, vs(z) � (1 + |z|2)s/2.
If m ∈ Mv(R

2d), 0 < p, q ≤ ∞ and f : R
2d → C measurable, we set

‖ f ‖L p,q
m

:=
(∫

Rd

(∫
Rd

| f (x, y)|pm(x, y)pdx

)q/p

dy

)1/q

,

with the obvious adjustments when max{p, q} = ∞. The space of measurable func-
tions f having ‖ f ‖L p,q

m
< ∞ is denoted by L p,q

m (R2d). Recall the following partial
generalization of the results in [14], contained in [4, Proposition 2.1]:

Proposition 2.1 (i) Consider A, D ∈ GL(d, R), B ∈ R
d×d and 0 < p, q ≤ ∞.

Define the upper triangular matrix

S =
(

A B
0d×d D

)
. (15)

The mapping TS : f ∈ L p,q(R2d) �→ | det(S)|1/2 f ◦ S is an isomorphism of
L p,q(R2d) with bounded inverse TS−1 .

(ii) Consider m ∈ Mv(R
2d), S ∈ GL(2d, R) and 0 < p, q ≤ ∞, and the dilation

operator (TS)m : f ∈ L p,q
m (R2d) �→ | det(S)|1/2 f ◦ S. If m ◦ S � m, then TS :

L p,q(R2d) → L p,q(R2d) is bounded if and only if (TS)m : L p,q
m (R2d) → L p,q

m (R2d)

is bounded.

2.2 Time-frequency analysis tools

In this work, the Fourier transform of f ∈ S(Rd) is normalized as

F f = f̂ (ξ) =
∫
Rd

f (x)e−2π iξ xdx, ξ ∈ R
d .

If f ∈ S ′(Rd), the Fourier transform of f is defined by duality as the tempered
distribution characterized by

〈 f̂ , ϕ̂〉 = 〈 f , ϕ〉, ϕ ∈ S(Rd).
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The operator F is a surjective automorphism of S(Rd) and S ′(Rd), as well as a sur-
jective isometry of L2(Rd). If f ∈ S ′(R2d), we setF2 f , the partial Fourier transform
with respect to the second variables:

F2( f ⊗ g) = f ⊗ ĝ, f , g ∈ S ′(Rd).

The short-time Fourier transform of f ∈ L2(Rd) with respect to the window g ∈
L2(Rd) is defined in (1).

In information processing τ -Wigner distributions (τ ∈ R) play a crucial role [20].
They are defined in (6). We recall the special cases τ = 0 and τ = 1, which are the
so-called (cross-)Rihacek distribution

W0( f , g)(x, ξ) = f (x)ĝ(ξ)e−2π iξ x , (x, ξ) ∈ R
d , (16)

and (cross-)conjugate Rihacek distribution

W1( f , g)(x, ξ) = f̂ (ξ)g(x)e2π iξ x , (x, ξ) ∈ R
d . (17)

2.3 Modulation spaces [1, 10, 11, 15, 16, 18, 19]

For 0 < p, q ≤ ∞, m ∈ Mv(R
2d), and g ∈ S(Rd) \ {0}, the modulation space

M p,q
m (Rd) is defined as the space of tempered distributions f ∈ S ′(Rd) such that

‖ f ‖Mp,q
m

:= ‖Vg f ‖L p,q
m

< ∞.

If min{p, q} ≥ 1, the quantity ‖·‖Mp,q
m

is a norm, otherwise a quasi-norm. Different
windowsgive equivalent (quasi-)norms.Modulation spaces are (quasi-)Banach spaces,
enjoying the inclusion properties:

if 0 < p1 ≤ p2 ≤ ∞, 0 < q1 ≤ q2 ≤ ∞, and m1,m2 ∈ Mv(R
2d) satisfy

m2 � m1:

S(Rd) ↪→ Mp1,q1
m1 (Rd) ↪→ Mp2,q2

m2 (Rd) ↪→ S ′(Rd).

