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ABSTRACT
In dynamic settings, fully distributed gossip-based learning schemes
have recently gained interest due to their better scalability, robust-
ness, and enhanced privacy protection compared to server-based
architectures. However, existing approaches to their performance
characterization either assume stable connectivity among nodes
or are ad-hoc for specific trace-based mobility patterns. Thus, in
dynamic settings, there is currently a poor understanding of the
conditions under which gossip-based learning schemes are feasible,
and of their main performance tradeoffs. In this work, we start
addressing this issue by performing a first baselining of Gossip
Learning (GL) on random Time-Varying Graphs (TVG), to get a
first-order characterization of their main performance patterns in
dynamic settings. The use of random TVG enables a fine-grained
and accurate characterization of GL effectiveness as a function
of the main system parameters while abstracting from scenario-
specific features of patterns of communication and mobility (e.g.,
induced by road grids or measured mobility traces). Our results sug-
gest that GL schemes are robust to node mobility and comparable
in accuracy and convergence speed to Federated Learning architec-
tures, over a wide range of operational conditions. We show that
the final model accuracy is robust against data dispersion across
nodes as well as against very low rates of exchanges across nodes.

CCS CONCEPTS
• Networks → Peer-to-peer networks; Mobile networks; •
Computing methodologies→ Distributed artificial intelli-
gence; • Theory of computation→ Random network models;
• Mathematics of computing→ Random graphs.
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1 INTRODUCTION
The pervasive diffusion of the Internet of Things (IoT) and Smart
City paradigms, is pushing the bulk of the computing load to
elaborate increasing amount of data towards the edge of the net-
work [1]. This trend triggered interest in distributed Machine Learn-
ing (ML) [2] which, by reducing data transfer to the cloud, improves
privacy while decreasing bandwidth utilization. However, many dis-
tributed schemes scale poorly, as they rely on infrastructure-based
information exchanges or a central coordination server. These is-
sues sparked interest in fully distributed schemes, such as Gossip
Learning (GL) [3–5], based on a server-less, fully distributed model
training approach and on knowledge transfer among agents via
direct, peer-to-peer exchanges of models. They scale well with the
number of agents, as each agent contributes to service capacity not
only with data but also by adding computing and communication
capacity. Several GL schemes have been proposed for a large variety
of learning architectures ([4, 5]), scenarios and applications [6–8].
However, the majority of these schemes assume static network
topologies (e.g., ring [9] or mesh [5, 10, 11]). In such networks,
[4] shows that GL converges and delivers comparable accuracy to
that of server-based distributed schemes such as Federated Learn-
ing (FL). However, these results do not apply to dynamic settings,
where node mobility implies a network topology that changes over
time, such as in Vehicle-to-Vehicle (V2V) networks or robot swarms.
Several studies assess GL in dynamic scenarios (e.g., from fully-
connected [12] to volatile vehicular networks [7]) showing that
convergence to a high-accuracy models, even in trace-driven mobil-
ity scenarios, is possible. However, these assessments are limited to
specific trace-based mobility patterns, which are hard to extrapolate
to other settings, and do not offer insights into the relationship
between the main system parameters and GL’s key performance
indicators. Specifically, when nodes move, it is currently unclear
what are the operating conditions in which GL schemes converge
and deliver satisfactory performance and how their performance
compares to Centralized Learning or other distributed schemes such
as Federated Learning. In this work, we investigate the feasibility
of GL in dynamic settings by elaborating a first characterization of
the basic mechanisms affecting its performance on random TVG, as
a function of the main system parameters and the main structural
properties of the time-varying network. The use of synthetic graphs
enables a fine-grained and accurate system characterization that
abstracts from context-specific spatiotemporal patterns of commu-
nication and mobility, such as those found in measurement-based
mobility traces. Specifically, our main contributions are:
• We characterize the performance of GL on dynamic random

graphs, based on a GL scheme that generalizes Federated Learn-
ing (FL) [13] to fully decentralized dynamic settings, including
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FL as a particular case. We show that GL schemes are robust to
node mobility over an extensive range of scenarios, regarding the
number of nodes and frequency of inter-node contacts. To the
best of our knowledge, we are the first to characterize and assess
GL feasibility over non-trivial yet non-trace-driven connectivity
patterns.
• We determine the impact of the main system parameters on
GL performance. We show that, even in dynamic settings, GL
accuracy and convergence speed are comparable to those of
centralized Federated Learning schemes.
• We show that the final model accuracy is robust against data
dispersion across nodes as well as against very low rates of
exchanges across nodes.

