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Abstract. A natural way to explain neural network responses is by
propositional rules. Currently, the state of the art on XAI methods
presents local and global algorithms, with local techniques aiming to
explain single samples in their neighbourhood. We present here Fidex,
a new local algorithm, which we apply to ensembles of neural networks,
ensembles of decision trees and support vector machines. The key idea
behind Fidex is the precise identi�cation of discriminating hyperplanes.
Its computational complexity for a neural network is linear with respect
to the product of: the dimensionality of the classi�cation problem; the
number of training samples; the maximal number of antecedents per rule;
and a constant related to a particular activation function approximating
a sigmoid function. Based on Fidex, we formulated a global algorithm
named FidexGlo. Essentially, FidexGlo uses Fidex to generate a number
of rules equal to the number of samples. Then, a heuristic is deployed to
remove as many rules as possible. FidexGlo was applied to four bench-
mark classi�cation problems, providing competitive results with our pre-
vious global rule extraction technique. Fidex and FidexGlo are available
at https://github.com/HES-XPLAIN/dimlp�dex.
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1 Introduction

Before the advent of deep learning, the explainability of black-box models such
as neural networks (NNs) or support vector machines (SVMs), was most of the
time tackled by the extraction of propositional rules. A taxonomy characterizing
rule extraction techniques into three main categories has long been valid [2].
Rule extraction strategies for SVMs that are functionally identical to multi-layer
perceptrons (MLPs) were proposed in [7]. More recently, Guidotti et al. presented
a review of black-box models with its �explanators�, which encompasses deep
models [9]. In addition, Adadi and Berrada proposed a description of explainable
arti�cial intelligence (XAI), including neural networks [1].

Because deep models are more complicated than MLPs and SVMs, a key
element of explainability approaches concentrates on the immediate region sur-
rounding a sample [11]. This approach is de�ned as local. A global technique, on
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the other hand, takes into account all the data that de�ne a problem. Further-
more, many other techniques used in image classi�cation visualize areas that are
mainly relevant for the outcome [14].

Decision trees (DTs) are widely used in Machine Learning. They represent
transparent models because symbolic rules are easily extracted. However, when
they are combined in an ensemble, rule extraction becomes harder [12]. We in-
troduce Fidex, a new local approach to rule extraction that can be applied to
NN ensembles, DT ensembles, and SVMs. The key idea behind Fidex is the
precise characterisation of discriminating hyperplanes. Its computational com-
plexity for a single neural network is linear with respect to the product of: the
dimensionality of the classi�cation problem; the number of training samples;
the maximal number of rule antecedents per rule; and a constant related to a
particular activation function approximating a sigmoid function.

Based on Fidex, we have formulated a global algorithm called FidexGlo. Es-
sentially, FidexGlo depends on Fidex to generate a number of rules equal to the
number of samples. Then, a heuristic is deployed to remove as many rules as
possible. We applied FidexGlo to four benchmark classi�cation problems. The
results show that FidexGlo is competitive with our previous global rule extrac-
tion algorithm [3], and that its computational complexity is more advantageous.
The various models employed in this study, the Fidex and FidexGlo algorithms,
the experiments, and the conclusion are presented in the following parts.

2 Models and Algorithms

In this section we present the models used in this work, which are DIMLP ensem-
bles, Quantized Support Vector Machines, and ensembles of DTs. Subsequently
we describe our local/global rule extraction algorithms.

2.1 DIMLPs

The Discretized Interpretable Multi Layer Perceptron is a particular feed-forward
neural network architecture from which propositional rules are extracted by de-
termining discriminatory hyperplanes. For a general MLP model, let us denote
x(0) as a vector for the input layer. For layer l+1 (l ≥ 0), the activation values
x(l+1) of the neurons are

x(l+1) = F (W (l)x(l) + b(l)). (1)

W (l) is a matrix of weight parameters between two successive layers l and l+1;
b(l) is a vector also called the bias and F is an activation function. Usually, F is
a sigmoid σ(x):

σ(x) =
1

1 + exp(−x)
. (2)

In a DIMLP, W (0) is a diagonal matrix. Moreover, the activation function
applied to x(1) is a staircase function S(x). Here, S(x) approximates with Θ
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stairs a sigmoid function:

S(x) = σ(αmin), if x ≤ αmin; (3)

αmin represents the abscissa of the �rst stair. By default αmin = −5.