In particular, M1
v (Rd) ↪→ Mp,q

m (Rd) for m ∈ Mv(R
2d) and min{p, q} ≥ 1. If

1 ≤ p, q < ∞, (Mp,q
m (Rd))′ = Mp′,q ′

1/m (Rd), where p′ and q ′ denote the Lebesgue

dual exponents of p and q, respectively. If m1 � m2, then Mp,q
m1 (Rd) = Mp,q

m2 (Rd)

for all p, q.

2.4 The symplectic group Sp(d,R) and themetaplectic operators

A matrix A ∈ R
2d×2d is symplectic, write A ∈ Sp(d, R), if

AT J A = J , (18)

where J is the standard symplectic matrix defined in (4).
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For E ∈ GL(d, R) and C ∈ Sym(2d, R), define:

DE :=
(
E−1 0d×d

0d×d ET

)
and VC :=

(
Id×d 0
C Id×d

)
. (19)

The matrices J , VC (C symmetric), and DE (E invertible) generate the group
Sp(d, R).

Recall the Schrödinger representation ρ of the Heisenberg group:

ρ(x, ξ ; τ) = e2π iτ e−π iξ xπ(x, ξ),

for all x, ξ ∈ R
d , τ ∈ R. We will use the property: for all f , g ∈ L2(Rd), z =

(z1, z2), w = (w1, w2) ∈ R
2d ,

ρ(z; τ) f ⊗ ρ(w; τ)g = e2π iτ ρ(z1, w1, z2, w2; τ)( f ⊗ g).

For every A ∈ Sp(d, R), ρA(x, ξ ; τ) := ρ(A(x, ξ); τ) defines another representation
of the Heisenberg group that is equivalent to ρ, i.e., there exists a unitary operator
Â : L2(Rd) → L2(Rd) such that:

Âρ(x, ξ ; τ) Â−1 = ρ(A(x, ξ); τ), x, ξ ∈ R
d , τ ∈ R. (20)

This operator is not unique: if Â′ is another unitary operator satisfying (20), then
Â′ = c Â, for some constant c ∈ C, |c| = 1. The set { Â : A ∈ Sp(d, R)} is a
group under composition and it admits the metaplectic group, denoted by Mp(d, R),
as subgroup. It is a realization of the two-fold cover of Sp(d, R) and the projection:

πMp : Mp(d, R) → Sp(d, R) (21)

is a group homomorphism with kernel ker(πMp) = {−idL2 , idL2}.
Throughout this paper, if Â ∈ Mp(d, R), the matrix A will always be the unique

symplectic matrix such that πMp( Â) = A.
Recall the following basic facts on metaplectic operators.

Proposition 2.2 [13, Proposition 4.27] Every operator Â ∈ Mp(d, R) maps S(Rd)

isomorphically to S(Rd) and it extends to an isomorphism on S ′(Rd).

For C ∈ R
d×d , define:

�C (t) = eπ i tCt , t ∈ R
d . (22)

IfC ∈ Sym(2d, R)∩GL(2d, R), thenwe can compute explicitly its Fourier transform,
that is:

�̂C = | det(C)| �−C−1 . (23)

In what follows we list the most important examples of metaplectic operators.
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Example 2.3 Consider the symplectic matrices J , DL and VC defined in (4) and (19),
respectively. Then,

(i) πMp(F) = J ;
(ii) if TE := | det(E)|1/2 f (E ·), then πMp(TE ) = DE ;
(iii) if φC f = �C f (multiplication by chirp), then πMp(φC ) = VC ;
(iv) if ψC = F�−CF−1 (Fourier multiplier), then πMp(ψC ) f = V T

C ;
(v) if F2 is the Fourier transform with respect to the second variables, then

πMp(F2) = AFT 2, where AFT2 ∈ Sp(2d, R) is the 4d × 4d matrix with
block decomposition

AFT2 :=

⎛
⎜⎜⎝
Id×d 0d×d 0d×d 0d×d

0d×d 0d×d 0d×d Id×d

0d×d 0d×d Id×d 0d×d

0d×d −Id×d 0d×d 0d×d

⎞
⎟⎟⎠ . (24)

