
Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784

A
0
(

Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier.com/locate/cma

Error assessment of an adaptive finite elements—neural networks
method for an elliptic parametric PDE
Alexandre Caboussat a, Maude Girardin a,b,∗, Marco Picasso b

a Geneva School of Business Administration (HEG), University of Applied Sciences and Arts Western Switzerland (HES-SO), Rue de la
Tambourine 17, 1227, Carouge, Switzerland
b Institute of Mathematics, EPFL, Station 8, 1015, Lausanne, Switzerland

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

MSC:
65N15
65N30
65N50
68T07
65C05

Keywords:
Error estimates
Adaptive finite element method
Parametric PDEs
Neural networks
Adaptive mesh refinement

A B S T R A C T

We present a finite elements—neural network approach for the numerical approximation of
parametric partial differential equations. The algorithm generates training data from finite
element simulations, and uses a data-driven (supervised) feedforward neural network for the
online approximation of the solution. The objective is to ensure that the overall error of the
method is below some preset tolerance, and we thus control and balance the error coming from
the finite element method, and the one introduced by the neural network approximation.

Two finite element methods are considered and compared; a fixed grid approach uses the
same mesh for all values of the parameters, while an adaptive finite elements approach enforces
the same discretization error uniformly in the parameters space.

Numerical results are presented for an elliptic model problem. The fixed grid approach
shows limitations in terms of error balancing and control, while the adaptive approach allows
a better accuracy and more flexibility of the method. We conclude by proposing an adaptive

∗ Corresponding author at: Institute of Mathematics, EPFL, Station 8, 1015, Lausanne, Switzerland.
E-mail addresses: alexandre.caboussat@hesge.ch (A. Caboussat), maude.girardin@hesge.ch, maude.girardin@epfl.ch (M. Girardin), marco.picasso@epfl.ch

(M. Picasso).
vailable online 27 January 2024
045-7825/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cma.2024.116784
Received 31 October 2023; Received in revised form 22 December 2023; Accepted 15 January 2024

https://www.elsevier.com/locate/cma
https://www.elsevier.com/locate/cma
mailto:alexandre.caboussat@hesge.ch
mailto:maude.girardin@hesge.ch
mailto:maude.girardin@epfl.ch
mailto:marco.picasso@epfl.ch
https://doi.org/10.1016/j.cma.2024.116784
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2024.116784&domain=pdf
https://doi.org/10.1016/j.cma.2024.116784
http://creativecommons.org/licenses/by/4.0/

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.

v
h
t
e
(
t

algorithm to control the size of the training set given a network architecture and ensure that
the overall error of the method is below a given tolerance.

1. Introduction

Neural networks have shown to be very efficient to approximate high dimensional functions. From the approximation point of
iew, the universal approximation property, as well as various convergence rates with respect to the architecture of the networks
ave been proved in the literature, see, e.g., [1–6]. However, most of these results are existence results, and do not discuss how
o build the neural networks. The non-convex optimization problem corresponding to the training of the networks is discussed,
.g., in [7,8] and is in a less advanced state of knowledge. Theoretical results concerning the approximation of solutions of
parametric) PDEs using neural networks can be found, e.g., in [9,10] and references therein. In most cases, neural networks are
rained in a so-called supervised setting, i.e., with a data-driven objective function [2,11,12]. If the function of interest is solution of a

partial differential equation (PDE), the networks can also be trained in an unsupervised manner, leading to Physically Informed Neural
Networks (PINNs). In this case, the objective function contains the differential equation, in strong form [13–16] or in variational
form [17–19].

In the context of parametric PDEs, neural networks are generally used to approximate the parameter-to-solution map, either as
a map between Hilbert spaces [20–22], or in a discretized version [9,23–26].

The underlying motivation behind this work is the numerical approximation of strongly nonlinear parametric PDEs arising in
multi-physics problems, for instance laser melting processes that couple free surface flows with heat transfer and solidification [27].
The goal is to approximate the solution of such parametric PDEs efficiently, in real time, for various values of the parameters. This
goal is unreachable for time-consuming finite element simulations. Since complex multi-physics problems are ultimately targeted,
implementing the PDEs in the objective function of the neural network is not an easy task, preventing the use of PINNs. Moreover,
as the targeted problem includes transport phenomena, classical reduced modeling approaches relying on a linear subspace, such
as, e.g., reduced basis methods [28,29] or proper orthogonal decomposition [30–32], are not suitable [33,34].

We consider a generic parametric partial differential equation: find 𝑢 ∶ 𝛺 ×  → R satisfying

 (𝑢(𝑥;𝜇);𝜇) = 0 𝑥 ∈ 𝛺, 𝜇 ∈  , (1)

where 𝛺 ⊆ R𝑑 (𝑑 ≥ 1) is the physical space,  ⊂ R𝑝 (with 𝑝 ≥ 1 possibly large) is the parameters space and  is some differential
operator.

We advocate a data-driven feedforward neural network approach, with training data generated by finite element simulations, in
order to build a neural network approximation 𝑢 of 𝑢. The numerical simulations, as well as the training of the neural network,
are done during an offline phase, which can be time consuming but is done once and for all. Once trained, the network can be
efficiently evaluated during the online phase.

Our objective is to control the error between 𝑢 and 𝑢 in order to ensure that it is below some preset tolerance 𝜖. For this
purpose, we need to control and balance two sources of error: the error coming from the finite element method, embedded in the
training data, and the one coming from the neural network approximation. We thus start by discussing how these two errors can be
estimated a posteriori. We then investigate their dependence with respect to different parameters and study to which extend they
can be balanced with each other.

We first focus on the usage of neural networks to approximate the discretized parameter-to-solution mapping, as in [24], using
a fixed finite element grid to perform all the numerical simulations. When the solution exhibits strong gradients for some values of
the parameters, a very fine mesh is needed in order to reach a sufficient accuracy for all values of the parameters. Furthermore, it
turns out that, with this approach, the accuracy of the neural network is lower than the accuracy of the finite element method. This
implies in particular that we cannot ensure that the overall error between 𝑢 and 𝑢 is bounded by the preset tolerance.

In order to overcome these issues, we advocate a novel adaptive finite elements—neural network method. The finite element
simulations used to generate the training data are performed using a classical isotropic adaptive mesh refinement algorithm, see [35]
for instance. This implies that the structure of the network has only a scalar output; the network thus does not approximate the
discretized parameter-to-solution map, but the function (𝑥;𝜇) ↦ 𝑢(𝑥;𝜇). Similarly as in [36] where a PINN is used to infer the
solution of a parametric Navier–Stokes equation, the space coordinates are therefore given as an input to the network. The key
ingredients of the method are the adaptive mesh refinement approach, which allows to control the accuracy of the training data
uniformly in the parameters space, and an adaptive algorithm to control the size of the training set, which ensures that the error of
the overall method is below the given tolerance 𝜖. Numerical results on an elliptic model problem with smooth solutions confirm
that the finite element error can be uniformly controlled across the parameters space, and that it can be balanced with the neural
network approximation error.

This work is organized as follows: Section 2 details the error assessment of the finite element—neural network method. In
Section 3, the architecture and training of the neural networks are discussed. Section 4 details numerical results for an elliptic model
problem, when using the fixed and adaptive approaches. In Section 5, the adaptive algorithm to control the size of the training set is
presented and discussed. Finally, the generation of a parameter-dependent mesh to evaluate the neural network solution is discussed
2

in Section 6.

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.

o
a

T
t

d

w
s
s

2. Error assessment

We start by detailing the error estimates of the coupled finite element-neural network approach. In order to evaluate the accuracy
f the final approximation given by the neural network, we assess the 𝐿2(𝛺 × )-error between the exact solution 𝑢 and the
pproximation 𝑢 . More precisely, we estimate |||𝑢 − 𝑢 |||, where

|||𝑢 − 𝑢 |||

2 ∶= 1
||

∫
‖𝑢(⋅;𝜇) − 𝑢 (⋅;𝜇)‖2𝑑𝜇

and

‖𝑢(⋅;𝜇) − 𝑢 (⋅;𝜇)‖2 ∶= 1
|𝛺|

∫𝛺
|𝑢(𝑥;𝜇) − 𝑢 (𝑥;𝜇)|2𝑑𝑥.

For 𝜇 ∈  , let 𝑢ℎ(⋅;𝜇) be the finite element approximation of 𝑢(⋅;𝜇) obtained with a discretization of typical size ℎ. The error between
𝑢 and 𝑢 is decomposed as

|||𝑢 − 𝑢 ||| ≤ |||𝑢 − 𝑢ℎ||| + |||𝑢ℎ − 𝑢 |||. (2)

he two terms in the right-hand side of (2) correspond respectively to the error of the finite element method and the error of
he neural network approximation. We start by estimating the finite element error |||𝑢 − 𝑢ℎ|||. The Monte-Carlo method is used to

approximate the integral over the parameter domain, see, e.g., [37, Chapter 4]. We thus consider 𝑀 parameters {𝜇𝑘}𝑀𝑘=1 randomly
rawn with a uniform distribution in  , and approximate |||𝑢 − 𝑢ℎ|||2 by

|||𝑢 − 𝑢ℎ|||
2
𝑀 ∶= 1

𝑀

𝑀
∑

𝑘=1
‖𝑢(⋅;𝜇𝑘) − 𝑢ℎ(⋅;𝜇𝑘)‖2. (3)

The expected value of the error between |||𝑢 − 𝑢ℎ|||2 and |||𝑢 − 𝑢ℎ|||2𝑀 is given by [37, Section 4.1]

E
[

|

|

|

|||𝑢 − 𝑢ℎ|||
2 − |||𝑢 − 𝑢ℎ|||

2
𝑀
|

|

|

]

=

√

√

√

√

Var
(

‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖2
)

𝑀

=
Std

(

‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖2
)

√

𝑀
,

here Var denotes the variance and Std the standard deviation. The standard deviation can then be estimated over the sample of
ize 𝑀 , which can be chosen in such a way that the computed expected error is smaller than a given tolerance. Since the exact
olution 𝑢 is not known in general, the error ‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖2 can be bounded above by an a posteriori error estimate

‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖2 ≤
𝐶
|𝛺|

𝜂2(𝑢ℎ(⋅;𝜇);𝜇),

where the error estimator 𝜂 depends on the differential operator  and 𝐶 is a constant (independent of ℎ and of solution 𝑢) [35].
Then

|||𝑢 − 𝑢ℎ|||
2
𝑀 ≤ 𝐶𝜂2𝑀 (𝑢ℎ),

with

𝜂2𝑀 (𝑢ℎ) ∶=
1
𝑀

1
|𝛺|

𝑀
∑

𝑘=1
𝜂2(𝑢ℎ(⋅;𝜇𝑘);𝜇𝑘).