S(x) = σ(αmax), if x ≥ αmax; (4)

αmax represents the abscissa of the last stair. By default αmax = 5. Between αmin

and αmax, S(x) is:

S(x) = σ(αmin +

[
Θ · x− αmin

αmax − αmin

]
(
αmax − αmin

Θ
)); (5)

with [ ] designating the integer-part function. For l ≥ 2, DIMLP and MLP are
the same model.

The discriminating axis-parallel hyperplanes are precisely identi�ed thanks
to the staircase activation function and to theW (0) diagonal matrix. Let us take
an example with a step activation function, which is a simple special case. The
step function is

t(x) =

{
1 if x > 0;
0 otherwise.

(6)

Figure 1 represents a DIMLP with an input neuron a hidden neuron and an
output neuron. Below the network are samples belonging to two classes: circles
and squares. Due to the step activation function of the hidden neuron we have
a potential discriminant hyperplane in −b/w, which is equal to two. If the value
of w′ is zero, circles and the triangles cannot be distinguished, as the signal
entering y will always be negative. With w′ equal to 10 and b′ equal to -5, if
h is 0, the signal entering y is negative; else if h is equal to one the signal
entering y is positive. We therefore have a hyperplane that allows us to de�ne
two propositional rules:

� if x > 2 then class is triangle;
� if x ≤ 2 then class is circle.

With the staircase activation function, the maximum number of discrimi-
nating hyperplanes per input variable corresponds to the number of stairs Θ in
equation 5. Our previous rule extraction algorithm (ORE) [3] was based on the
construction of a DT with a hyperplane at each node. Each path from the root
to a leaf represented a propositional rule. Finally, a greedy algorithm progres-
sively removed rule antecedents and rules [3]. Its computational complexity is
O(d4 ·Θ4 · s2) [3].

The position of the hyperplanes hpi for each input variable xi is

hpi =
1

wi
· ( (αmin − bi) +

k

Θ
· (αmax − αmin) ); (7)

with k = 0, . . . , Θ.
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Fig. 1. Example of a DIMLP network which discriminates between two classes of data:
circles and triangles at the bottom. Since the activation function of h is a step function,
a hyperplane is found at x = 2, which corresponds to the ratio −b/w. The presence or
absence of this hyperplane depends on the values of w′ and b′.

2.2 QSVM

A Quanti�ed Support Vector Machine (QSVM) is a DIMLP network with two
hidden layers [5]. Neurons in the �rst hidden layer carry out a normalization of
the input variables. The activation function of the neurons in the second hidden
layer is related to the SVM kernel. For instance, with a dot kernel the corre-
sponding activation function is the identity, while with a Gaussian kernel the
activation function is Gaussian. The number of neurons in this layer is equal
to the number of support vectors, with the incoming weight connections corre-
sponding to the components of the support vectors.

Weights between the input layer and the �rst hidden are frozen during train-
ing. Speci�cally these weights are:

� weights: wi = K/γi, with γi as the standard deviation of input variable xi
on the training set and K a constant equal to one;

� bias: bi = −K · µi/γi, with µi as the average of input variable xi on the
training set.

After the normalization, the staircase activation function (eq. 5) is applied.
During training, weights above the �rst hidden layer are modi�ed according to
the SVM training algorithm [13].

2.3 Ensembles

The accuracy of multiple integrated models is frequently greater than that of a
single model. Two important representative learning algorithms for ensembles are
bagging [6] and boosting [8]. They have been applied to both DTs and NNs. In
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this work, we use DIMLP ensembles trained by bagging [6]. Speci�cally, bagging
is rooted on resampling methods. With s training samples, bagging selects for
each classi�er s samples drawn with replacement from the original training set.
Consequently, the individual models di�er slightly, which is advantageous as
compared to the whole ensemble of classi�ers.

Many strategies for extracting rules from single neural networks have been
proposed, but only a few authors have begun to extract rules from neural network
ensembles. To generate propositional rules from single networks and ensembles,
we introduced DIMLP networks [3]. In previous work, we performed rule ex-
traction from ensembles of DTs by transforming them into ensembles of DIMLP
networks [4]. In this work, we apply rule extraction to random forests (RFs) and
shallow tree ensembles trained by gradient boosting (GB). We perform it in a
di�erent and more e�cient way relative to our previous rule extraction technique
(see Sect. 2.4).

2.4 The Fidex Algorithm

Fidelity refers to how well the extracted rules mimic the behaviour of a model.
This is a measure of the accuracy with which the rules represent the decision-
making process of a neural network, for example. Speci�cally, with s samples in
a training set and s′ samples for which the classi�cations of the rules match the
classi�cations of the model, the �delity is s′/s.