These results suggest that node mobility and the lack of coordi-
nation among nodes do not cause a performance penalty in GL
compared to centralized architectures, such as FL, over an exten-
sive set of system configurations.

2 SYSTEM MODEL
We consider a set 𝑉 of mobile nodes modeling, e.g., smartphones,
UAVs, and connected vehicles. We assume that each node is en-
dowed with an ML model whose architecture is equal for all nodes
and which needs to be trained and used by each node to perform
a specific inference task. Assuming the same ML architecture for
every model in the system is necessary to make model aggregation
possible, as the aggregation operations between models are only
possible between parameter vectors of the same dimension. Each
node is also endowed with a set of data points, denoted as local
dataset. We assume nodes can communicate directly among them-
selves through wireless Device-to-Device (D2D) communications.
Communication between two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 may occur whenever
they are in contact, i.e., within the transmission range of each other.
We assume time is divided into intervals called slots, indexed with
𝑡 ∈ N.

2.1 Time-Varying Graph Model
We model the mobile nodes’ connectivity graph and its evolution
over time as a TVG, composed of a set𝑉 of nodes and a time-variable
set 𝐸𝑡 of edges between nodes. An edge ∈ 𝐸𝑡 models the existence of
a direct wireless channel between two nodes. We assume the graph
to be constant within each time slot and to (possibly) vary only
from one slot to the following one. The resulting dynamic graph,
denoted as𝐺 = {𝐺𝑡 = (𝑉 , 𝐸𝑡 ) : 𝑡 ∈ N}, is thus a sequence of graphs,
each associated with a time slot. The volatility and dynamicity of
the wireless channel are modeled by the fact that the set of edges 𝐸𝑡
can be different at each slot. These dynamic graphs are often used
to model opportunistic gossiping schemes because they simplify
assumptions about the network structure while still capturing key
characteristics of real-world networks. In particular, they allow
varying the number of nodes, the connectivity patterns between
nodes, and the frequency and duration of node interactions in a
controlled and systematic way. In this paper, we model 𝐺 as an
Erdős-Rényi dynamic graph [14], a type of uniform random graph.
Specifically, at any time slot 𝑡 and for any two nodes 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 , the
probability 𝑝 that an edge exists between them is the same for any
𝑖, 𝑗, 𝑡 . This assumption gives the graph a homogeneous structure,

Algorithm 1 Basic GL algorithm. The ML model weights and the set of neighbors
of node 𝑣 in time slot 𝑡 are denoted by 𝑤𝑣𝑡 and 𝐾𝑣𝑡 , respectively. The loss of node 𝑘 ’s
model on node 𝑣’s dataset is denoted by 𝑙𝑣

𝑘
and its formulation is task-specific (e.g.,

cross-entropy for classification tasks).

1: 𝑤0 ← INITIALIZE()
2: for ∀𝑣 ∈ 𝑉 do 𝑤𝑣0 ← 𝑤0

3: loop ⊲ ∀𝑣 ∈ 𝑉 executes this loop in parallel, start from 𝑡 ← 0
4: 𝑤𝑣𝑡 ← TRAIN(𝑤𝑣𝑡 )
5: for ∀𝑘 ∈ 𝐾𝑣𝑡 do Send 𝑤𝑣𝑡 to 𝑘 , Receive 𝑤𝑘𝑡 from 𝑘
6: for ∀𝑘 ∈ 𝐾𝑣𝑡 ∪ {𝑣} do Compute 𝑙𝑣