We will often use the following lifting-type result, proved in [3, Theorem B1]:
If GA ∈ Sp(d, R) has block decomposition

GA =
(
GA11 GA12

GA21 GA22

)
(25)

then it is easy to show that the 4d × 4d matrix

Lift(GA) =

⎛
⎜⎜⎝
Id×d 0d×d 0d×d 0d×d

0d×d GA11 0d×d GA12

0d×d 0d×d Id×d 0d×d

0d×d GA21 0d×d GA22

⎞
⎟⎟⎠ (26)

is symplectic and ̂Lift(GA)( f ⊗ g) = f ⊗ ĜAg for every f , g ∈ L2(Rd).

2.5 MetaplecticWigner distributions

Let Â ∈ Mp(2d, R). ThemetaplecticWigner distribution associated to Â is defined
in (5). The most famous time-frequency representations are metaplectic Wigner dis-
tributions. Namely, the STFT can be represented as

Vg f = ÂST ( f ⊗ ḡ)

where:

AST =

⎛
⎜⎜⎝

Id×d −Id×d 0d×d 0d×d

0d×d 0d×d Id×d Id×d

0d×d 0d×d 0d×d −Id×d

−Id×d 0d×d 0d×d 0d×d

⎞
⎟⎟⎠ (27)
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and the τ -Wigner distribution defined in (6) can be recast as Wτ ( f , g) = Âτ ( f ⊗ ḡ),
with

Aτ =

⎛
⎜⎜⎝

(1 − τ)Id×d τ Id×d 0d×d 0d×d

0d×d 0d×d τ Id×d −(1 − τ)Id×d

0d×d 0d×d Id×d Id×d

−Id×d Id×d 0d×d 0d×d

⎞
⎟⎟⎠ . (28)

We recall the following continuity properties.

Proposition 2.4 Let WA be a metaplectic Wigner distribution. Then,
WA : L2(Rd) × L2(Rd) → L2(R2d) is bounded. The same result holds if we

replace L2 by S or S ′.

Since metaplectic operators are unitary, for all f1, f2, g1, g2 ∈ L2(Rd),

〈WA( f1, f2),WA(g1, g2)〉 = 〈 f1, g1〉〈 f2, g2〉. (29)

For the 4d×4d symplecticmatrixwith block decomposition (9)we define four 2d×2d
sub-matrices as follows:

EA =
(
A11 A13
A21 A23

)
, FA =

(
A31 A33
A41 A43

)
, (30)

and

EA =
(
A12 A14
A22 A24

)
, FA =

(
A32 A34
A42 A44

)
. (31)

Remark 2.5 IfA ∈ Sp(2d, R), we can highlight the submatrices EA, EA, FA andFA
as:

A =
(
EA EA
FA FA

)
K,

where

K =

⎛
⎜⎜⎝
Id×d 0d×d 0d×d 0d×d

0d×d 0d×d Id×d 0d×d

0d×d Id×d 0d×d 0d×d

0d×d 0d×d 0d×d Id×d

⎞
⎟⎟⎠ .

We observe that K is not symplectic.

Using the property of A symplectic matrix, one can infer (see [4, Section 2]) that:

⎧⎪⎨
⎪⎩
ET
AFA − FT

AEA = J ,

ET
AFA − FT

AEA = J ,

ET
AFA − FT

AEA = 0d×d .

(32)
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Finally, let us introduce the matrix:

L =
(
0d×d Id×d

Id×d 0d×d

)
(33)

The relationship among thematrices above are detailed below (see [4, Lemma 2.6]).

Lemma 2.6 Consider the sub-matrices EA, FA, EA,FA defined in (30) and (31). Let
L be defined as in (33).

(i) If EA ∈ GL(2d, R), then

(i.1) FA = E−T
A FT

AEA;

(i.2) GA := LE−1
A EA is symplectic;

(i.3) EA ∈ GL(2d, R) and det(EA) = (−1)d det(EA).

