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Abstract—Electrochemical devices and systems are significant
for the development of therapeutic drug monitoring (TDM)
and personalized therapy. However, electrochemical sensors are
usually not that much selective. Therefore, innovative machine
learning (ML) approaches are now required to improve the
selectivity at system level based on cyclic voltammograms (CV)
obtained from electrochemical sensors in order to assure the
quantification of several different drugs simultaneously present
into the blood of patients. Based on an Artificial Neural Net-
work (ANN), this paper proposes a novel model TwoWayANN
along with an adaptive weighted cross-entropy loss (AWCEL)
to address drugs interaction effectively and decline the quantifi-
cation error range. The simulated dataset of etoposide (ETO)
and methotrexate (MTX), proposed here as model drugs, is
demonstrated to validate the efficacy of our proposed method.
Our TwoWayANN model achieves the accuracy at 100% and
99.35% for ETO and MTX respectively within the error range
of ±5µM. Our results are important for the development of
point-of-care systems for applications in personalized therapy.

Index Terms—Therapeutic Drug Monitoring, Machine Learn-
ing, Cyclic Voltammogram, Multi-Drug Quantification, Person-
alized Therapy

I. INTRODUCTION

Chemotherapeutic therapy is extensively employed in cancer
treatment, with oncology representing the primary domain
for clinical research and the development of cancer therapies
[1]. However, different anticancer drugs usually interact with
each other, increasing side effects and toxicity. This can affect
patient health and further increase the complexity of treatment
planning and management [2]. Therefore, the development of
point-of-care systems for therapeutic drug monitoring (TDM)
in personalized dosage adjustment based on circulating drug
concentrations in anticancer drugs is necessary [3], [4]. Multi-
drug concentration quantification system presents significant
advantages in the realm of cancer treatment. It facilitates the
precise control of drug dosages through continuous monitoring
of drug concentrations in the bloodstream, preventing potential
toxicity due to overexposure and low treatment efficacy due

to underexposure [5]. The development of a new portable
point-of-care device system for simultaneous quantification of
multiple drug concentrations is essential to achieve this target.

Cyclic voltammograms (CV) obtained by electrochemical
sensors and cyclic voltammetry techniques [6] can be a reliable
tool to extract drug quantitative information and observe drugs
interactions by analyzing variant redox peaks [7]. Etoposide
(ETO) [8] and Methotrexate (MTX) [9] are widely used anti-
cancer drugs in chemotherapeutic therapy. The CV results in
[10] obtained by the two-drug solution on single electrochem-
ical sensor show the redox peaks influenced by the oxidation
of one single drug and the interaction between ETO and
MTX. Specifically, at a fixed concentration of MTX, the redox
peak values of MTX decrease with increasing concentrations
of ETO. However, the redox peak values of ETO are not
affected by MTX concentration. The complex mutual and
reciprocal interaction of different drugs has to be solved when
achieving simultaneous quantification of multiple drugs. Local
intelligence based on machine learning (ML) implemented on
system with powerful ability to solve nonlinear correlation
will be an efficient way to achieve personalized therapy for
multiple drugs with complicated interactions.

Several models based on different ML algorithms have
been established for concentration quantification. Support vec-
tor classifier (SVC) with an RBF kernel has been used to
compensate fouling phenomenon and achieve continuous con-
centration monitoring of propofol [11]. An Artificial Neural
Network (ANN)-based model has been proposed to complete
the simultaneous detection of caffeine and chlorogenic acid
by extracting features from CV results with electrochemical
sensors [12]. However, there is no clear ML-based model
designed for taking the advantage of the interactions between
multiple drugs for more precise quantification.

Therefore, this paper introduces an optimized model based
on an ANN algorithm, denoted as TwoWayANN, capable of
simultaneous quantification of multiple drugs. The proposed
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model is constructed by two branches and one concatena-
tion structure for the quantification of each single drug and
effective utilization of the interaction mechanism. Simultane-
ously, an adaptive weighted Cross-Entropy loss (AWCEL) is
exploited to adjust weights based on error for mitigating error
range and enhance overall the quantification accuracy. Our
proposed method is successfully validated by a simulated CV
dataset of ETO and MTX with interaction constructed by a
mathematical estimation.

II. METHODOLOGY

In this section we present our method for the simultaneous
quantification of both ETO and MTX, and we detail data
preparation and our model structure. The overview of the
entire workflow is shown in Fig. 1. First, cyclic voltammetry
acquisition is performed on a mixture of ETO and MTX solu-
tions to obtain a CV result. As for the input of TwoWayANN
model, the most distinct peaks associated with ETO and MTX
are used instead of the entire CV series. After preprocessing,
the single-peak current curves of ETO and MTX that appear
in the acquired CV are inserted into the input layer of the
TwoWayANN model as independent inputs, whose outputs are
the type of drug and the concentration of each drug from the
features learned in the model.