𝑘

7: 𝑤𝑣
𝑡+1 ←

( ∑
𝑘∈𝐾𝑣𝑡 ∪{𝑣}

𝑤𝑘𝑡 2
−𝑙𝑣
𝑘

)
·
( ∑
𝑘∈𝐾𝑣𝑡 ∪{𝑣}

2−𝑙
𝑣
𝑘

)−1
⊲ MERGE

8: 𝑡 ← 𝑡 + 1

ensuring stationary patterns of evolution over time. We further
assume that the edges are conditionally independent of each other,
i.e., ∀𝑡 ∈ N, 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 : P[(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑡 ] = P[(𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸𝑡 | (𝑣𝑖 , 𝑣 𝑗 ) ∈
𝐸𝑡−1] = 𝑝 . The choice of 𝑝 determines the graph’s degree of connec-
tivity at any time slot and, thus, the rate at which new connections
are established and terminated between nodes, which is a key aspect
of network dynamicity. Moreover, 𝑝 also determines the mean du-
ration of a link between any two nodes and, thus, the edge density
and clustering degree of the graph. We chose Erdős-Rényi dynamic
random graphs because they are among the simplest dynamic ran-
dom graph models of realistic D2D network topologies that provide
mathematical guarantees on key graph metrics such as the aver-
age number of edges E [|𝐸𝑡 |] = 𝑝

(
|𝑉 |
2

)
,∀𝑡 ∈ N, the nodes’ degree

distribution P (𝑑 (𝑣) = 𝑘) =
(
|𝑉 |−1
𝑘

)
𝑝𝑘 (1 − 𝑝) |𝑉 |−1−𝑘 , and the 𝑝

threshold for the almost-sure graph’s connectivity 𝑝 >
ln |𝑉 |
|𝑉 | . As-

suming conditional independence of edges allows modeling worst-
case edge dynamics, where changes in connectivity patterns are
abrupt and fast. Such model choice approximates well real-world
scenarios in which node mobility and time-slot duration are suf-
ficiently high to make the inter-slot edge dependence negligible.
Furthermore, mobile networks’ connectivity can be modeled with
a random graph when the GL message exchange dynamics are
considerably slower than the nodes’ physical mobility dynamics.
Even though the stochastic properties of random graphs are well-
studied in the literature (e.g., node contact rate and duration, graph
topology’s feature distribution, etc.), the performance evolution of
distributed ML applications running on such dynamic networks
are still unexplored, which calls for Monte-Carlo-like assessment
of such systems.

2.2 Gossip Learning Operation
We detail the operation of the basic GL algorithm (Algorithm 1) run
by each node. In this work, we assume all models are initialized
with identical random weights, which has been shown to improve
convergence speed and accuracy [13]. Starting from 𝑡 = 0, in every
time slot, the algorithm proceeds through three phases, which we
assume to be synchronized across nodes. In the first phase (training),
each node trains its local model instance on the local dataset. In the
second phase (exchanging), each node sends its local model instance
to its neighbors and receives their local instance. For simplicity, we
assume model exchanges to be instantaneous, disregarding the neg-
ative impact of network interference on model transmission speed
for finite model transmission lengths. Finally, in the third phase
(merging), each node merges the models received from neighbor
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nodes with its local model (i.e., it computes a linear combination of
them) to produce ameta-model, similarly to what parameter servers
do in centralized FL algorithms [13]. The weights of the merging
operation are computed via the Decentralized Powerloss (DP) strat-
egy [7], where each weight is a function (Algorithm 1, line 7) of the
loss computed over the context-specific validation set. We chose
the DP merging strategy as it has proven superior performance to
other state-of-the-art merging approaches [7]. These three phases
are repeated until a termination criterion is met. For instance, after
a maximum number of iterations is attained or when the average
model’s accuracy exceeds a threshold. In this work, we assumed
the termination criterion is met when the global model’s accuracy
does not improve more than a fixed threshold over a fixed number
of gossip rounds.

3 PERFORMANCE EVALUATION
3.1 Simulation Setup
We assess the performance of GL schemes on time-varying graphs
considering the case in which a set𝑉 of homogeneous nodes in the
system need to train anMLmodel to perform an inference task such
as handwritten digit recognition (MNIST dataset,𝑚 = 10 classes,
image size 𝑛 = 28) or object recognition (CIFAR-10 dataset,𝑚 = 10
classes, image size 𝑛 = 32) from a set of images. We each node in the
system has a local dataset of equal size for all nodes and that each
data point in the system can belong to at most one local dataset.
All local datasets are i.i.d. and partitioned in 85% training set and
15% validation set. Let us denote the union of all local datasets in
the system as the global dataset of size 𝛾 . This study assumes the
global dataset is built as a random sample of 𝛾 dataset samples from
one of the two source datasets (MNIST or CIFAR-10). By varying
𝛾 , we modulate the total amount of data in the system available
for the collaborative model training. To each global dataset, we
associate a global test set obtained by random sampling 20% of the
source datasets and ensuring that the global dataset and test set are
disjoint. We assume that the global dataset is equally distributed
across all nodes in the scenario, meaning that each node’s local
dataset size is 𝛾/|𝑉 |. This choice allows us to assess the impact of
information fragmentation on GL performance for a fixed global
dataset size.