To estimate the error of the neural network approximation, the Monte-Carlo method is used again to approximate |||𝑢 − 𝑢ℎ|||2 by

|||𝑢 − 𝑢ℎ|||
2
𝑀 ∶= 1

𝑀

𝑀
∑

𝑘=1
‖𝑢ℎ(⋅;𝜇𝑘) − 𝑢 (⋅;𝜇𝑘)‖2. (4)

The integrals over 𝛺 are then computed using an overkill quadrature formula (of sufficiently high order). For ease of notation, the
corresponding result is again denoted by |||𝑢 − 𝑢ℎ|||2𝑀 .

3. Fully connected feedforward neural networks

To approximate 𝑢ℎ by 𝑢 , we use fully connected feedforward neural networks. We recall hereafter the main characteristics of
such networks (see, e.g., [38] for a complete description).

A feedforward neural network is made up of an input layer, an output layer and 𝐿 ≥ 1 hidden layers. We denote by 𝑛𝑗 the number
of neurons of the 𝑗𝑡ℎ layer, 𝑗 = 0,… , 𝐿 + 1. We let 𝜎𝑗𝑖 and 𝑧𝑗𝑖 be respectively the activation function and the value associated to the
𝑡ℎ 𝑡ℎ
3

𝑖 neuron of the 𝑗 layer, 𝑖 = 1,… , 𝑛𝑗 , 𝑗 = 0,… , 𝐿+1. Possible activation functions for neurons in hidden layers are the hyperbolic

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
tangent, the Rectified Linear Unit – defined by 𝑅𝑒𝐿𝑈 (𝑥) = max{𝑥, 0} – or the softplus function – given by 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥) = ln(1 + 𝑒𝑥).
For neurons in the output layer, the activation function is the identity. The value associated to a neuron is recursively given by

𝑧𝑗𝑖 = 𝜎𝑗𝑖
(

𝑛𝑗−1
∑

𝑘=1
𝑎𝑗𝑖𝑘𝑧

𝑗−1
𝑘 + 𝑏𝑗𝑖

)

, 𝑖 = 1,… , 𝑛𝑗 , 𝑗 = 1,… , 𝐿 + 1,

where 𝑎𝑗𝑖𝑘 and 𝑏𝑗𝑖 are respectively the weights and biases of the neural network, and 𝑧0 is the input. We denote by 𝜃 the set of trainable
parameters of the network, i.e. the set of all 𝑎𝑗𝑖𝑘 and 𝑏𝑗𝑖 . Similarly as in [2], we denote by 𝛶𝑊 ,𝐿(𝜎; 𝑑𝑖𝑛, 𝑑𝑜𝑢𝑡) the set of fully-connected
feedforward neural networks with input dimension 𝑑𝑖𝑛, output dimension 𝑑𝑜𝑢𝑡, and 𝐿 hidden layers, each constituted of 𝑊 neurons
having 𝜎 as activation function. Note that a neural network  ∈ 𝛶𝑊 ,𝐿(𝜎; 𝑑𝑖𝑛, 𝑑𝑜𝑢𝑡) has 𝑁𝜃 = (𝑑𝑖𝑛+1)𝑊 +𝑊 (𝑊 +1)(𝐿−1)+𝑑𝑜𝑢𝑡(𝑊 +1)
trainable parameters. Once these parameters have been set, the network provides a function 𝑆 (⋅; 𝜃) ∶ R𝑑𝑖𝑛 ↦ R𝑑𝑜𝑢𝑡 . To build
feedforward neural networks that approximate the solution to (1), we consider two approaches which are described in the following
sections.

3.1. Fixed grid approach

Let ℎ be a discretization of 𝛺 with elements of size less than ℎ. Let 𝑁ℎ denote the number of vertices of the discretization,
and consider the continuous, piecewise linear basis functions {𝜑𝑖}𝑁ℎ

𝑖=1 associated to the vertices {𝑥𝑖}𝑁ℎ
𝑖=1 (we do not discuss the

implementation of boundary conditions here in order to simplify the presentation). Let 𝑢ℎ(𝑥;𝜇) be the finite element approximation
of 𝑢(𝑥;𝜇), written as

𝑢ℎ(𝑥;𝜇) =
𝑁ℎ
∑

𝑖=1
𝑈 𝑖
ℎ(𝜇)𝜑

𝑖(𝑥).

As in [24], the goal is thus to approximate the mapping

𝜇 ↦ 𝑈ℎ(𝜇) =
⎛

⎜

⎜

⎝

𝑈1
ℎ (𝜇)
⋮

𝑈𝑁ℎ
ℎ (𝜇)

⎞

⎟

⎟

⎠

.

We therefore consider a neural network  ∈ 𝛶𝑊 ,𝐿(𝜎; 𝑝,𝑁ℎ). Once its trainable parameters 𝜃 are set and given 𝜇 ∈ R𝑝, the neural
network provides an output 𝑈 (𝜇; 𝜃) ∈ R𝑁ℎ . The training procedure is summarized as follows:

1. Set the discretization ℎ.
2. Select the training parameters {𝜇̃𝑗}

𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 ⊆  .

3. For each 𝜇̃𝑗 , compute a piecewise linear finite element approximation 𝑢ℎ(𝑥; 𝜇̃𝑗) =
∑𝑁ℎ

𝑖=1 𝑈
𝑖
ℎ(𝜇̃𝑗)𝜑

𝑖(𝑥) of 𝑢(𝑥; 𝜇̃𝑗).
4. Set the architecture of the neural network, i.e. 𝐿, 𝑊 and 𝜎. Then choose the trainable parameters 𝜃 of  ∈ 𝛶𝑊 ,𝐿(𝜎; 𝑝,𝑁ℎ)

in order to minimize 𝛷(𝜃) ∶= 𝑁𝑡𝑟𝑎𝑖𝑛
(𝑈 (⋅; 𝜃);𝑈ℎ). Here 𝑁𝑡𝑟𝑎𝑖𝑛

is defined as

𝑁𝑡𝑟𝑎𝑖𝑛
(𝑈 (⋅; 𝜃);𝑈ℎ) ∶=

1
𝑁𝑡𝑟𝑎𝑖𝑛

1
𝑁ℎ

𝑁𝑡𝑟𝑎𝑖𝑛
∑

𝑗=1

𝑁ℎ
∑

𝑖=1
𝑐𝑖𝑗 |𝑈

𝑖
 (𝜇̃𝑗 ; 𝜃) − 𝑈 𝑖

ℎ(𝜇̃𝑗)|
2, (5)

where the coefficients 𝑐𝑖𝑗 will be defined later. In practice, the minimization problem is solved using a gradient descent
algorithm, or one of its variants [39,40]. Let 𝜃∗ denote the set of parameters returned by the optimization algorithm after
step 4. For ease of notation, we denote 𝑈 (𝜇) instead of 𝑈 (𝜇; 𝜃∗) in the sequel.

For the fixed grid approach, the training set is thus composed of the parameters {𝜇̃𝑗}
𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 and of the corresponding solutions

{𝑈ℎ(𝜇̃𝑗)}
𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 . Choosing 𝑐𝑖𝑗 = 1 in (5) defines the objective function

𝓁2
𝑁𝑡𝑟𝑎𝑖𝑛

(𝑈 (⋅; 𝜃);𝑈ℎ) ∶=
1

𝑁𝑡𝑟𝑎𝑖𝑛

1
𝑁ℎ

𝑁𝑡𝑟𝑎𝑖𝑛
∑

𝑗=1

𝑁ℎ
∑

𝑖=1
|𝑈 𝑖

 (𝜇̃𝑗 ; 𝜃) − 𝑈 𝑖
ℎ(𝜇̃𝑗)|

2, (6)

which corresponds to the classical Mean Squared Error. Choosing

𝑐𝑖𝑗 =
|𝛺(𝑥𝑖)|
𝑑 + 1

, where |𝛺(𝑥𝑖)| =
∑

𝐾∈ℎ
𝑥𝑖∈𝐾

|𝐾|

defines the objective function

𝐿2

𝑁𝑡𝑟𝑎𝑖𝑛
(𝑈 (⋅; 𝜃);𝑈ℎ) ∶=

1
𝑁𝑡𝑟𝑎𝑖𝑛

1
𝑁ℎ

𝑁𝑡𝑟𝑎𝑖𝑛
∑

𝑗=1

𝑁ℎ
∑

𝑖=1

|𝛺(𝑥𝑖)|
𝑑 + 1

|𝑈 𝑖
 (𝜇̃𝑗 ; 𝜃) − 𝑈 𝑖

ℎ(𝜇̃𝑗)|
2. (7)

Once the network has been trained, a function 𝑢 ∶ 𝛺 ×  → R can be recovered by setting

𝑢 (𝑥;𝜇) ∶=
𝑁ℎ
∑

𝑈 𝑖
 (𝜇)𝜑𝑖(𝑥).
4

𝑖=1

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Then ∑𝑁ℎ
𝑖=1

|𝛺(𝑥𝑖)|
𝑑+1 |𝑈 𝑖

 (𝜇; 𝜃) − 𝑈 𝑖
ℎ(𝜇)|

2 corresponds to ‖𝑢ℎ(⋅;𝜇) − 𝑢 (⋅;𝜇)‖𝐿2(𝛺) approximated with the trapeze quadrature formula.

3.2. Adapted grid approach

For this second approach, a mesh adaptation algorithm is used to compute the numerical solutions, to ensure that all the latter
have an accuracy close to a preset tolerance. The finite element meshes are thus different for each parameter. We therefore cannot
approximate the discretized parameter-to-solution map 𝜇 ↦ 𝑈 (𝜇) ∈ R𝑁ℎ , without interpolating all the finite element solutions on
a common, sufficiently fine, mesh. In order to avoid interpolation procedures, the mapping approximated by the network must be
changed. In particular, its input and output dimensions must be modified: we now consider a network that takes as input both the
parameter 𝜇 and the space variable 𝑥, and outputs an approximation of 𝑢(𝑥;𝜇) ∈ R. The input and output dimensions of the network
are thus respectively given by 𝑑𝑖𝑛 = 𝑝+𝑑 and 𝑑𝑜𝑢𝑡 = 1, which amounts to considering a neural network  ∈ 𝛶𝑊 ,𝐿(𝜎; 𝑑+𝑝, 1). Remark
that in this case, the networks are independent of the finite element meshes; any 𝑥 ∈ 𝛺 could thus in theory be chosen as a training
point. Nevertheless, since the adaptive mesh algorithm is designed to add vertices in region of interest of the solution, we decided
to consider only vertices of the adapted meshes as training points. One advantage is that any interpolation issues are avoided.

Once its trainable parameters 𝜃 have been set, the network provides, for (𝑥;𝜇) ∈ R𝑑 ×R𝑝, 𝑢 (𝑥;𝜇; 𝜃) ∈ R. The training procedure
is as follows:

1. Select the training parameters {𝜇̃𝑗}
𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 ⊆  .

2. For each 𝜇̃𝑗 , set an appropriate discretization 𝑗 of 𝛺 with piecewise linear basis functions {𝜑𝑖
𝑗}

𝑁𝑗
𝑖=1 associated to the vertices

{𝑥𝑖𝑗}
𝑁𝑗
𝑖=1. Compute a piecewise linear finite element approximation 𝑢ℎ(𝑥; 𝜇̃𝑗) =

∑𝑁𝑗
𝑖=1 𝑈

𝑖
ℎ(𝜇̃𝑗)𝜑

𝑖
𝑗 (𝑥) of 𝑢(𝑥; 𝜇̃𝑗).