The Fidex local rule extraction algorithm strongly uses �delity. We assume
that we have d input variables x1 . . . xd. Furthermore, let us denote Lxi the list
of hyperplanes for input variable xi; Lxi is calculated according to eq. (7). The
purpose of Fidex is to determine a propositional rule R with respect to sample
S. The �delity of R to be reached in ρ steps is φ, and is calculated with all the
samples of the training set. The Fidex algorithm is the following:

1. Given sample S and rule R = ∅;
2. for n = 1 . . . ρ do
3. for all input variables xi randomly selected and for all Lxi do
4. �nd the hyperplane h∗ allowing the highest increase of �delity;
5. end for
6. if the increment of �delity is strictly positive then R = R ∪ h∗;
7. if �delity reaches value φ then exit;
8. end for

Fidex computational complexity depends mainly on its loops and corresponds
to O(ρ · d ·Θ · s); with s the number of training samples. Note that the s factor
appears as for each new rule antecedent Fidex has to determine whether a sample
is covered by R or not. Finally, Θ is due to the number of hyperplanes in each
list of possible hperplanes Lxi.

The execution of Fidex is managed by four parameters:

� ρ: maximal number of Fidex steps (which is strongly related to the number
of rule antecedents);
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� φ: �delity of the rule;
� p: dropout of input variables;
� q: dropout of hyperplanes.

Parameter ρ is the maximum number of iterations and is related to the maximum
number of rule antecedents; its default value is equal to 10. The default value of
φ, which corresponds to the �delity that has to be reached is 100%. Note that
Fidex could end before attaining φ. In that case, Fidex can simply be executed
again with the same values of the parameters since it is non-deterministic, or
with di�erent values.

The execution time of Fidex can be accelerated by considering two dropout
parameters: p and q. Essentially, p determines at each step the proportion of
input variables that will not be taken into account. The excluded variables are
selected randomly. Parameter q is similar, but with respect to excluded hyper-
planes in Lxi. Default values for p and q are equal to 0. If variables xi are selected
with always the same order, for instance from 1 to d (see step 3) and without
dropout, Fidex is deterministic.

2.5 The FidexGlo Algorithm

FidexGlo is a global rule extraction algorithm1 that generates a ruleset for a
training set of size s. It corresponds to a covering technique that calls Fidex s
times. It therefore �rst generates s rules and then uses a heuristic to select a
subset of the rule base that covers all s samples. A simple heuristic would be to
select the rules randomly and stop when all the training samples are covered.
Another heuristic consists of ranking the rules in descending order according to
the number of samples covered, then selecting the rules in descending order until
all the samples are covered. As we are using the latter heuristic, the computa-
tional complexity is O(ρ · d ·Θ · s2). The essential reason is that Fidex is called
s times.

Rule extraction can be performed with an ensemble of DIMLPs, since it can
be viewed as a unique DIMLP with an additional hidden layer (the one that
averages all single network responses). Hence, the list of the hyperplanes for a
DIMLP ensemble is the union of all the lists related to each single network (cf.
eq. 7). Hence, with ν networks in an ensemble, the computational complexity is
O(ν ·ρ ·d ·Θ ·s2). Finally, with DT ensembles, the list of hyperplanes is compiled
from the rules extracted from all the trees.

3 Experiments

3.1 Preliminaries

We applied several models to four classi�cation problems retrieved from the
Machine Learning Repository at the University of California, Irvine2 [10]. We
performed cross-validation experiments; Table 1 describes the datasets.

1 Available at https://github.com/HES-XPLAIN/dimlp�dex
2 https://archive.ics.uci.edu/ml/index.php
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Table 1. Datasets used in the experiments. From left to right, columns designate:
dataset name; number of samples; number of input features; and number of classes.

Dataset Samples Inputs Classes

Breast Cancer 683 9 2
Heart Disease 270 13 2
Ionosphere 351 34 2
Spam 4601 57 2

Training datasets were normalized by Gaussian normalization. The following
models were used with the four classi�cation problems:

� RF: Random forests with FidexGlo;
� RF-ORE: Random forests with our old rule extraction algorithm [4];
� GB: Gradient boosting with FidexGlo;
� GB-ORE: Gradient boosting with our old rule extraction algorithm [4];
� QSVM-L: QSVM with linear kernel and with FidexGlo;
� QSVM-G: QSVM with Gaussian kernel and with FidexGlo;
� DIMLP-BT: DIMLP ensembles trained by bagging with FidexGlo;
� DIMLP-BT-ORE: DIMLP ensembles trained by bagging with our old rule
extraction algorithm.