To perform both inference tasks, we assume that nodes use super-
vised models trained with Mini-Batch Stochastic Gradient Descent
(SGD) with Categorical Cross-Entropy loss, early-stopping patience
of 20 epochs, batch size of 32, momentum of 0.9, and a 10−4 learning
rate. Specifically, we assumed every node in the system executes
a Convolutional Neural Network (CNN), whose architecture and
hyperparameters (identical for all nodes) are designed for effective
shape feature extraction. Layer 1 (input) is a 2D Convolution with
32 filters and 3x3 kernel. Layer 2 is a 2x2 Max Pooling. Layer 3 is a
100-neuron Dense layer with ReLu activation. Finally, Layer 4 (out-
put) is a 10-neuron Dense layer with SoftMax activation. Further
hyperparameter optimization is out of the scope of this work and
is left to future investigation. We compare the performance of GL
with the following baselines:
• Centralized Learning, where a server collects the local datasets

from all participants, aggregates them into a global dataset, and
locally trains a global model on it.

• Local Learning, in which each node trains its local model using
only its local dataset without exchanging data or models with
other nodes or a centralized server. It is derived from our GL
reference scheme by considering TVGs with 𝑝 = 0. When 𝑝 = 0,
each node’s local model does not change over time compared to
the one trained at 𝑡 = 0.
• Federated Learning [13], in which a server collects the models

from all participants at each iteration, aggregates them, and redis-
tributes the aggregated model to all participants. For comparison,
we assume models are aggregated with Decentralized Powerloss
(as in Algorithm 1, line 7). FL can be derived as a special case of
our GL scheme when applied to TVGs with 𝑝 = 1 (i.e., complete
graphs).
We empirically verified that an early-stopping patience of 20

epochs for the local training was sufficient to detect convergence
accurately. We assume the random coefficients of the initial ML
model at 𝑡 = 0 are the same for all nodes because independent
random model initializations converge to different weights after
training, reducing global model accuracy when merging them [13].
We measure the accuracy 𝐴𝑡 of each node’s local model at time
slot 𝑡 , defined as the fraction of the model’s correct predictions
out of all predictions for the global test set. We denote a node’s
accuracy at 𝑡 = 0, before gossiping starts, as 𝐴0 (initial accuracy),
and a node’s accuracy at convergence as 𝐴𝐶 (final accuracy). We
define the gossip convergence time 𝐶 as the number of time slots
required for the system to converge. We assumed our schemes to
have converged when the local models’ accuracy (averaged across
all nodes) did not improve by more than 0.5% over the last 10 rounds
(gossip patience).

3.2 Simulation Results
Figure 1 shows the detrimental effect of information fragmentation
(i.e., the partitioning of the global dataset into |𝑉 | local datasets) on
the average accuracy of isolated local models, and how distributed
learning schemes, such as Federated Learning and Gossip Learn-
ing can mitigate them. Information fragmentation also introduces
an upper bound to the average accuracy achievable through dis-
tributed learning schemes, which decreases as the fragmentation
(i.e., the number of nodes |𝑉 |) increases. We call fragmentation loss
the distance between the Centralized Learning accuracy and the
maximum Gossip Learning accuracy (i.e., achieved in scenarios
with 𝑝 = 1, equivalent to centralized Federated Learning). We show
that the more a network is connected (i.e., larger 𝑝), the larger
the opportunity for distributed-learning schemes to improve local
model accuracy by aggregating other models’ knowledge from ex-
ternal local datasets. Larger global dataset sizes increase accuracy
for all compared learning methods (Centralized, Local, Centralized
Federated, Gossip) and all topologies (number of nodes |𝑉 | and
connectivity 𝑝 , confirming the expected behavior. In Figure 1, the
green curve (Centralized Learning) is the same for all |𝑉 |, as it
only depends on the global dataset size, and achieves the highest
accuracy compared to the other baselines because the model is
trained with all available information in the system. As the number
of nodes |𝑉 | increases, the size of the local dataset decreases, result-
ing in the gap between the accuracy 𝐴𝐶 for centralized and local
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Figure 1: Impact of global dataset size 𝛾 , number of nodes |𝑉 |, and probability of connection 𝑝 on the models’ final accuracy 𝐴𝐶
at convergence, over 15 repeated experiments. Curves are mean central tendencies for distributions of 𝐴𝐶 for each user in the
system, surrounded by an asymptotic confidence interval at 95% level.