3. Set the architecture of the neural network, that is 𝐿, 𝑊 and 𝜎. Then choose the trainable parameters 𝜃 of  ∈ 𝛶𝑊 ,𝐿(𝜎; 𝑝+𝑑, 1)
in order to minimize 𝛷(𝜃) ∶= 𝑁𝑡𝑟𝑎𝑖𝑛

(𝑢 (⋅; 𝜃); 𝑢ℎ). Here 𝑁𝑡𝑟𝑎𝑖𝑛
is defined as:

𝑁𝑡𝑟𝑎𝑖𝑛
(𝑢 (⋅; 𝜃); 𝑢ℎ) ∶=

1
∑𝑁𝑡𝑟𝑎𝑖𝑛

𝑗=1 𝑁𝑗

𝑁𝑡𝑟𝑎𝑖𝑛
∑

𝑗=1

𝑁𝑗
∑

𝑖=1
𝑐𝑖𝑗 |𝑢 (𝑥𝑖𝑗 ; 𝜇̃𝑗 ; 𝜃) − 𝑢ℎ(𝑥𝑖𝑗 ; 𝜇̃𝑗)|

2,

with the coefficients 𝑐𝑖𝑗 corresponding to those of (6) or (7). As before, we let 𝜃∗ be the set of parameters obtained by some
gradient descent type algorithm and denote 𝑢 (𝑥;𝜇; 𝜃∗) simply by 𝑢 (𝑥;𝜇) in what follows.

In this case, the training set is composed by {(𝑥𝑖𝑗 ; 𝜇̃𝑗)
𝑁𝑗
𝑖=1}

𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 , with the corresponding solutions {(𝑢ℎ(𝑥𝑖𝑗 ; 𝜇̃𝑗))

𝑁𝑗
𝑖=1}

𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 .

In the next section we consider a model problem to test both the accuracy of the finite element method and of the neural network,
and to compare the fixed and adapted grid approaches presented above.

4. Numerical experiments

As a model problem, we consider the 2D parametric Poisson problem
{

−𝛥𝑢(𝑥;𝜇) = 𝑓 (𝑥;𝜇) 𝑥 ∈ 𝛺, 𝜇 ∈  ,

𝑢(𝑥;𝜇) = 𝑔(𝑥;𝜇) 𝑥 ∈ 𝜕𝛺, 𝜇 ∈  ,
(8)

with 𝑑 = 2, 𝛺 = [0, 10] × [0, 2], 𝑝 = 4,  = [1.5, 8.5] × [1, 10] × [100, 1000] × [0.3, 2]. Here 𝑓 and 𝑔 are such that the exact solution 𝑢 of
(8) is given by

𝑢(𝑥;𝜇) =
𝜇3
𝜋𝜇2

4

exp
{

−2𝜇−2
4 ((𝑥1 − 𝜇1)2 + 𝜇2(𝑥2 − 1)2)

}

.

Fig. 1 visualizes snapshots of the solutions for several values of the parameters 𝜇 = (𝜇1, 𝜇2, 𝜇3, 𝜇4).
This test case has been chosen since its solutions are reminiscent of the temperature fields that can be observed during laser

polishing processes. Furthermore, even if the solutions are smooth, the fact that their support is localized and that they are translated
in 𝛺 make the solution manifold hard to approximate when using linear approximation spaces, such as, e.g., reduced basis [33,34].

4.1. Fixed grid approach

4.1.1. Finite element method
The classical (isotropic) residual-based a posteriori error estimator is given, for each 𝜇 ∈  , by

𝜂2(𝑢ℎ(⋅;𝜇);𝜇) =
∑

𝐾∈ℎ

𝜂2𝐾 (𝑢ℎ(⋅;𝜇);𝜇),

see, e.g., [41], with

𝜂 (𝑢 (⋅;𝜇);𝜇) = ℎ2 ‖(𝛥𝑢 + 𝑓)(⋅;𝜇)‖2 + 1ℎ
3
2
‖[∇𝑢 (⋅;𝜇) ⋅ 𝑛]‖2 , (9)
5

𝐾 ℎ 𝐾 ℎ 𝐿2(𝐾) 2 𝐾 ℎ 𝐾 𝐿2(𝜕𝐾)

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Fig. 1. Finite element solutions 𝑢ℎ(⋅;𝜇) computed on a uniform mesh of size ℎ = 0.0125. From top to bottom : 𝜇 = (2, 1, 100, 0.3), 𝜇 = (8, 10, 500, 0.3), 𝜇 = (5, 5, 1000, 2).

Table 1
Computed error of the finite element method for various values of ℎ and 𝑀 .

ℎ 𝑀 |||𝑢 − 𝑢ℎ|||2𝑀 Std𝑀 (‖𝑢 − 𝑢ℎ‖2)
Std𝑀 (‖𝑢 − 𝑢ℎ‖2)

√

𝑀
𝑒𝑖𝑀 Std𝑀 (𝑒𝑖)

0.05 500 5.51 ⋅ 10−1 2.30 1.03 ⋅ 10−1 11 2.93 ⋅ 10−1

1000 3.83 ⋅ 10−1 1.75 5.53 ⋅ 10−2 11 2.73 ⋅ 10−1

2000 7.14 ⋅ 10−1 3.40 7.60 ⋅ 10−2 11 2.89 ⋅ 10−1

4000 5.78 ⋅ 10−1 2.8 4.43 ⋅ 10−2 11 2.85 ⋅ 10−1

0.025 500 3.82 ⋅ 10−2 1.58 ⋅ 10−1 7.10 ⋅ 10−3 10.9 2.21 ⋅ 10−1

1000 4.20 ⋅ 10−2 2.07 ⋅ 10−1 6.55 ⋅ 10−3 10.9 2.00 ⋅ 10−1

2000 4.65 ⋅ 10−2 2.41 ⋅ 10−1 5.40 ⋅ 10−3 10.9 2.06 ⋅ 10−1

4000 3.83 ⋅ 10−2 1.96 ⋅ 10−1 3.10 ⋅ 10−3 10.9 2.12 ⋅ 10−1

0.0125 500 2.06 ⋅ 10−3 1.06 ⋅ 10−2 4.76 ⋅ 10−4 10.9 1.80 ⋅ 10−1

1000 2.26 ⋅ 10−3 1.17 ⋅ 10−2 3.69 ⋅ 10−4 10.9 1.75 ⋅ 10−1

2000 2.06 ⋅ 10−3 9.22 ⋅ 10−3 2.06 ⋅ 10−4 10.9 1.72 ⋅ 10−1

4000 2.46 ⋅ 10−3 1.17 ⋅ 10−2 1.86 ⋅ 10−4 10.9 1.77 ⋅ 10−1

where [∇𝑢ℎ(⋅;𝜇) ⋅ 𝑛𝐾] is the jump of the normal derivative across the edges of 𝜕𝐾. In order to track the sharpness of the error
estimator, we use the effectivity index

𝑒𝑖(𝜇) ∶=

(

∑

𝐾∈ℎ 𝜂
2
𝐾 (𝑢ℎ(⋅;𝜇);𝜇)

)1∕2

‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖𝐿2(𝛺)
. (10)

The error of the finite element method is estimated with the setting presented in Section 2 using test sets {𝜇𝑘}𝑀𝑘=1. Numerical results
are shown in Table 1, where 𝑒𝑖𝑀 and Std𝑀 (𝑒𝑖) denote respectively the mean and the standard deviation of the set {𝑒𝑖(𝜇𝑘)}𝑀𝑘=1;
similarly Std𝑀 (‖𝑢 − 𝑢ℎ‖2) denotes the standard deviation of {‖𝑢(⋅;𝜇𝑘) − 𝑢ℎ(⋅;𝜇𝑘)‖2}𝑀𝑘=1.

First, we note that |||𝑢 − 𝑢ℎ|||2𝑀 behave as (ℎ4), as expected. Second, the mean of the effectivity index does not depend on ℎ
or 𝑀 , and its standard deviation is small; this suggest that the effectivity index depends only weakly on 𝜇. Next, for 𝑀 = 4000,
the expected error of the Monte-Carlo method (fifth column) is always one order of magnitude smaller than |||𝑢 − 𝑢ℎ|||2𝑀 ; the first
significant digit of the latter is thus correct, in expectation. Finally, Std𝑀 (‖𝑢 − 𝑢ℎ‖2) is large compared to the computed quantity
|||𝑢 − 𝑢ℎ|||2𝑀 ; the accuracy of the finite element method thus highly depends on 𝜇.

Table 2 visualizes the time needed to solve the linear system during the finite element simulations; 𝑊 𝑇 corresponds to the
wall time (Intel Core, 3.5 GHz) needed to solve the system, averaged over 2000 resolutions. As expected, 𝑊 𝑇 behaves roughly as
(𝑁

3
2
ℎ) = (ℎ−3).

4.1.2. Neural networks
We next turn to the construction of neural networks to approximate the solution of (8), using the first of the two approaches

presented in Section 3, and therefore networks belonging to 𝛶𝑊 ,𝐿(𝜎; 4, 𝑁).
6

ℎ

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.

u
i

Table 2
Wall time to solve the linear system for various values of ℎ.
ℎ 𝑁ℎ 𝑊 𝑇 [s]

0.05 9626 0.10
0.025 38 524 1.33
0.0125 154 349 10.4

Table 3
Wall time needed to evaluate neural networks of different widths, depths and output dimensions.
𝐿 𝑊 𝑁ℎ 𝑊 𝑇 [s]

2 100 9626 3.48 ⋅ 10−2

38 524 3.53 ⋅ 10−2

154 349 3.62 ⋅ 10−2

4 800 9626 3.51 ⋅ 10−2

38 524 3.60 ⋅ 10−2

8 100 9626 3.68 ⋅ 10−2

38 524 3.67 ⋅ 10−2

All the neural networks are built and trained using the opensource library Keras [40]. For this test case, we take 𝜎 = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠
as activation function. The initial weights of the networks are chosen using the Glorot Normal initialization [42], which amounts to
choosing them with a normal distribution centered at 0 and whose standard deviation depends on the number of input and output
nits of the layer. The neural networks are trained with the Nadam optimizer [43], starting from a learning rate of 0.001 which
s decreased when a plateau is reached, using batches of size 32 and early stopping. The training parameters {𝜇̃𝑗}

𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 are chosen

randomly with a uniform distribution in  . As advocated in [40], the parameters are then normalized so that all the four components
have mean zero and standard deviation one. Since we consider uniform meshes, the two objective functions 𝐿2 and 𝓁2 , defined
by (6) and (7) respectively, are similar. As we want to track the 𝐿2 error between 𝑢 and 𝑢ℎ, we use 𝐿2 to train the networks for
consistency. To estimate the error of the neural networks, we use the same test sets (that is the same 𝜇𝑘, 𝑘 = 1,… ,𝑀) that we used
to estimate the error of the finite element method |||𝑢 − 𝑢ℎ|||𝑀 .