A. Preprocessing

The typical format of acquired CV data to be input here
will be explained and shown in Fig. 2. Specifically, the CV
data obtained from the mixture of ETO and MTX solutions
has three peaks. The leftmost and center peak are peaks of
ETO, and the rightmost peak is a peak of MTX. Here, we
call the leftmost peak as first peak of ETO (Fig. 2 (a)) and
the rightmost peak as last peak of MTX (Fig. 2 (b)), which
are the most characteristic peaks of ETO and MTX. Then we
extract each of first peak of ETO and last peak of MTX as
separate input data and input them into TwoWayANN.

B. TwoWayANN Architecture

This section describes the TwoWayANN model architecture
(Fig. 1) for quantifying the concentration of both ETO and
MTX as classification tasks. The proposed TwoWayANN
Architecture is based on the effective construction of classic
and powerful ANN [13] blocks. When designing an ANN-
based model for the quantification of individual concentrations
of ETO and MTX, a distinct layer is required to extract the
features of ETO and MTX respectively (Block-A), therefore
a two-branch structure is constructed.

Subsequently, the features extracted from ETO and MTX
are then concatenated to perform classifications regarding
MTX concentrations as shown in Fig. 1. Given that con-
centrations of ETO are not affected by MTX, only the ex-
tracted features from ETO are utilized in the concentration
classification process (Block-B). Block-C with more layers
is constructed for MTX, which is influenced by ETO and
occurring their chemical reactions, making the quantification
task more complicated. It is important to emphasize that the

feature extraction process for ETO remains independent of
MTX from input to output. Nevertheless, the feature extraction
methodology for both substances follows a generally similar
pattern. Each layer uses a linear function and an activation
function ReLU to extract features. The linear function f and
the ReLU function used for extracting features are as follows:

f(x) = Wx+ b (1)

ReLU(f(x)) = (f(x))+ = max(0, f(x)) (2)

where x is the extracted feature vector obtained from the
outputs that go through each layer, W and b are the weight
matrix and the bias vector respectively.

Ultimately, a multi-output submodule of TwoWayANN
model is devised, where the quantified concentration of each
drug is generated from the respective output layer for that
drug, and solved as classification tasks. Loss function, an
important part of this submodule, need to be improved based
on typical Cross-Entropy loss [14], [15] which only accepts
one output class. However, drug quantification tasks always
have an allowable range, accepting multiple output classes
with only minor drug-concentration differences.

C. Adaptive Weighted Cross-Entropy Loss

In order to mitigate the quantification error range of the
output result from the aforementioned TwoWayANN model,
an adaptive weighted Cross-Entropy loss (AWCEL) is pro-
posed, i.e., the weights of the loss function are adaptive to
quantification error. Firstly, the absolute error between the
predicted label and the true label can be expressed as:

Vres = |argmax(ỹ)− y| (3)

where ỹ and y are the predicted labels matrix and the true
labels vector respectively. As argmax(ỹ) obtains the index
of the maximum value in each row of the matrix ỹ, we can
generate a vector with the same length as y. Subsequently, by
computing the difference between these two vectors, we can
assess the extent deviating from the true labels. Ignoring the
mathematic signs, the absolute values are calculated, and the
aforementioned equation can be translated as follows:

Vres = [v1, v2, ..., vn, ..., vN ] (4)

where N is a designated batch size. The values within residual
vector Vres serve as criteria for weight selection. Specifically,
when a value vn is smaller, it corresponds to a smaller
difference from the true label. An increased weight should
be assigned to the output value at that instance. Conversely,
when the difference vn is larger, the weight of the output is
diminished intentionally to reduce its significance.

Here, the error range of the output concentration of the
drug is set using a certain threshold th, which serves to
determine the allowable margin of error for drug concentration
quantification. According to the threshold th, the adaptive
magnitude of the weights wn can be represented as follows:

wn =

{
(log(th− vn + 1))1/th (vn < th)

1/vn ∗ logvn (vn ≥ th)
(5)



Fig. 1: Overall flowchart. The preprocessed CV results are obtained by electrochemical sensors and preprocessor. In
TwoWayANN, we extract the features of the first peak of ETO and the peak of MTX by Block-A. In Block-B, features
of linearity of ETO are extracted. Features of interaction between ETO and MTX are extracted by Block-C. The final drugs
quantification is achieved by classification.

(a) (b)

Fig. 2: CV example of (a) a first peak of ETO and (b) a last
peak of MTX.

The weights, computed for each error value within vector
Vres, are designed to exhibit significant disparities based on
whether the error value exceeds or falls below the threshold
th. As an example, the adaptive weights are shown in Fig. 3
when the threshold th is set to 9. The adaptive weight
approximates 1 when the calculated error value (residual) is
less than 9. However, when the error value exceeds 9, the
weight diminishes to less than 0.2, signifying a reduction in
importance. Applying the adaptive weight to the loss function
is as follows:

AWCEL = −
N∑

n=1

[log
exp(max(ỹn))∑C

c=1 exp(ỹ
c
n)

] · wn (6)

where C is the number of classes. By applying this weight
to the Cross-Entropy loss, the weights can be adjusted prior
to the backpropagation, leading to the reduction of the error
range in the predicted drug concentration.