learning schemes becoming proportionally larger due to informa-
tion fragmentation. As the probability of connection 𝑝 increases,
the network topology becomes more connected and each node has
a higher expected number of neighbors (namely, in the order of
𝑝 |𝑉 |) at each time slot with which to exchange trained local models
and perform aggregation (gossiping). We call gossip opportunity the
distance between the local learning curve 𝑝 = 0 and the Federated
Learning curve 𝑝 = 1. We observe that, for every number of nodes
and any global dataset size, the higher the probability of connection
𝑝 the greater the average accuracy𝐴𝐶 of local models, showing the
positive impact of network connectivity on average model accu-
racy. Even though the highest accuracy is always achieved in fully
connected scenarios (i.e., 𝑝 = 1), the "speed" at which the accuracy
improves from 𝑝 = 0 scenarios to 𝑝 = 1 scenarios (i.e., the function
between 𝑝 and the achievable accuracy) depends on |𝑉 |. In particu-
lar, we observe that both gossip opportunity and fragmentation loss
increase with |𝑉 |, and that the distance between the accuracy for
𝑝 = 1 scenarios and the accuracy for the other simulated scenarios
(i.e., 0 < 𝑝 ≤ 1) decreases as |𝑉 | increases. This shows that for some
values of connection probability 𝑝 , the higher the fragmentation
|𝑉 |, the closer the accuracy is to the maximum achievable.

Figure 2 shows the knowledge diffusion properties of GL for
varying global dataset size and information fragmentation. As |𝑉 |
increases, the initial accuracy’s variability is progressively less
explanatory for the final accuracy’s variability. This effect shows
that the larger the network size |𝑉 |, the more GL schemes can
disseminate the knowledge contained in the nodes’ trained local
models throughout the system, providing each node with a local
model with similar accuracy performance. The global dataset size
is positively correlated with both initial and final accuracy and a
moderate clustering effect around lower values of initial accuracy
especially for lower global dataset sizes. This effect is due to the
modest size of local datasets for scenarios where 𝛾 is small and |𝑉 |
is large, where local datasets do not have any sample for several

classes to predict (for example, in MNIST, local datasets that do not
include any dataset sample for certain digits).

Figure 3 shows a matrix heatmap in which each cell is the Spear-
man’s correlation coefficients 𝜌𝑖, 𝑗 between a pair of system pa-
rameters or performance metrics 𝑖 and 𝑗 , across all collected data.
Scenarios with a higher number of nodes, and therefore a higher
information fragmentation, require a statistically higher number
of gossip rounds to converge. We observe a negative correlation
between the number of nodes |𝑉 | and both the initial and final
accuracy, and a positive correlation between the number of nodes
|𝑉 | and the difference between the final and initial accuracy. This
evidence supports what Figure 1 suggested, i.e., that a higher infor-
mation fragmentation harms the final accuracy by introducing a
fragmentation loss, but it also represents the biggest opportunity
for GL to improve model accuracy over the local training case. Fur-
thermore, higher information fragmentation provides nodes with
smaller local datasets, which reduces their initial accuracy.

Across different scenarios, the probability of connection 𝑝 ap-
pears less than weakly correlated with the convergence time 𝐶 ,
final accuracy 𝐴𝐶 , and accuracy gain 𝐴𝐶 − 𝐴0 due to gossiping,
i.e., |𝜌𝑝,𝐶 |, |𝜌𝑝,𝐴𝐶 |, |𝜌𝑝,𝐴𝐶−𝐴0 | < 0.15. However, stratifying the col-
lected data by different values of |𝑉 | revealed stronger correlations
between 𝑝 and the three metrics 𝐶 , 𝐴𝐶 , and 𝐴𝐶 −𝐴0 for some val-
ues of |𝑉 |. For example, for |𝑉 | = 4 we observe 𝜌𝑝,𝐴𝐶−𝐴0 = 0.34
and a 𝜌𝑝,𝐶 = 0.16, while for |𝑉 | = 32 we observe 𝜌𝑝,𝐴𝐶−𝐴0 = 0.07
and a 𝜌𝑝,𝐶 = −0.17. This effect shows that the probability of con-
nection 𝑝 impacts the convergence time 𝐶 and the accuracy gain
due to gossiping 𝐴𝐶 −𝐴0 differently depending on the information
fragmentation.