For RFs, GBs and SVMs we used default parameters de�ned in the Scikit
Python Library. Speci�cally, for GBs the maximal depth of the trees is equal to
three, while for RFs depth is not limited. All DIMLP ensembles were trained by
back-propagation with default learning parameters [4] and only a hidden layer
with the number of neurons equal to number of inputs. By default, a DIMLP
ensemble includes 25 networks, whereas for RFs and GBs the number of trees is
100.

The Tables of the results include in the columns:

� Average predictive accuracy of the model (ratio of the number of correctly
classi�ed testing samples to the total number of testing samples);

� Average �delity on the testing samples;
� Average predictive accuracy of the rules;
� Average predictive accuracy of the rules when rules and model agree;
� Average number of extracted rules;
� Average number of rule antecedents.

3.2 Results

Table 2 depicts the results obtained by the di�erent models. On average, Fidex-
Glo generated more rules than our old rule extraction algorithm, but with fewer
rule antecedents. This trend is also observed in the other classi�cation prob-
lems. Moreover, the average �delity obtained with FidexGlo is always higher
than that provided by our former rule extraction algorithm. For the �Breast
Cancer� dataset, the highest predictive accuracy of the rules was obtained by
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Table 2. Average results obtained on the �Breast Cancer� dataset by ten repetitions
of 10-fold cross validation trials. Standard deviations are given between brackets.

Model Tst. Acc. Fid. Rul. Acc. (1) Rul. Acc. (2) #Rul. Avg. #Ant.

RF 97.1 (0.2) 99.1 (0.3) 96.9 (0.3) 97.4 (0.2) 30.0 (0.8) 2.6 (0.0)
RF-ORE [4] 97.2 (0.2) 98.4 (0.5) 96.6 (0.5) 97.7 (0.2) 24.2 (0.5) 3.4 (0.0)
GB 97.0 (0.3) 99.2 (0.4) 97.0 (0.3) 97.4 (0.4) 29.5 (0.6) 2.6 (0.0)
GB-ORE [4] 96.9 (0.4) 98.8 (0.3) 96.2 (0.5) 97.1 (0.5) 22.6 (0.6) 3.3 (0.0)
QSVM-L 97.1 (0.1) 99.5 (0.2) 97.2 (0.2) 97.4 (0.1) 15.2 (0.4) 2.2 (0.0)
QSVM-G 97.1 (0.2) 99.6 (0.2) 97.0 (0.2) 97.4 (0.4) 15.0 (0.5) 2.3 (0.0)
DIMLP-BT 97.1 (0.1) 99.6 (0.2) 97.0 (0.3) 97.2 (0.2) 15.5 (0.5) 2.2 (0.0)
DIMLP-BT-ORE 97.1 (0.1) 98.7 (0.3) 96.4 (0.4) 97.3 (0.2) 12.3 (0.5) 2.7 (0.1)

QSVM-L (97.2%), which is equal to the predictive accuracy of RFs. DIMLP-BT
with FidexGlo and QSVM-G provided the highest �delity with 99.6%.

As shown in Table 3, on the classi�cation problem �Heart Disease�, the highest
average predictive accuracy of the rules was again obtained by QSVM-L (83.9%).
DIMLP-BT ensembles reached the highest average predictive accuracy (86.1%),
and the highest average predictive accuracy of the rules when ensembles and
rules agree (86.4%). Finally, the highest average �delity was provided by GB, at
96.4%.

Table 3. Average results obtained on the �Heart Disease� dataset.

Model Tst. Acc. Fid. Rul. Acc. (1) Rul. Acc. (2) #Rul. Avg. #Ant.

RF 82.3 (0.8) 95.5 (0.8) 80.8 (1.3) 83.1 (0.8) 52.9 (0.9) 2.9 (0.0)
RF-ORE [4] 82.7 (1.6) 93.2 (1.7) 81.4 (1.6) 84.4 (1.1) 39.7 (1.1) 4.1 (0.0)
GB 81.3 (0.8) 96.4 (1.0) 80.6 (1.4) 82.1 (1.1) 46.7 (1.1) 2.9 (0.0)
GB-ORE [4] 79.9 (1.9) 94.1 (1.5) 79.7 (1.9) 81.7 (2.1) 34.8 (0.7) 3.8 (0.0)
QSVM-L 83.9 (0.7) 96.3 (1.0) 83.9 (0.7) 84.7 (0.8) 27.5 (0.8) 2.6 (0.0)
QSVM-G 82.3 (0.7) 96.0 (1.1) 81.3 (1.0) 83.1 (1.0) 32.3 (0.8) 2.7 (0.0)
DIMLP-BT 86.1 (1.0) 95.3 (1.2) 83.3 (1.5) 86.4 (0.9) 28.7 (0.7) 2.6 (0.0)
DIMLP-BT-ORE 86.1 (1.0) 94.6 (0.7) 82.3 (1.1) 86.2 (0.9) 20.9 (0.8) 3.3 (0.0)