(ii) If we assume EA ∈ GL(2d, R), then,

(ii.1) FA = E−T
A FT

AEA;

(ii.2) GA = LE−1
A EA is symplectic;

(ii.3) EA ∈ GL(2d, R) and det(EA) = (−1)d det(EA).

In particular, EA is invertible if and only if EA is invertible.

The action of WA on the time-frequency shift π(w) can be exhibited in detail,
thanks to the sub-blocks above, as explained in what follows.

Lemma 2.7 Let WA be a metaplectic Wigner distribution with A = πMp(Â) having
block decomposition (9). Then, for w ∈ R

2d , f , g ∈ L2(Rd), we have

WA(π(w) f , g) = �−MA(w)π(EAw, FAw)WA( f , g),

where MA is the symmetric matrix

MA =
(
AT
11A31 + AT

21A41 AT
31A13 + AT

41A23

AT
13A31 + AT

23A41 AT
13A33 + AT

23A43

)
. (34)

Recall that WA is shift-invertible if EA ∈ GL(2d, R). For the STFT we obtain:

EAST = I2d×2d =
(
Id×d 0d×d

0d×d Id×d

)
,

which is invertible, whereas for the τ -Wigner distributions we have:

Eτ := EAτ =
(

(1 − τ)Id×d 0d×d

0d×d τ Id×d

)
,

which is invertible if and only if τ �= 0 and τ �= 1, the cases of the Rihacek and
conjugate-Rihacek distributions, which do not define modulation spaces.
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We established the notation to state the characterization of shift-invertible matrices.
The proof is based on the properties enjoyed by symplecticmatrices and requiresmany
computations, detailed in [4, Theorem 4.2 and Corollary 4.3].

Theorem 2.8 Let WA be a shift-invertible metaplectic Wigner distribution and GA =
LE−1

A EA be the matrix of Lemma 2.6, with L as in (33). Then,

A = DE−1
A
VMAV T

L Lift(GA),

where Lift(GA) is defined in (26).
In particular, WA is shift-invertible if and only if, up to a sign,

WA( f , g) = TE−1
A

�MA+LVδ̂Ag f , f , g ∈ L2(Rd), (35)

where
δ̂Ag := F̂GAg, (36)

and̂GA is the metaplectic operator with πMp(̂GA) = GA where, assuming GA with
the block decomposition in (25),

GA :=
(

GA11 −GA12−GA21 GA22

)

(it is the matrix GA with the second diagonal multiplied by −1).

3 The submanifold of shift-invertible symplectic matrices

We denote with

Spinv(2d, R) := {A ∈ Sp(2d, R) EA ∈ GL(2d, R)}

the set of shift-invertible symplectic matrices 4d × 4d.

Remark 3.1 Spinv(2d, R) is not a subgroup of Sp(2d, R). Indeed, AST ∈ Spinv

(2d, R), whereas A3
ST is not shift-invertible. However, it is an open subset of

Sp(2d, R), since the mapping A ∈ Sp(2d, R) �→ det(EA) ∈ R is smooth. Con-
sequently, Spinv(2d, R) is a submanifold of Sp(2d, R) of dimension 2d(4d + 1).

Another way to read Theorem 1.7 is that anyA ∈ Spinv(2d, R) can be written as:

A = DE−1
A
VMAV T

L Lift(GA),

where EA ∈ GL(2d, R), MA ∈ Sym(2d, R) and GA ∈ Sp(d, R). Therefore, shift-
invertible distributions are described by these three matrices, rather than the blocks of
A. The possibility of defining a shift-invertible Wigner distribution with arbitrary EA
and GA is fundamental for the study of metaplectic Gabor frames, cf [4].
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The four submatrices EA, FA, EA and FA in (30, 31) determine the three subma-
trices MA, GA and EA in Lemma 2.6 and (34), and vice versa. Namely,

MA = ET
AFA −

(
0d×d Id×d

0d×d 0d×d

)
,

GA = LE−1
A EA,

whereas, by the definitions of GA and MA, and by Lemma 2.6 (i),

EA = EALGA,

FA = E−T
A

(
MA +

(
0d×d Id×d

0d×d 0d×d

))
,

FA = E−T
A

(
MA +

(
0d×d 0d×d

Id×d 0d×d

))
LGA.