One of the main advantages of this fixed grid approach is that, for a given 𝜇 ∈  , an approximation of 𝑢ℎ(⋅;𝜇) is obtained at
all vertices of the finite element grid in a single evaluation of the neural network. The time needed to evaluate neural networks
(averaged over 2000 evaluations) of different sizes using the graphical card Gigabyte GeForce RTX 3080 is reported in Table 3. By
comparing the results in Tables 2 and 3, we note that, for the network architectures and the mesh sizes considered here, the network
evaluation is faster than solving the linear system to obtain 𝑢ℎ.

We next test the impact of different parameters on the accuracy of the neural networks. Note that, when training several times
a neural network  ∈ 𝛶𝑊 ,𝐿(𝜎; 4, 𝑁ℎ), with fixed 𝑊 , 𝐿 and 𝜎, the variability of |||𝑢 − 𝑢ℎ|||𝑀 is typically smaller than 10% of the
value of the error itself. All the results in the sequel are thus the result of a single training phase for all neural networks.

We start by letting the architecture of the networks vary, while keeping 𝑁𝑡𝑟𝑎𝑖𝑛 = 8000 constant. The structure of the networks
depends on ℎ and the number of trainable parameters is given by

𝑁𝜃 = (𝑑𝑖𝑛 + 1)𝑊 +𝑊 (𝑊 + 1)(𝐿 − 1) + 𝑑𝑜𝑢𝑡(𝑊 + 1)
= 5𝑊 +𝑊 (𝑊 + 1)(𝐿 − 1) +𝑁ℎ(𝑊 + 1)
=∶ 𝑁 ′

𝜃 +𝑁ℎ(𝑊 + 1),

where 𝑁 ′
𝜃 corresponds to the number of trainable parameters of the hidden layers. Table 4 shows the error of neural networks

with different widths, depths and output sizes. As required, the expected error of the Monte-Carlo method (last column) is small
compared to the computed value of |||𝑢ℎ − 𝑢 |||𝑀 . We also remark that the standard deviation of ‖𝑢ℎ − 𝑢 ‖

2 is large compared to
|||𝑢 −𝑢ℎ|||2𝑀 ; the accuracy of the networks thus varies widely across the parameters space. For a fixed width (resp. depth) increasing
the depth (resp. width) allows to improve the accuracy of the networks. Nevertheless, comparing the values in Tables 1 and 4, the
error of all neural networks remains much higher than the error of the finite element method for this training set’ size.

We next set ℎ = 0.05 (𝑁ℎ = 9626) and test the impact of 𝑁𝑡𝑟𝑎𝑖𝑛 on the accuracy of the networks. Fig. 2 illustrates the numerical
results obtained. We observe that |||𝑢ℎ − 𝑢 |||

2
𝑀 behaves roughly as (𝑁−1

𝑡𝑟𝑎𝑖𝑛) for the neural networks tested here. However, even for
the largest number of training examples considered here, the error of all the neural networks considered remains higher than the
error of the finite element method.

The use of neural networks  ∈ 𝛶𝑊 ,𝐿(𝜎; 𝑝,𝑁ℎ) has thus two main drawbacks. First, all the finite element simulations must
be performed on the same grid; this implies in particular that the standard deviation of the finite element error in the parameter
domain remains large. Second, even for a large number of training examples and the larger mesh size ℎ, we are not able to reach
the same accuracy for the neural network approximation than for the finite element method. In order to overcome these drawbacks,
7

we propose, in the next section, an adapted grid approach to build the neural networks.

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Table 4
Error of neural networks for various values of 𝐿, 𝑊 and 𝑁ℎ. 𝑁𝑡𝑟𝑎𝑖𝑛 = 8000, 𝑀 = 4000.

𝐿 𝑊 𝑁 ′
𝜃 𝑁ℎ 𝑁𝜃 |||𝑢 − 𝑢ℎ|||2𝑀 Std𝑀 (‖𝑢ℎ − 𝑢 ‖

2)
Std𝑀 (‖𝑢ℎ − 𝑢 ‖

2)
√

𝑀

2 100 10 600 9626 982 826 93.3 379 6.00
38 524 3 901 524 108 450 7.12

2 200 41 200 9626 1 976 026 71.0 320 5.06
38 524 7 784 524 83.0 391 6.18

2 400 162 400 9626 4 022 426 46.4 268 4.23
38 524 15 610 524 56.7 316 4.99

4 100 30 800 9626 1 003 026 33.6 162 2.56
38 524 3 921 724 32.6 174 2.76
154 349 15 620 049 30 121 1.91

4 200 121 600 9626 2 056 426 18.6 125 1.98
38 524 7 864 924 15.8 116 1.83
154 349 31 145 749 14.9 66.6 1.05

4 400 483 200 9626 4 343 226 8.76 67.9 1.07
38 524 15 931 324 10.7 95.8 1.51
154 349 61 893 949 6.07 29.1 4.61 ⋅ 10−1

4 800 1 926 400 9626 9 636 826 5.50 53.4 8.44 ⋅ 10−1

38 524 32 784 124 6.23 65.3 1.03

8 100 71 200 9626 1 043 426 13.3 58.9 9.31 ⋅ 10−1

38 524 3 962 124 16.1 87.5 1.38

8 200 282 400 9626 2 217 226 7.76 36.4 5.76 ⋅ 10−1

38 524 8 025 724 7.01 44.9 7.10 ⋅ 10−1

8 400 1 124 800 9626 4 984 826 4.79 26.5 4.19 ⋅ 10−1

38 524 16 572 924 6.49 53.5 8.46 ⋅ 10−1

8 800 4 489 600 9626 12 200 026 2.64 20.3 3.21 ⋅ 10−1

38 524 35 347 324 3.78 34.2 5.42 ⋅ 10−1

Fig. 2. Computed error of neural networks of different sizes as a function of 𝑁𝑡𝑟𝑎𝑖𝑛 for ℎ = 0.05 and 𝑀 = 4000.

4.2. Adapted grid approach

4.2.1. Adaptive finite element method
The goal of the adaptive finite element algorithm is, given a parameter 𝜇, to build a discretization ℎ such that the error is close

to a preset tolerance 𝑇𝑂𝐿, namely

0.75 𝑇𝑂𝐿 ≤

(

‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖2𝐿2(𝛺)

|𝛺|

)
1
2

≤ 1.25 𝑇𝑂𝐿.

In practice, the error is replaced by the error estimator defined in (9) and we require that

0.75 𝑇𝑂𝐿 ≤

(∑

𝐾∈ℎ 𝜂
2
𝐾 (𝑢ℎ(⋅;𝜇);𝜇)

)

1
2

≤ 1.25 𝑇𝑂𝐿.
8

|𝛺|

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Fig. 3. Finite element solution 𝑢ℎ(⋅;𝜇) and corresponding adapted mesh for 𝜇 = (5, 5, 1000, 2) and 𝑇𝑂𝐿 = 1.25.

Table 5
Computed error of the finite element method for various values of 𝑇𝑂𝐿 and 𝑀 .

𝑇𝑂𝐿 𝑀 𝑁𝑀 |||𝑢 − 𝑢ℎ|||2𝑀 Std𝑀 (‖𝑢 − 𝑢ℎ‖2)
Std𝑀 (‖𝑢 − 𝑢ℎ‖2)

√

𝑀
𝑒𝑖𝑀 Std𝑀 (𝑒𝑖)

5 500 410 1.31 ⋅ 10−1 2.86 ⋅ 10−2 1.27 ⋅ 10−3 11.3 1.02
1000 403 1.31 ⋅ 10−1 2.92 ⋅ 10−2 9.23 ⋅ 10−4 11.3 1.03
2000 409 1.31 ⋅ 10−1 2.76 ⋅ 10−2 6.18 ⋅ 10−4 11.3 1.01

2.5 500 749 3.25 ⋅ 10−2 5.97 ⋅ 10−3 2.67 ⋅ 10−4 11.4 9.10 ⋅ 10−1

1000 768 3.29 ⋅ 10−2 6.04 ⋅ 10−3 1.92 ⋅ 10−4 11.4 9.12 ⋅ 10−1

2000 767 3.31 ⋅ 10−2 6.60 ⋅ 10−3 1.48 ⋅ 10−4 11.3 9.39 ⋅ 10−1

1.25 500 1455 8.20 ⋅ 10−3 1.39 ⋅ 10−3 6.21 ⋅ 10−5 11.4 8.53 ⋅ 10−1

1000 1520 8.25 ⋅ 10−3 1.49 ⋅ 10−3 4.74 ⋅ 10−5 11.4 8.66 ⋅ 10−1

2000 1465 8.23 ⋅ 10−3 1.40 ⋅ 10−3 3.13 ⋅ 10−5 11.4 8.62 ⋅ 10−1

0.625 500 2746 2.03 ⋅ 10−3 3.00 ⋅ 10−4 1.34 ⋅ 10−5 11.5 7.89 ⋅ 10−1

1000 2813 2.03 ⋅ 10−3 3.02 ⋅ 10−4 9.55 ⋅ 10−6 11.5 7.94 ⋅ 10−1

2000 2901 2.05 ⋅ 10−3 2.99 ⋅ 10−4 6.68 ⋅ 10−6 11.5 8.00 ⋅ 10−1

The above conditions are met when, for all 𝐾 ∈ ℎ,

0.752 𝑇𝑂𝐿2 |𝛺|

𝑁2
𝐾

≤ 𝜂2𝐾 (𝑢ℎ(⋅;𝜇);𝜇) ≤ 1.252 𝑇𝑂𝐿2 |𝛺|

𝑁2
𝐾

, (11)

where 𝑁𝐾 is the number of triangles of ℎ. The mesh is adapted according to (11), with the BL2D mesh generator [44]. We use
a continuation algorithm for the tolerance, as described in [45]: if the desired tolerance is 𝑇𝑂𝐿, we start the algorithm with an
initial tolerance larger than 𝑇𝑂𝐿, and we decrease it regularly until the targeted tolerance is reached. Fig. 3 visualizes an example
of adapted mesh.