Figure 4 shows that larger global datasets reduce convergence
time on average, that larger network sizes |𝑉 | increase the con-
vergence time average and standard deviation, and that models
with higher initial accuracy tend to converge faster. This evidence
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Figure 2: Relationship between global dataset size 𝛾 , initial accuracy 𝐴0 (before the gossiping starts), and final accuracy 𝐴𝐶 at
gossip convergence for a varying number of nodes in the system over 15 repeated experiments. Each point in the scatter plot
represents the initial and final accuracies for one user in the system. For each global dataset size 𝛾 and number of nodes |𝑉 |, a
linear regression line is shown and surrounded by a 95% confidence band computed using bootstrapping. The "no-improvement"
dashed line represents when a node’s accuracy at convergence is the same as its accuracy before gossiping. The dotted lines
represent the average accuracy of a centralized model trained on the global dataset.

Figure 3: Spearman’s correlation coefficient matrix between
system parameters (network, dataset) and performance met-
rics (accuracy, convergence) for the MNIST dataset results.
Each correlation coefficient belongs to a 95% confidence inter-
val computed using the Fisher transform, with a difference
between the upper and lower bound always < 0.022.

matches what is shown by the correlation coefficients in Figure 3.
However, stratifying the data by the size of the global dataset re-
veals that the initial accuracy does not influence the overall system’s
convergence speed, as evidenced by the negligible slope observed
in the regression lines.

Figure 5 shows in the top row that, for a large range of different
global dataset sizes, the probability of connection has a very limited
impact on the convergence speed, as the associated ECDFs are very

close and their confidence intervals often overlapping. Conversely,
Figure 5 shows in the bottom row that, independently from the
probability of connection, the global dataset size has a much larger
impact on convergence time, as the ECDFs significantly shift to
lower values for larger dataset sizes. Compared to Figure 4, Fig-
ure 5 stratifies the convergence time analysis by the probability of
connection, highlighting its limited impact on the metric.

4 CONCLUSION
We assessed Gossip Learning in a class of dynamic networks mod-
eled by Time-Varying Graphs, advancing the knowledge in the field,
which mainly targeted static networks so far. Our results show
that Gossip Learning significantly enhances the average model
accuracy and convergence time compared to local learning in net-
worked systems whose topology varies over time and when com-
munication capacity between nodes is constrained. As the number
of network nodes increases, Gossip Learning’s model accuracy
gradually approaches that of the more communication-intensive
classic Federated Learning (Figure 1) and proportionally outper-
forms local training (Figures 1 and 3), highlighting Gossip Learn-
ing’s scalability and information-spreading capability (Figure 2). As
the network connectivity (i.e., the inter-node connection probabil-
ity) increases, Gossip Learning’s model accuracy approaches that
of more communication-intensive distributed learning schemes
such as Federated Learning (Figure 1), showing Gossip Learning’s
communication-overhead efficiency. We show that even with a tiny
inter-node connection probability (e.g., 2−7), Gossip Learning’s
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Figure 4: Scatter plot of convergence time 𝐶 against initial accuracy 𝐴0, for the MNIST dataset. Each point represents one user
in the system. We show a linear regression line for the points belonging to each global dataset size 𝛾 and number of nodes |𝑉 |,
surrounded by a 95% confidence band computed with bootstrapping.

Figure 5: Empirical Cumulative Distribution Functions (ECDFs) of convergence time 𝐶 for |𝑉 | = 32 nodes and MNIST dataset, at
different values of global dataset size 𝛾 and probability of connection 𝑝. Confidence intervals are Kolmogorov-Smirnov bounds
at 95% level.

model accuracy is near-optimal in large-scale scenarios. For a fixed
global dataset size, Gossip Learning converges at a similar speed of
more communication-intensive schemes such as Federated Learn-
ing, regardless of initial model accuracy (Figure 4) or inter-node
connection probability (Figure 5). We plan to extend this work by
analyzing the impact of dependent connectivity patterns on model
accuracy and convergence time.
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