Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Résumé

Considering the urgent call to tackle climate change, reducing greenhouse gas emissions from the built environment becomes a priority. Slabs in multi-family houses are responsible for a high share of building’s life carbon emissions due to their intrinsic multi-functional nature and high quantity of materials. This research evaluates the impact of the different functional layers within a slab component, compares alternative materials with regards to the functional requirements, and assesses promising solutions in the context of element-based carbon budgets. Life cycle assessment, following established standards, is applied to a representative library of slab components. Results reveal that material choices for the structural layer significantly influence the environmental impact, with wood structure exhibiting five times lower carbon emissions compared to a traditional concrete slab and meeting the most stringent carbon budgets for the structural layer. The screed layer is identified as a significant contributor to the overall impact, holding an important relationship between its thickness and mass and the level of acoustic insulation. Only limited options are available to replace the cement-based screed in its functionality and although the acoustic performance and thickness hold a non-linear relationship, further studies are needed to confidently replace this layer with alternative materials.

Détails

Actions

PDF