To test the accuracy of the finite element method, we randomly draw 𝑀 parameters {𝜇𝑘}𝑀𝑘=1 according to a uniform distribution,
as described in Section 2. For each 𝜇𝑘, we adapt the mesh according to (11) and denote by 𝑁𝑘 the number of vertices in the resulting
grid. As in Section 4.1, the effectivity index (10) is used to track the sharpness of the estimator. Table 5 shows the average number
of vertices

𝑁𝑀 ∶= 1
𝑀

𝑀
∑

𝑘=1
𝑁𝑘,

together with the computed finite element error |||𝑢−𝑢ℎ|||2𝑀 and the effectivity index, for various values of 𝑇𝑂𝐿 and 𝑀 . As expected,
|||𝑢− 𝑢ℎ|||2𝑀 behaves as (𝑇𝑂𝐿2) and since 𝑑 = 2, we observe that 𝑇𝑂𝐿 = (ℎ−2) = (𝑁𝑀). Furthermore, the mean of the effectivity
index does not depend on ℎ and 𝑀 , and its standard deviation is small across the parameters space. Also, the standard deviation
Std𝑀 (‖𝑢(⋅;𝜇) − 𝑢ℎ(⋅;𝜇)‖2) is small compared to the computed quantity |||𝑢 − 𝑢ℎ|||2𝑀 , unlike when using fixed meshes (see Table 1).
Finally, note that the expected error of the Monte-Carlo method (sixth column) is negligible compared to the computed quantity
|||𝑢 − 𝑢ℎ|||2𝑀 .

Table 6 visualizes the time needed to solve the linear system corresponding to the adapted mesh, for different tolerances and
different parameters 𝜇. Hereafter, 𝑁 denotes the number of vertices in the adapted mesh and 𝑊 𝑇 denotes the wall time needed to
solve the linear system using one CPU Intel Core, 3.5 GHz, averaged over 2000 resolutions of the system. As for the first test case,
we observe that 𝑊 𝑇 = (𝑁

3
2). Nevertheless, due to the mesh adaptation algorithm, the number of vertices highly depends on 𝜇,

and so does the wall time needed to solve the linear system.

4.2.2. Neural networks
We construct neural networks to approximate the solution of (8), with 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠 as activation function. We initialize the weights

of the networks using the Glorot Normal initialization [42]. All the networks are trained using the Nadam optimizer [43], with an
initial learning rate of 0.001, which is decreased when a plateau is reached, and early stopping. With this adapted grid approach,
the number of samples to be reviewed during the training process is equal to

𝑁𝑡𝑟𝑎𝑖𝑛
∑

𝑁𝑗 ,
9

𝑗=1

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Table 6
Wall time to solve the linear system in the last mesh iteration.
𝜇 𝑇𝑂𝐿 𝑁 𝑊 𝑇 [s]

(5, 10, 1000, 0.3) 5 2337 7.75 ⋅ 10−3

2.5 4510 2.03 ⋅ 10−2

1.25 8780 5.25 ⋅ 10−2

0.625 17 910 1.54 ⋅ 10−1

(5, 1, 100, 2) 5 23 4.2 ⋅ 10−5

2.5 37 6.5 ⋅ 10−5

1.25 70 8 ⋅ 10−5

0.625 118 1.2 ⋅ 10−4

(5, 5, 500, 1) 5 358 5.6 ⋅ 10−4

2.5 658 1.24 ⋅ 10−3

1.25 1259 3.09 ⋅ 10−3

0.625 2389 7.65 ⋅ 10−3

Fig. 4. Comparison along the axis 𝑦 = 1 of 𝑢ℎ (red, plain line) and 𝑢 , for a neural network  ∈ 𝛶 100,4(𝜎; 6, 1) trained with the 𝓁2 objective function (green,
dash-dotted line) and the 𝐿2 objective function (blue, dashed line) (𝑇𝑂𝐿 = 1.25, 𝑁𝑡𝑟𝑎𝑖𝑛 = 4000). Left: 𝜇 = (5, 1, 100, 2). Right: 𝜇 = (5, 10, 1000, 0.3).

as opposed to 𝑁𝑡𝑟𝑎𝑖𝑛 for the fixed grid approach; we thus use larger batches and set 𝑏𝑠 = 1024. Before training, we normalize the
set {(𝑥𝑖𝑗 ; 𝜇̃𝑗)

𝑁𝑗
𝑖=1}

𝑁𝑡𝑟𝑎𝑖𝑛
𝑗=1 such that all the components have zero mean and unit standard deviation. To test the accuracy of the network,

i.e. to compute |||𝑢ℎ − 𝑢 |||𝑀 , we take the same test set {𝜇𝑘}𝑀𝑘=1 as the one used to compute |||𝑢 − 𝑢ℎ|||𝑀 in the previous paragraph,
with 𝑀 = 2000.

Since the meshes considered here are no longer uniform, the use of 𝐿2 or 𝓁2 as an objective function leads to different results.
Since we are interested in minimizing the 𝐿2(𝛺 × ) error between 𝑢 and 𝑢ℎ, we choose 𝐿2 to train the networks. This choice
implies that more weight is given in the objective function to the vertices having shape functions with a large support. The use of
𝐿2 thus allows to avoid the oscillations observed for small 𝜇3 and large 𝜇4 when 𝓁2 is used, see Fig. 4 (left). On the other hand,
it tends to decrease slightly the accuracy of the network for parameters with large 𝜇3 and small 𝜇4, see Fig. 4 (right).

In what follows, we investigate the impact that the choices of 𝐿, 𝑊 , 𝑁𝑡𝑟𝑎𝑖𝑛 and 𝑇𝑂𝐿 have on the accuracy of the networks. As
for the fixed grid approach, training several times a neural network  ∈ 𝛶𝑊 ,𝐿(𝜎; 6, 1) results in a variability of |||𝑢 − 𝑢ℎ|||𝑀 that is
typically smaller than 10% of the value of the error itself. All the results in the sequel are thus the result of a single training phase
for each neural network.

We start by setting 𝑇𝑂𝐿 = 1.25 and we let both 𝑁𝑡𝑟𝑎𝑖𝑛 and the architecture of the networks, 𝐿 and 𝑊 , vary. Numerical results
are reported in Fig. 5. We first remark that neural networks with depth 𝐿 = 2 show less accuracy than networks with 𝐿 = 4, 8. So
we restrict ourselves to deeper networks in what follows. Next, for this tolerance, the error of networks with width 𝐿 = 4, 8 start to
plateau between 𝑁𝑡𝑟𝑎𝑖𝑛 = 2000 and 𝑁𝑡𝑟𝑎𝑖𝑛 = 4000.

Based on these results, we set 𝑁𝑡𝑟𝑎𝑖𝑛 = 4000 in the sequel to test further the effect of the tolerance and of the architecture of the
networks on the error. This choice will be further discussed with the adaptive algorithm presented in Section 5. Table 7 reports the
error of neural networks with various widths and depths, and various values of 𝑇𝑂𝐿.

Several comments are in order concerning these results and their comparison with the ones obtained with the fixed grid approach
(see Table 4). First, note that – contrary to the fixed grid approach – dividing 𝑇𝑂𝐿 by two now lets the architecture of the networks
unchanged, but multiplies the average number of vertices, and thus the number of training data in 𝛺, by four. The error of the
networks |||𝑢ℎ − 𝑢 |||𝑀 is thus expected to decrease as 𝑇𝑂𝐿 decreases, which is confirmed by Fig. 6. Second, for the values of 𝐿, 𝑊
and 𝑇𝑂𝐿 considered here, increasing the size of the networks does not increase their accuracy. This suggests that the error comes
10

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Fig. 5. Error of various networks with different widths and depths, as a function of 𝑁𝑡𝑟𝑎𝑖𝑛 (𝑇𝑂𝐿 = 1.25, 𝑀 = 2000).

Table 7
Computed error of neural networks for various values of 𝐿, 𝑊 and 𝑇𝑂𝐿 (𝑁𝑡𝑟𝑎𝑖𝑛 = 4000, 𝑀 = 2000).

𝐿 𝑊 𝑁𝜃 𝑇𝑂𝐿 |||𝑢 − 𝑢ℎ|||2𝑀 Std𝑀 (‖𝑢 − 𝑢ℎ‖2)
Std𝑀 (‖𝑢 − 𝑢ℎ‖2)

√

𝑀

4 100 31 101 5 1.06 ⋅ 10−1 1.64 ⋅ 10−1 3.66 ⋅ 10−3

2.5 3.72 ⋅ 10−2 3.90 ⋅ 10−1 8.73 ⋅ 10−3

1.25 8.64 ⋅ 10−3 1.96 ⋅ 10−2 4.38 ⋅ 10−4

0.625 3.10 ⋅ 10−3 2.81 ⋅ 10−3 6.26 ⋅ 10−5

4 200 122 201 5 9.97 ⋅ 10−2 1.80 ⋅ 10−2 4.03 ⋅ 10−4

2.5 2.75 ⋅ 10−2 2.22 ⋅ 10−2 4.97 ⋅ 10−4

1.25 8.18 ⋅ 10−3 1.30 ⋅ 10−2 2.91 ⋅ 10−4

0.625 2.84 ⋅ 10−3 2.36 ⋅ 10−3 5.28 ⋅ 10−5

4 400 484 401 5 9.93 ⋅ 10−2 1.98 ⋅ 10−2 4.44 ⋅ 10−4

2.5 3.08 ⋅ 10−2 7.83 ⋅ 10−2 1.75 ⋅ 10−3

1.25 9.01 ⋅ 10−3 4.70 ⋅ 10−2 1.05 ⋅ 10−3

0.625 2.78 ⋅ 10−3 2.16 ⋅ 10−3 4.83 ⋅ 10−5

8 100 71 501 5 9.90 ⋅ 10−2 1.66 ⋅ 10−2 3.72 ⋅ 10−4

2.5 2.70 ⋅ 10−2 4.24 ⋅ 10−2 9.48 ⋅ 10−4

1.25 7.71 ⋅ 10−3 2.25 ⋅ 10−2 5.03 ⋅ 10−4

0.625 2.55 ⋅ 10−3 1.40 ⋅ 10−3 3.13 ⋅ 10−5

8 200 283 001 5 9.70 ⋅ 10−2 1.39 ⋅ 10−2 3.11 ⋅ 10−4

2.5 2.76 ⋅ 10−2 4.78 ⋅ 10−2 1.07 ⋅ 10−3

1.25 7.68 ⋅ 10−3 9.70 ⋅ 10−3 2.17 ⋅ 10−4

0.625 2.56 ⋅ 10−3 1.29 ⋅ 10−3 2.89 ⋅ 10−5

8 400 1 126 001 5 1.06 ⋅ 10−1 2.43 ⋅ 10−2 5.48 ⋅ 10−4

2.5 2.71 ⋅ 10−2 4.70 ⋅ 10−2 1.05 ⋅ 10−3

1.25 8.08 ⋅ 10−3 1.01 ⋅ 10−2 2.26 ⋅ 10−4

0.625 2.52 ⋅ 10−3 2.23 ⋅ 10−3 4.98 ⋅ 10−5

mainly from the training procedure, and not from the structure of the networks itself. Third, we emphasize that – as illustrated in
Fig. 6 – the two errors |||𝑢 − 𝑢ℎ|||2𝑀 and |||𝑢ℎ − 𝑢 |||

2
𝑀 are comparable for large enough neural networks (for all tolerances tested).