III. EXPERIMENTS
A. Data Preparation

A simulated dataset containing 10,000 samples was built
based on the measured CV results shown in [10] and the

Fig. 3: An example of adaptive weight based on AWCEL.

mathematical estimation demonstrated in [16] , among which
both the concentrations of ETO and MTX increase from 5 µM
to 45 µM and each parameter has 10% fluctuation range to
simulate the variation of experiment environment. The dataset
is then split into a training, validation and test set of ratio
60%/20%/20%.

B. Results

Our proposed method is evaluated by the aforementioned
simulated dataset, setting 1µM as quantification resolution.
In order to assess the performance of the TwoWayRNN
architecture and proposed loss function AWCEL in the task
of multi-drug quantification, the accuracy, Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), and
Mean Squared Error (MSE) are introduced.
The Efficacy of the TwoWayANN Architecture. The quan-
tification results of the TwoWayANN architecture without
AWCEL is shown in Fig. 4. All of output values are con-
centrated around the true labels, i.e., the TwoWayANN can
be an effective architecture to quantify the concentrations of
ETO and MTX simultaneously. Specifically, the performance
of quantifying ETO and MTX is shown in Table I (a). For
ETO, the results of MAPE, MAE, and MSE are 4.064, 0.8938,



(a) (b)

Fig. 4: Quantification Results of TwoWayANN without AW-
CEL. (a) The result of ETO. (b) The result of MTX.

and 1.335 respectively. For MTX, the results of MAPE, MAE,
and MSE reach at 7.346, 1.653, and 5.306 respectively. Ad-
ditionally, within the quantification error range of ±5µM , the
accuracy shows 100% of ETO and 98.55% of MTX, indicating
that a superb outcome has been achieved. However, within
the error range of ±1µM , the accuracy of ETO and MTX
are 95.70% and 79.90% respectively, showing a dramatical
decrease of MTX. This result is due to the fact that the redox
peak of MTX is affected by the ETO concentration, making the
quantification of MTX more complicated. ETO, on the other
hand, is not affected by MTX, so the quantification results of
ETO can be maintained at a high level of accuracy.

TABLE I: Drugs Quantification Results Comparison

Accuracy MAPE MAE MSE±1µM ±5µM

(a) ETO 95.70% 100% 4.064 0.8938 1.335
MTX 79.90% 98.55% 7.346 1.653 5.306

(b) ETO 96.15% 100% 3.669 0.7851 0.9857
MTX 86.05% 99.35% 5.487 1.292 3.136

(a) : TwoWayANN model without AWCEL
(b) : TwoWayANN model equipped with AWCEL

The Efficacy of AWCEL. The results of TwoWayANN
equipped with our proposed AWCEL are illustrated in Fig. 5
and demonstrate an improvement in the error range compared
with Fig. 4. Specifically, the distortion and the variance in
output values expressed in Fig. 5 is significantly mitigated
and these output values are more concentrated around the
true labels. Furthermore, the corresponding performance of
the results of TwoWayANN equipped with AWCEL is also
shown in Table I (b). For ETO, MAPE, MAE, and MSE
reach at 3.669, 0.7851, and 0.9857 respectively. For MTX, the
results of MAPE, MAE, and MSE are 5.487, 1.292, and 3.136
respectively. Equipped with AWCEL, all indicators obtain the
best results and the error range has been reduced successfully.
Additionally, within the quantification error range of ±5µM ,
the accuracy shows 100% of ETO and 99.35% of MTX. And
the results of accuracy are 96.15% of ETO and 86.05% of

(a) (b)

Fig. 5: Quantification Results of TwoWayANN equipped with
AWCEL. (a) The result of ETO. (b) The result of MTX.

MTX within the error range of ±1µM . The previous problem
of a dramatic decline in accuracy is restrained and the accuracy
maintains over 86% of both drugs, proving the efficacy of
adaptive weights of AWCEL.

Therefore, our proposed method combining TwoWayANN
and AWCEL is validated for its efficacy in reducing the
error range and improving the accuracy, capable of being
an effective method for the simultaneous quantification of
multiple drugs.

CONCLUSION

In this paper we demonstrated an effective ANN-based
method to achieve simultaneous quantification of multiple
drugs from data acquired through electrochemical sensors and
cyclic voltammogram, offering new approaches for the devel-
opment of personalized therapy systems for cancer treatments.
The proposed TwoWayANN model with its specific structure
designed for multiple drugs showing interaction mechanisms
succeeded in quantifying the concentration of ETO and MTX
with high accuracy. Additionally, we have also demonstrated
that the use of AWCEL is able to optimize the typical Cross-
Entropy loss using adaptive weights and further narrows down
the quantification in a quite efficient and effective manner. The
structure of our proposed method can be expanded for more
complicated drugs quantification (e.g. interactions where both
drugs have an impact on each other or more drugs). Further-
more, it presents great potential to integrate electrochemical
biosensors, consequently promoting the development of point-
of-care systems for applications to personalized therapy.
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