In this section, we prove rigorously that every triple E ∈ GL(2d, R), C ∈
Sym(2d, R) and S ∈ Sp(d, R) determines uniquely a symplectic matrix in
Spinv(2d, R).

To simplify the notation, let

CG(2d, R) := GL(2d, R) × Sym(2d, R) × Sp(d, R),

and denote:
α(E,C, S) := DE−1VCV

T
L Lift(S), (37)

where L is defined as in (33).

Theorem 3.2 The mapping α : (E,C, S) �→ A(E,C, S) is a set bijection from
CG(2d, R) to Spinv(2d, R).

Proof We first observe that A = α(E,C, S) ∈ Spinv(2d, R) for every (E,C, S) ∈
CG(2d, R) with EA = E . Indeed, a simple computation shows that:

DE−1VCV
T
L Lift(S) =

(
E ELS
∗ ∗

)
K, (38)

where K is defined as in Remark 2.5. This highlights that EA = E and GA = S. In
particular, A ∈ Spinv(2d, R).

If A ∈ Spinv(2d, R), it follows by Theorem 1.7 that A = α(EA, MA,GA), with
(EA, MA,GA) ∈ CG(2d, R), so the surjectivity ofα follows. Toprove the injectivity,
observe that if α(E1,C1, S1) = α(E2,C2, S2), then

(
E1 E1LS1
∗ ∗

)
=

(
E2 E2LS2
∗ ∗

)
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by (38). This entails that if α(E1,C1, S1) = α(E2,C2, S2), then E1 = E2 and,
consequently, S1 = S2. It remains to prove that C1 = C2. We have:

DE−1
1
VC1V

T
L Lift(S1) = DE−1

2
VC2V

T
L Lift(S2)

if and only if

VC1 = D−1
E−1
1
DE−1

2
VC2V

T
L Lift(S2)Lift(S1)

−1V−T
L .

Since E1 = E2 and S1 = S2, we obtain

VC1 = VC2

and, therefore, C1 = C2. ��
Corollary 3.3 A metaplectic Wigner distribution WA is shift-invertible if and only if

WA( f , g)(z) = | det(E)|−1�C (E−1z)V
δ̂g f (E

−1z), f , g ∈ L2(Rd), z ∈ R
2d ,

(39)
for some E ∈ GL(2d, R), C ∈ Sym(2d, R) and δ̂ ∈ Mp(d, R).

Proof By (35), if WA is shift-invertible, then (39) holds for the triple EA, MA + L
and δ̂A. It remains to check that (39) defines a shift-invertible metaplectic Wigner
distribution. Let WA be as in (39) and A be the related symplectic matrix. Then,

A = DE−1VC AST Lift(δ̄) = DE−1VCV−LV
T
L AFT2 Lift(δ̄)

= DE−1VC−LV
T
L Lift(J δ̄)

where δ is the projection of the metaplectic operator:

δ̂g = ˆ̄δḡ.

Thus, the shift-invertibility of WA follows by Theorem 1.7. ��
In view of the issues above, the characterization of modulation spaces can be easily

rephrased as follows.

Theorem 3.4 Consider 0 < p, q ≤ ∞, m ∈ Mv(R
2d) with m � m ◦ E−1, g ∈

S(Rd) \ {0}. For any f ∈ S ′(Rd), define

WA( f , g)(z) = | det(E)|−1�C (E−1z)V
δ̂g f (E

−1z), z ∈ R
2d ,

where E ∈ GL(2d, R), C ∈ Sym(2d, R) and δ̂ ∈ Mp(d, R).

(i) If E is upper-triangular, then

‖ f ‖Mp,q
m

� ‖WA( f , g)‖L p,q
m

.
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(ii) If p = q, the upper triangularity assumption in (i) can be dropped.

It is not difficult to show similar results for Wiener amalgam spaces [12]. We leave
the details to the interested reader.
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