Nevertheless, the standard deviation of the neural networks error is larger than the standard deviation of the finite element error.
Finally, the expected error of the Monte-Carlo method (last column) is one order of magnitude smaller than the computed value of
|||𝑢ℎ − 𝑢 |||

2
𝑀 , for 𝑇𝑂𝐿 = 1.25, 0.625 and for all the neural networks considered.

We compare now the time needed to evaluate one neural network with the time needed to solve the linear system (see Table 6).
We consider the networks  ∈ 𝛶 400,4(𝜎; 6, 1) obtained for the different tolerances 𝑇𝑂𝐿, and evaluate them by batches of size
𝑏𝑠 = 1024. Table 8 visualizes the results, with a wall time being averaged over 2000 evaluations and 𝑁 denoting the number of
vertices in the finite element mesh.

We note that evaluating the network in all the grid points takes more time than solving the linear system for this test case.
Nevertheless, this evaluation time does not depend on the underlying PDE, and, when considering more complex PDEs, we expect
that evaluating the neural network would be faster than to solve the (possibly nonlinear) system.

Since the analytical solution 𝑢 is known for this test case, |||𝑢−𝑢 |||𝑀 , |||𝑢−𝑢ℎ|||𝑀 and |||𝑢ℎ−𝑢 |||𝑀 can also be directly compared.
Numerical results for networks with different architectures and 𝑇𝑂𝐿 = 1.25, 0.625 are reported in Table 9.
11

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Table 8
Time to evaluate  ∈ 𝛶 400,4(𝜎; 6, 1) on the finite element mesh.
𝜇 𝑇𝑂𝐿 𝑁 𝑊 𝑇 [s]

(5, 10, 1000, 0.3) 5 2337 4.72 ⋅ 10−2

2.5 4510 5.25 ⋅ 10−2

1.25 8780 6.2 ⋅ 10−2

0.625 17 910 8.85 ⋅ 10−2

(5, 1, 100, 2) 5 23 4 ⋅ 10−2

2.5 37 4 ⋅ 10−2

1.25 70 4 ⋅ 10−2

0.625 118 4 ⋅ 10−2

(5, 5, 500, 1) 5 358 4 ⋅ 10−2

2.5 658 4.04 ⋅ 10−2

1.25 1259 4.47 ⋅ 10−2

0.625 2389 4.79 ⋅ 10−2

Fig. 6. Error of neural networks with different widths and depths as a function of 𝑇𝑂𝐿, for 𝑁𝑡𝑟𝑎𝑖𝑛 = 4000 and 𝑀 = 2000.

Table 9
Comparison of |||𝑢− 𝑢ℎ|||𝑀 , |||𝑢ℎ − 𝑢 |||𝑀 , |||𝑢− 𝑢 |||𝑀 for various architectures of networks and different tolerances 𝑇𝑂𝐿 (𝑀 = 2000).
𝑇𝑂𝐿 |||𝑢 − 𝑢ℎ|||𝑀 𝐿 𝑊 |||𝑢ℎ − 𝑢 |||𝑀 |||𝑢 − 𝑢 |||𝑀

4 100 0.0929 0.0649
4 200 0.0904 0.0606

1.25 0.0907 4 400 0.0948 0.0680
8 100 0.0878 0.0594
8 200 0.0876 0.0514
8 400 0.0899 0.0562

4 100 0.0557 0.0440
4 200 0.0533 0.0406

0.625 0.0453 4 400 0.0527 0.0400
8 100 0.0505 0.0368
8 200 0.0506 0.0373
8 400 0.0502 0.0370

First, we note that |||𝑢 − 𝑢 |||𝑀 decreases as the tolerance decreases, which is a consequence of having both more precise and
more numerous training data. Next, we have in any cases |||𝑢 − 𝑢 |||𝑀 ≤ |||𝑢 − 𝑢ℎ|||𝑀 + |||𝑢ℎ − 𝑢 |||𝑀 , as expected. Finally, we remark
that 𝑢 seems to act as a post-processing of 𝑢ℎ, yielding on average a slightly better approximation of 𝑢 than 𝑢ℎ itself.

Numerical results in Table 9 give insights only on the average accuracy of 𝑢 across the parameters space. In Fig. 7, we thus
compare 𝑢(⋅;𝜇), 𝑢ℎ(⋅;𝜇) and 𝑢 (⋅;𝜇) for given parameters 𝜇, in particular for extreme parameters that lie on the boundary of  . We
note that, in all cases, 𝑢 (⋅;𝜇) gives an accurate approximation of the exact solution 𝑢(⋅;𝜇).

5. An adaptive algorithm for the number of training samples

The previous numerical experiments estimate a posteriori the error of a neural network trained with a given number of samples. In
what follows, we discuss an algorithm that, given a (small) initial training set, incrementally increases the number of training samples
in order to ensure that the overall error |||𝑢−𝑢 |||

2 is smaller than some preset tolerance 𝜖2. Using |||𝑢−𝑢 |||

2 ≤ 2(|||𝑢−𝑢ℎ|||2+|||𝑢ℎ−𝑢 |||

2),
the idea is, on the one hand, to choose the tolerance 𝑇𝑂𝐿 of the mesh adaptation algorithm in such a way that |||𝑢 − 𝑢 |||

2 ≤ 𝜖2∕4
12

ℎ

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Fig. 7. Comparison of 𝑢 (red, dashed line), 𝑢ℎ (green, dash-dotted line) and 𝑢 (blue, plain line) along the axis 𝑦 = 1 for a neural network  ∈ 𝛶 400,4(𝜎; 6, 1)
trained with 𝑁𝑡𝑟𝑎𝑖𝑛 = 4000 examples and 𝑇𝑂𝐿 = 1.25. From left to right: 𝜇 = (1.5, 1, 100, 2), (5, 5.5, 550, 1.15), (5, 10, 1000, 0.3), (8.5, 1, 1000, 0.3).

and, on the other hand, to increase the size of the training set until |||𝑢ℎ−𝑢 |||

2 ≤ 𝜖2∕4. Note that, in order to ensure |||𝑢−𝑢ℎ|||2 ≤ 𝜖2∕4
using the adaptive algorithm given in Section 4.2.1, one needs to choose 𝑇𝑂𝐿2 = 𝜖2𝑒𝑖2∕4, where 𝑒𝑖 is the effectivity index defined
in (10). According to Table 5, we take 𝑒𝑖 = 11.4 in what follows. Given 𝜖, an initial number of samples 𝑁1

𝑡𝑟𝑎𝑖𝑛, a maximum number
of iterations 𝑘𝑚𝑎𝑥, and the number of samples to be added at each iterations 𝑁𝑎𝑑𝑑 , the algorithm is fully described in Algorithm 1.

Algorithm 1 An adaptive algorithm to control 𝑁𝑡𝑟𝑎𝑖𝑛

Require: 𝜖, 𝑁1
𝑡𝑟𝑎𝑖𝑛, 𝑘𝑚𝑎𝑥, 𝑁𝑎𝑑𝑑 , a test set {𝜇𝑘}𝑀𝑘=1, and a given architecture of the neural network.

Set 𝑘 = 1, err = 𝜖2, 𝑁0
𝑡𝑟𝑎𝑖𝑛 = 0

while err > 𝜖2

4
and 𝑘 ≤ 𝑘𝑚𝑎𝑥 do

Select randomly the parameters 𝜇̃𝑗 , 𝑗 = 𝑁𝑘−1
𝑡𝑟𝑎𝑖𝑛+1,… , 𝑁𝑘

𝑡𝑟𝑎𝑖𝑛

Compute the FE solutions 𝑢ℎ(⋅; 𝜇̃𝑗), 𝑗 = 𝑁𝑘−1
𝑡𝑟𝑎𝑖𝑛+1,… , 𝑁𝑘

𝑡𝑟𝑎𝑖𝑛 using (11) with 𝑇𝑂𝐿2 = 𝜖2𝑒𝑖2

4
Train the neural network in order to obtain 𝑢𝑘
Compute err = |||𝑢𝑘 − 𝑢ℎ|||2𝑀
Set 𝑁𝑘+1

𝑡𝑟𝑎𝑖𝑛 = 𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 +𝑁𝑎𝑑𝑑

Set 𝑘 = 𝑘 + 1
end while

Note that the neural network is re-trained at each iteration of the algorithm (for a network  ∈ 𝛶 200,4(𝜎; 6, 1) and 𝑇𝑂𝐿 = 1.25,
the training typically takes between around 30 minutes (𝑁𝑡𝑟𝑎𝑖𝑛 = 500) and 2.5 h (𝑁𝑡𝑟𝑎𝑖𝑛 = 4000)). This algorithm performs thus well
when the training times are negligible compared to the time needed to perform new numerical simulations, which is for example
the case in the context of laser melting [27]. In this situation, an additive increase of the training parameters is beneficial, in order
to perform as few numerical simulations as possible. We test here the algorithm for the Poisson problem as a proof of concept.

Table 10 visualizes the evolution of |||𝑢ℎ − 𝑢𝑘 |||

2
𝑀 during the iterations of Algorithm 1 for 𝜖 = 0.2, when different values of 𝑁𝑎𝑑𝑑

and 𝑁1
𝑡𝑟𝑎𝑖𝑛 are chosen (𝑘𝑚𝑎𝑥 = 15). Note that, for the sake of consistency, we have computed |||𝑢𝑘 −𝑢ℎ|||2𝑀 using the same test set of size

𝑀 = 2000 as in Section 4.2. We first remark that the algorithm is able to ensure the given accuracy before reaching the maximum
number of iterations, and this for all starting points 𝑁1

𝑡𝑟𝑎𝑖𝑛 and increments 𝑁𝑎𝑑𝑑 . Furthermore, we note that the final number of
training samples is between 2000 and 4000 in all cases, which is coherent with the numerical results obtained in Section 4.2 (see
Table 7 and Fig. 5).

We next set 𝑁𝑎𝑑𝑑 = 𝑁1
𝑡𝑟𝑎𝑖𝑛 = 500 and test the algorithm for different values of 𝜖. Table 11 visualizes the numerical results. For

validation purposes, we use here the same test set of size 𝑀 = 2000 to check the stopping criterion. Note however that we obtain
similar results and behavior when using a smaller, cheaper, test set with 𝑀 = 500 for instance.

For the three values of 𝜖 tested here, the adaptive algorithm stops before the maximum number of iterations and is able to ensure
that |||𝑢 − 𝑢 |||

2 < 𝜖2∕4, as desired.
13

ℎ  𝑀

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Table 10
Error of a neural network  ∈ 𝛶 200,4(𝜎; 6, 1) at each iteration of the continuation algorithm, for different values of 𝑁𝑎𝑑𝑑 , 𝑁1

𝑡𝑟𝑎𝑖𝑛
and 𝜖 = 0.2. 𝑀 = 2000.