With the �Ionosphere� dataset the results presented in Table 4 highlight that
the highest average predictive accuracy was obtained by QSVM-G (94.5%). Once
again, GB provided the highest average predictive accuracy of the rules (94.2%),
as well as the highest average �delity (98.9%).

Table 5 depicts the results for the �Spam� classi�cation problem. Random
forests and the rulesets they generated provided the highest average predictive
accuracies (95.4% and 95.2%, respectively). Again, GB reached the highest aver-
age �delity (98.9%). With RF, FidexGlo generated the highest average number
of rules. This trend is also observed in the previous classi�cation problems. This
could be explained by the fact that with an unlimited tree depth, the number of
rules tends to be very high.



Fidex: an Algorithm for the Explainability of Ensembles and SVMs 9

Table 4. Average results obtained on the �Ionosphere� dataset.

Model Tst. Acc. Fid. Rul. Acc. (1) Rul. Acc. (2) #Rul. Avg. #Ant.

RF 93.3 (0.3) 98.4 (0.6) 93.8 (0.7) 94.2 (0.5) 31.3 (0.9) 2.5 (0.0)
RF-ORE [4] 93.2 (0.4) 95.3 (1.0) 91.5 (1.3) 94.4 (0.6) 33.2 (1.2) 4.0 (0.1)
GB 93.9 (0.4) 98.9 (0.5) 94.2 (0.5) 94.6 (0.4) 29.3 (0.8) 2.5 (0.0)
GB-ORE [4] 92.8 (1.0) 96.5 (1.0) 91.0 (1.1) 93.4 (0.9) 29.5 (1.2) 3.5 (0.2)
QSVM-L 86.5 (0.7) 95.5 (1.0) 88.3 (0.7) 89.2 (0.9) 27.6 (1.0) 2.5 (0.0)
QSVM-G 94.5 (0.6) 97.6 (0.6) 93.5 (0.4) 95.1 (0.4) 26.2 (0.6) 2.5 (0.0)
DIMLP-BT 93.1 (0.4) 98.0 (0.6) 94.1 (0.4) 94.5 (0.4) 23.0 (1.1) 2.3 (0.0)
DIMLP-BT-ORE 93.1 (0.4) 96.2 (0.9) 92.5 (0.7) 94.5 (0.4) 19.3 (0.5) 2.9 (0.1)

Table 5. Average results obtained on the �Spam� dataset.

Model Tst. Acc. Fid. Rul. Acc. (1) Rul. Acc. (2) #Rul. Avg. #Ant.

RF 95.4 (0.1) 98.7 (0.1) 95.2 (0.2) 95.9 (0.1) 410.9 (3.9) 2.7 (0.0)
GB 94.6 (0.1) 99.3 (0.1) 94.5 (0.1) 94.9 (0.1) 230.2 (4.1) 2.9 (0.0)
QSVM-L 93.6 (0.1) 99.2 (0.1) 93.5 (0.1) 93.9 (0.1) 227.5 (2.5) 2.9 (0.0)
QSVM-G 94.4 (0.1) 99.1 (0.1) 94.3 (0.1) 94.8 (0.1) 247.7 (3.5) 3.0 (0.0)
DIMLP-BT 94.7 (0.1) 99.0 (0.1) 94.6 (0.1) 95.1 (0.1) 288.7 (2.1) 2.5 (0.0)
DIMLP-BT-ORE 94.7 (0.1) 98.8 (0.2) 94.6 (0.2) 95.2 (0.2) 90.3 (1.3) 5.5 (0.1)

4 Conclusion

To explain the classi�cations of the black box-models, we have introduced a
new local algorithm and a new global algorithm named Fidex and FidexGlo,
respectively. The key idea behind them is to determine the discriminant hy-
perplanes while maximising the �delity of the underlying model. We applied
them to SVMs, ensembles of DTs, and ensembles of NNs. On four classi�cation
problems, FidexGlo performed very well compared to our former global rule
extraction technique, which has been compared to many other rule extraction
techniques (in previous research). Our next step will be to apply Fidex to deep
models such as convolutional NNs.
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