𝑁1
𝑡𝑟𝑎𝑖𝑛 = 1000, 𝑁𝑎𝑑𝑑 = 1000

𝑘 = 1 𝑘 = 2 𝑘 = 3

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 1000 2000 3000

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 2.64 ⋅ 10−2 1.11 ⋅ 10−2 9.76 ⋅ 10−3

𝜖2∕4 1 ⋅ 10−2

𝑇𝑂𝐿 1.25
|||𝑢 − 𝑢ℎ|||2𝑀 8.23 ⋅ 10−3

𝑁1
𝑡𝑟𝑎𝑖𝑛 = 500, 𝑁𝑎𝑑𝑑 = 500

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 500 1000 1500 2000 2500 3000

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 2.05 ⋅ 10−1 1.93 ⋅ 10−2 1.43 ⋅ 10−2 1.21 ⋅ 10−2 1.03 ⋅ 10−2 9.25 ⋅ 10−3

𝜖2∕4 1 ⋅ 10−2

𝑇𝑂𝐿 1.25
|||𝑢 − 𝑢ℎ|||2𝑀 8.23 ⋅ 10−3

𝑁1
𝑡𝑟𝑎𝑖𝑛 = 500, 𝑁𝑎𝑑𝑑 = 250

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 500 750 1000 1250 1500

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 3.48 ⋅ 10−1 6.05 ⋅ 10−2 2.41 ⋅ 10−2 1.72 ⋅ 10−2 1.45 ⋅ 10−2

𝑘 = 6 𝑘 = 7 𝑘 = 8 𝑘 = 9 𝑘 = 10

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 1750 2000 2250 2500 2750

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 1.24 ⋅ 10−2 1.16 ⋅ 10−2 1.05 ⋅ 10−2 1.02 ⋅ 10−2 9.80 ⋅ 10−3

𝜖2∕4 1 ⋅ 10−2

𝑇𝑂𝐿 1.25
|||𝑢 − 𝑢ℎ|||2𝑀 8.23 ⋅ 10−3

Table 11
Error of a neural network  ∈ 𝛶 200,4(𝜎; 6, 1) at each iteration of the continuation algorithm, for different values of 𝜖.
𝑁1

𝑡𝑟𝑎𝑖𝑛 = 𝑁𝑎𝑑𝑑 = 500.

𝜖 = 0.4

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 500 1000 1500 2000 2500 3000

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 3.64 ⋅ 10−1 6.71 ⋅ 10−2 5.51 ⋅ 10−2 5.11 ⋅ 10−2 4.70 ⋅ 10−2 3.65 ⋅ 10−2

𝜖2∕4 4 ⋅ 10−2

𝑇𝑂𝐿 2.5
|||𝑢 − 𝑢ℎ|||2𝑀 3.31 ⋅ 10−2

𝜖 = 0.2

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 500 1000 1500 2000 2500

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 2.32 ⋅ 10−1 1.80 ⋅ 10−2 1.29 ⋅ 10−2 1.01 ⋅ 10−2 9.45 ⋅ 10−3

𝜖2∕4 1 ⋅ 10−2

𝑇𝑂𝐿 1.25
|||𝑢 − 𝑢ℎ|||2𝑀 8.23 ⋅ 10−3

𝜖 = 0.1

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6 𝑘 = 7

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 500 1000 1500 2000 2500 3000 3500

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 9.47 ⋅ 10−2 1.02 ⋅ 10−2 7.53 ⋅ 10−3 5.30 ⋅ 10−3 4.46 ⋅ 10−3 4.09 ⋅ 10−3 3.17 ⋅ 10−3

𝑘 = 8 𝑘 = 9 𝑘 = 10 𝑘 = 11 𝑘 = 12 𝑘 = 13

𝑁𝑘
𝑡𝑟𝑎𝑖𝑛 4000 4500 5000 5500 6000 6500

|||𝑢𝑘 − 𝑢ℎ|||2𝑀 2.90 ⋅ 10−3 2.76 ⋅ 10−3 2.65 ⋅ 10−3 2.61 ⋅ 10−3 2.51 ⋅ 10−3 2.43 ⋅ 10−3

𝜖2∕4 2.5 ⋅ 10−3

𝑇𝑂𝐿 0.625
|||𝑢 − 𝑢ℎ|||2𝑀 2.05 ⋅ 10−3
14

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.

f

T

6. Construction of a parameter-dependent mesh

Finally, in order to complete the implementation of the proposed algorithm, one has to evaluate the mapping (𝑥, 𝜇) → 𝑢 (𝑥;𝜇)
or several values of 𝑥 in order to compute the solution 𝑢 (⋅;𝜇) in the whole domain 𝛺. For a given value of the parameter 𝜇,

we thus need to construct a discretization on which to evaluate the neural network, and this without computing the corresponding
finite element solution 𝑢ℎ(⋅;𝜇). For this purpose, we advocate hereafter an algorithm based on 𝐿2(𝛺)-projections.

Consider a discretization ℎ of 𝛺 and let 𝑉ℎ be the usual finite element space of continuous, piecewise linear functions on ℎ.
The 𝐿2(𝛺)-projection onto 𝑉ℎ of a function 𝑔 ∈ 𝐿2(𝛺) is denoted by 𝛱ℎ𝑔 ∈ 𝑉ℎ, and defined by

∫𝛺
(𝛱ℎ𝑔)𝑣ℎ = ∫𝛺

𝑔𝑣ℎ ∀𝑣ℎ ∈ 𝑉ℎ.

For every 𝑤ℎ ∈ 𝑉ℎ, we have

‖𝑔 −𝛱ℎ𝑔‖
2
𝐿2(𝛺)

= ∫𝛺
(𝑔 −𝛱ℎ𝑔)(𝑔 −𝑤ℎ) ≤ ‖𝑔 −𝛱ℎ𝑔‖𝐿2(𝛺)‖𝑔 −𝑤ℎ‖𝐿2(𝛺),

so that

‖𝑔 −𝛱ℎ𝑔‖𝐿2(𝛺) ≤ ‖𝑔 −𝑤ℎ‖𝐿2(𝛺) ∀𝑤ℎ ∈ 𝑉ℎ.

In particular, taking 𝑤ℎ = 𝛱ℎ𝑔+𝑅ℎ(𝑔 −𝛱ℎ𝑔), where 𝑅ℎ denotes the Clément interpolant, we obtain [46]

‖𝑔 −𝛱ℎ𝑔‖
2
𝐿2(𝛺)

≤ ‖𝑔 −𝛱ℎ𝑔 − 𝑅ℎ(𝑔 −𝛱ℎ𝑔)‖2𝐿2(𝛺)

≤
∑

𝐾∈
‖𝑔 −𝛱ℎ𝑔 − 𝑅ℎ(𝑔 −𝛱ℎ𝑔)‖2𝐿2(𝐾)

≤ 𝐶
∑

𝐾∈
ℎ2𝐾‖∇(𝑔 −𝛱ℎ𝑔)‖2𝐿2(𝛥𝐾)

,

where 𝛥𝐾 is the set of triangles sharing a vertex with 𝐾 and 𝐶 is a constant independent of ℎ and 𝑔 (but depending on the mesh
aspect ratio). We apply a Zienkiewicz–Zhu post-processing [47–49] to approximate ∇𝑔 by 𝐺𝑍𝑍𝑔 ∈ 𝑉ℎ, which is defined, for any
vertex 𝑥 ∈ ℎ by

𝐺𝑍𝑍𝑔(𝑥) ∶=

∑

𝐾∈ℎ ,𝑥∈𝐾 |𝐾|

(

∇𝛱ℎ𝑔
)

|𝐾
∑

𝐾∈ℎ ,𝑥∈𝐾 |𝐾|

.

For a given tolerance 𝑡𝑜𝑙, we then want to build a mesh ℎ such that

0.75 𝑡𝑜𝑙 ≤

(∑

𝐾∈ℎ ℎ
2
𝐾‖𝐺

𝑍𝑍𝑔 − ∇𝛱ℎ𝑔‖𝐿2(𝐾)

|𝛺|

)

1
2

≤ 1.25 𝑡𝑜𝑙.

he above conditions are met when, for all 𝐾 ∈ ℎ,

0.752 𝑡𝑜𝑙2
|𝛺|

𝑁2
𝐾

≤ ℎ2𝐾‖𝐺
𝑍𝑍𝑔 − ∇𝛱ℎ𝑔‖𝐿2(𝐾) ≤ 1.252 𝑡𝑜𝑙2

|𝛺|

𝑁2
𝐾

, (12)

where 𝑁𝐾 is the number of triangles of ℎ. For a given 𝜇, the condition (12) is used to build a discretization adapted to 𝑔 = 𝑢 (⋅;𝜇).
This discretization depends only on the solution 𝑔 to display, but not on the underlying PDE anymore.

Let us consider the neural network  ∈ 𝛶 400,4(𝜎; 6, 1) trained with finite element simulations performed with 𝑇𝑂𝐿 = 1.25, and
let us use the above algorithm with 𝑔 = 𝑢 (⋅;𝜇), for various values of 𝜇. Table 12 visualizes results obtained with 𝑡𝑜𝑙 = 0.3125, and
compare them to the ones obtained with the finite element method. Note that we take two different tolerances: 𝑇𝑂𝐿 for computing
𝑢ℎ satisfying (11), and 𝑡𝑜𝑙 to build a mesh satisfying (12) (with 𝑔 = 𝑢), since the effectivity index of the two error indicators
are different. The times reported correspond to wall times obtained to perform the whole adaptation algorithms (as opposed to
Table 6, where only the last iteration is considered) when solving the linear systems using a CPU Intel Core, 3.5 GHz and evaluating
the networks on a graphical card Gigabyte GeForce RTX 3080. Fig. 8 illustrates the comparison of meshes obtained with the finite
element and the 𝐿2(𝛺)− projection algorithms.

In this case, solving the underlying PDE is relatively simple and fast. Thus, generating the mesh using the 𝐿2(𝛺)-projection
takes more time than using the finite element method. However, the 𝐿2(𝛺)-projection presented here can be used indifferently for
any differential equation, once a network has been trained. We thus expect it to perform well when a more involved and possibly
non-linear PDE is considered.

7. Conclusion

We have proposed a data-driven, adaptive finite element—neural network method to approximate the solution of parametric
PDEs. The method uses data from finite element simulations to train a deep neural network, that can then be used to approximate
the solution of the PDE.

By considering first a fixed finite-element grid approach combined with a neural network used to approximate the discretized
15

parameter-to-solution map, we have observed that this method shows limitation in term of error control. By considering an adaptive

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
Table 12
Comparison of meshes adapted according to (11) and (12) for various values of 𝜇. The times reported correspond to the wall-times
needed to perform the whole adaptation algorithms.
𝜇 Finite elements 𝐿2(𝛺) projection with 𝑢

𝑁ℎ ‖𝑢 − 𝑢ℎ‖2 𝑊 𝑇 [s] 𝑁ℎ ||𝑢 − 𝑢 ||

2 𝑊 𝑇 [s]

(5, 10, 1000, 0.3) 8780 1.90 ⋅ 10−2 10.3 10 654 8.92 ⋅ 10−2 18.6
(5, 1, 100, 2) 70 8.73 ⋅ 10−3 2.16 70 9.41 ⋅ 10−3 5.62
(5, 1, 1000, 2) 485 1.09 ⋅ 10−2 2.71 625 1.92 ⋅ 10−2 6.21
(5, 10, 100, 0.3) 942 2.77 ⋅ 10−2 3.52 1179 4.90 ⋅ 10−2 7.19
(5, 5, 500, 1) 1259 7.11 ⋅ 10−3 3.68 1473 5.80 ⋅ 10−3 7.54
(5, 5, 1000, 1) 2356 7.64 ⋅ 10−3 4.61 2852 9.13 ⋅ 10−3 9.48
(5, 5, 500, 0.3) 4074 1.13 ⋅ 10−2 6.18 5047 1.91 ⋅ 10−2 11.7

Fig. 8. Comparison of meshes obtained with the finite element method and the 𝐿2(𝛺)-projection algorithm. Top: meshes adapted according to (11). Bottom:
meshes adapted according to (12).

finite-element method combined with a neural network used to approximate the function (𝑥;𝜇) ↦ 𝑢(𝑥;𝜇), we have concluded that this
new approach allows to balance the neural network error and the error of the finite element method. Finally, an adaptive algorithm
to control the size of the training set has been proposed, in order to ensure that the overall error is below a given tolerance 𝜖.
A parameter-dependent grid reconstruction allowing the reconstruction of the final neural network solution independently of the
underlying PDE has also been proposed.

Perspectives for future work include the application of the present method to more complex PDEs, with possibly non smooth
solutions, as well as the study of a criterion to better choose the parameters in the training set.

CRediT authorship contribution statement

Alexandre Caboussat: Conceptualization, Funding acquisition, Methodology, Supervision, Writing – original draft, Writing –
review & editing. Maude Girardin: Conceptualization, Methodology, Software, Writing – original draft, Writing – review & editing,
Visualization. Marco Picasso: Conceptualization, Funding acquisition, Methodology, Supervision, Writing – original draft, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

The authors thank Paride Passelli (EPFL) for fruitful discussions.
16

Computer Methods in Applied Mechanics and Engineering 421 (2024) 116784A. Caboussat et al.
References

[1] A.R. Barron, Approximation and estimation bounds for artificial neural networks, Mach. Learn. 14 (1994) 115–133.
[2] R. DeVore, B. Hanin, G. Petrova, Neural network approximation, Acta Numer. 30 (2021) 327–444.
[3] W. E, C. Ma, L. Wu, Barron spaces and the compositional function spaces for neural network models, 2019, arXiv preprint arXiv:1906.08039.
[4] P. Petersen, F. Voigtlaender, Optimal approximation of piecewise smooth functions using deep relu neural networks, Neural Netw. 108 (2018) 296–330.
[5] U. Shaham, A. Cloninger, R. Coifman, Provable approximation properties for deep neural networks, Appl. Comput. Harmon. Anal. 44 (2018) 537–557.
[6] D. Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks, in: Conference on Learning Theory, PMLR, 2018, pp. 639–649.
[7] F. Bach, L. Chizat, Gradient descent on infinitely wide neural networks: Global convergence and generalization, 2021, arXiv preprint arXiv:2110.08084.
[8] L. Bottou, F. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2018) 223–311.
[9] G. Kutyniok, P. Petersen, M. Raslan, R. Schneider, A theoretical analysis of deep neural networks and parametric pdes, Constr. Approx. 55 (2022) 73–125.

[10] C. Schwab, J. Zech, Deep learning in high dimension: Neural network expression rates for generalized polynomial chaos expansions in uq, Anal. Appl. 17
(2019) 19–55.

[11] C. Ma, S. Wojtowytsch, L. Wu, et al., Towards a mathematical understanding of neural network-based machine learning: what we know and what we
don’t, 2020, arXiv preprint arXiv:2009.10713.

[12] J. Schmidt-Hieber, Nonparametric regression using deep neural networks with relu activation function, Ann. Statist. 48 (2020) http://dx.doi.org/10.1214/
19-aos1875, URL: http://dx.doi.org/10.1214/19-AOS1875.

[13] G. Bai, U. Koley, S. Mishra, R. Molinaro, Physics informed neural networks (pinns) for approximating nonlinear dispersive pdes, J. Comput. Math. 39
(2021) 816.

[14] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys. 3 (2021) 422–440.
[15] M. Raissi, P. Perdikaris, G. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, 2017,

arXiv preprint arXiv:1711.10561.
[16] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving

nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[17] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: An unsupervised learning-based numerical method for solving elliptic pdes, J. Comput. Phys.

420 (2020) 109707.
[18] E. Samaniego, C. Anitescu, S. Goswami, V. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial

differential equations in computational mechanics via machine learning: Concepts, implementation and applications, Comput. Methods Appl. Mech. Engrg.
362 (2020) 112790.

[19] B. Yu, et al., The deep ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018) 1–12.
[20] S. Lanthaler, S. Mishra, G.E. Karniadakis, Error estimates for deeponets: A deep learning framework in infinite dimensions, Trans. Math. Appl. 6 (2022)

tnac001.
[21] L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators,

Nat. Mach. Intell. 3 (2021) 218–229.
[22] S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed deeponets, Sci. Adv. 7

(2021) eabi8605.
[23] N. Dal Santo, S. Deparis, L. Pegolotti, Data driven approximation of parametrized pdes by reduced basis and neural networks, J. Comput. Phys. 416 (2020)

109550.
[24] M. Geist, P. Petersen, M. Raslan, R. Schneider, G. Kutyniok, Numerical solution of the parametric diffusion equation by deep neural networks, J. Sci.

Comput. 88 (2021) 1–37.
[25] B. Haasdonk, H. Kleikamp, M. Ohlberger, F. Schindler, T. Wenzel, A new certified hierarchical and adaptive rb-ml-rom surrogate model for parametrized

pdes, SIAM J. Sci. Comput. 45 (2023) A1039–A1065.
[26] J.S. Hesthaven, S. Ubbiali, Non-intrusive reduced order modeling of nonlinear problems using neural networks, J. Comput. Phys. 363 (2018) 55–78.
[27] A. Caboussat, J. Hess, A. Masserey, M. Picasso, Numerical simulation of temperature-driven free surface flows, with application to laser melting and

polishing, J. Comput. Phys.: X 17 (2023) 100127.
[28] J.S. Hesthaven, G. Rozza, B. Stamm, et al., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590, Springer, 2016.
[29] A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92, Springer, 2015.
[30] A. Chatterjee, An introduction to the proper orthogonal decomposition, Curr. Sci. (2000) 808–817.
[31] Y. Liang, H. Lee, S. Lim, W. Lin, K. Lee, C. Wu, Proper orthogonal decomposition and its applications—part i: Theory, J. Sound Vib. 252 (2002) 527–544.
[32] S. Volkwein, Model Reduction using Proper Orthogonal Decomposition, in: Lecture Notes, vol. 1025, Institute of Mathematics and Scientific Computing,

University of Graz, 2011, see http://www.uni-graz.at/imawww/volkwein/POD.pdf.
[33] K. Lee, K.T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys. 404 (2020)

108973.
[34] M. Ohlberger, S. Rave, Reduced basis methods: Success, limitations and future challenges, 2015, arXiv preprint arXiv:1511.02021.
[35] R. Verfürth, A Posteriori Error Estimation Techniques for Finite Element Methods, OUP Oxford, 2013.
[36] C.J. Arthurs, A.P. King, Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to the navier-stokes equations,

J. Comput. Phys. 438 (2021) 110364.
[37] W. E, T. Li, E. Vanden-Eijnden, Applied Stochastic Analysis, vol. 199, American Mathematical Soc, 2021.
[38] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444.
[39] Y. Bengio, I. Goodfellow, A. Courville, Deep Learning, vol. 1, MIT press Cambridge, MA, USA, 2017.
[40] F. Chollet, et al., Keras, 2015, https://keras.io.
[41] R. Verfürth, A posteriori error estimators for convection–diffusion equations, Numer. Math. 80 (1998) 641–663.
[42] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, in: JMLR Workshop and Conference Proceedings, 2010, pp. 249–256.
[43] S. Ruder, An overview of gradient descent optimization algorithms, 2016, arXiv preprint arXiv:1609.04747.
[44] H. Borouchaki, P. Laug, The bl2d mesh generator: Beginner’s guide, user’s and programmer’s manual, 1996.
[45] P. Passelli, M. Picasso, Daptive finite elements with large aspect ratio for aluminium electrolysis, in: Proceedings of the 11th Edition of the International

Conference on Adaptive Modeling and Simulation, (ADMOS), 2023.
[46] P. Clément, Approximation by finite element functions using local regularization, Rev. Française d’Autom. Inform. Rech. Opér. Anal. Numér. 9 (1975)

77–84.
[47] M. Ainsworth, J.T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997) 1–88.
[48] O.C. Zienkiewicz, P.B. Morice, The Finite Element Method in Engineering Science, vol. 1977, McGraw-hill London, 1971.
[49] O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Mehtods Eng. 24 (1987)

337–357.
17

http://refhub.elsevier.com/S0045-7825(24)00040-9/sb1
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb2
http://arxiv.org/abs/1906.08039
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb4
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb5
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb6
http://arxiv.org/abs/2110.08084
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb8
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb9
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb10
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb10
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb10
http://arxiv.org/abs/2009.10713
http://dx.doi.org/10.1214/19-aos1875
http://dx.doi.org/10.1214/19-aos1875
http://dx.doi.org/10.1214/19-aos1875
http://dx.doi.org/10.1214/19-AOS1875
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb13
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb13
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb13
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb14
http://arxiv.org/abs/1711.10561
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb16
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb16
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb16
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb17
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb17
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb17
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb18
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb18
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb18
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb18
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb18
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb19
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb20
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb20
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb20
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb21
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb21
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb21
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb22
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb22
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb22
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb23
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb23
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb23
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb24
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb24
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb24
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb25
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb25
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb25
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb26
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb27
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb27
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb27
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb28
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb29
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb30
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb31
http://www.uni-graz.at/imawww/volkwein/POD.pdf
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb33
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb33
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb33
http://arxiv.org/abs/1511.02021
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb35
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb36
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb36
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb36
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb37
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb38
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb39
https://keras.io
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb41
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb42
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb42
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb42
http://arxiv.org/abs/1609.04747
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb44
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb45
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb45
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb45
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb46
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb46
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb46
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb47
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb48
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb49
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb49
http://refhub.elsevier.com/S0045-7825(24)00040-9/sb49

	Error assessment of an adaptive finite elements—neural networks method for an elliptic parametric PDE
	Introduction
	Error assessment
	Fully connected feedforward neural networks
	Fixed grid approach
	Adapted grid approach

	Numerical experiments
	Fixed grid approach
	Finite element method
	Neural networks

	Adapted grid approach
	Adaptive finite element method
	Neural networks

	An adaptive algorithm for the number of training samples
	Construction of a parameter-dependent mesh
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

