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Abstract—Computing servers have played a key role in developing and processing emerging compute-intensive applications in recent
years. Consolidating multiple virtual machines (VMs) inside one server to run various applications introduces severe competence for
limited resources among VMs. Many techniques such as VM scheduling and resource provisioning are proposed to maximize the
cost-efficiency of the computing servers while alleviating the performance inference between VMs. However, these management
techniques require accurate performance prediction of the application running inside the VM, which is challenging to get in the public
cloud due to the black-box nature of the VMs. From this perspective, this paper proposes a novel machine learning-based performance
prediction approach for applications running in the cloud. To achieve high-accuracy predictions for black-box VMs, the proposed
method first identifies the running application inside the virtual machine. It then selects highly correlated runtime metrics as the input of
the machine learning approach to accurately predict the performance level of the cloud application. Experimental results with
state-of-the-art cloud benchmarks demonstrate that our proposed method outperforms existing prediction methods by more than 2× in
terms of the worst prediction error. In addition, we successfully tackle the challenge of performance prediction for applications with
variable workloads by introducing the performance degradation index, which other comparison methods fail to consider. The workflow
versatility of the proposed approach has been verified with different modern servers and VM configurations.

Index Terms—performance prediction, application type identification, machine learning, virtual machine, public clouds

✦

1 INTRODUCTION

C LOUD platforms have gained tremendous growth in the
last decades because of their vast advantages in secu-

rity, flexibility, and cost-efficiency [1]. Therefore, attracting
end-users to transition their applications to the cloud. In the
post-COVID future, cloud-computing investment increased
by 37% in the first quarter of 2020 [2]. With this trend,
worldwide end-user spending on cloud services is forecast
to gain over 20% average growth in recent years and reach
around 400 billion dollars in 2022 [3].

The demand for public clouds has increased drasti-
cally in the last decade, entailing an explosion in energy
usage. Data centers consume roughly 200 terawatt-hours
of energy each year, which contributes to 1% of global
electricity demand [4]. The demand keeps ramping up, and
estimations show that data centers will use around 6-10%
of global electricity in 2030 [5]. This motivates cloud ser-
vice providers, particularly Amazon, Microsoft, Google, and
Huawei, among others, to optimize the efficiency and usage
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of cloud servers towards a more sustainable and economical
way [1], [6]. Thanks to the virtualization technology sup-
ported by off-the-shelf many-core server microprocessors,
such as Intel VT and AMD-V [7], [8], cloud providers can
consolidate multiple independent virtual machines (VMs) in
a single physical server to exploit the performance potential
and energy efficiency of the server [1]. Although virtualiza-
tion technologies can guarantee resources isolation between
VMs, such as dedicated computing cores, memory size, and
disk space between different users or applications, existing
virtualization technologies cannot ensure performance iso-
lation between VMs inside a single computing node. VMs
still need to compete with each other for shared computing
resources, such as last-level cache (LLC), memory and disk
bandwidth, etc. Consequently, competition in these shared
resources will degrade VMs’ performance dramatically [9].
In real cloud servers, cloud providers cannot access VMs
created by their clients and read the performance metric of
the running application due to privacy policies. The black-
box nature of VMs restricts the cloud providers’ ability to
estimate the runtime status of VMs and host servers. In
addition, this dilemma usually leads to an unoptimized
VMs organization and imposes non-negligible performance
degradation on VMs. Fig. 1 demonstrates the performance
variation of the Data Serving benchmark [10] running on the
cloud collocated with multiple VMs. The execution time of
Data Serving when receiving severe interference from other
VMs (with execution time as 1.8e4 ms) is eight times longer
than the best energy efficiency and shortest execution time
(0.2e4 ms) it can achieve.

To alleviate the performance degradation induced by the
VM collocation, both heuristic and machine learning-based
VM management methods have been proposed in recent
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Fig. 1. Performance variation of the Data Serving benchmark [10] ex-
perienced on the cloud while collocating with multiple VMs. The results
are obtained on a physical server by following the experiment setting
introduced in Section 5. The Y-axis, labeled as “Count”, represents the
number of occurrences for specific execution time within the intervals
marked by the X-axis.

years [9], [11], [12], which rely on the runtime performance
of the VM to guide the VM’s allocation and migration
management. Despite these prior efforts, runtime perfor-
mance prediction of the VM, the essential metric that VM’s
management methods rely upon, has been inadequately
studied. Previous approaches tackle this problem by either
assuming the performance level of the application is known
to the resource governor [13] or assuming the resource gov-
ernor knows which application is running inside the VM,
applying then a performance inference model to predict the
performance level of the application [9]. However, these
assumptions cannot be applied to public clouds as all the
running VMs need to be regarded as black boxes. Indeed,
cloud providers cannot “peek inside” a VM to gather us-
age statistics [14]. For instance, Amazon Elastic Computing
Cloud and Huawei Elastic Cloud servers provide “bare-
bone” VMs where clients load their own operating system
images and cloud providers cannot intervene. In this regard,
performance prediction remains a challenge because the
only available information is low-level hardware metrics
monitored from outside the VM, i.e., the host server.

Another challenge of performance prediction is the diffi-
culty in predicting the performance degradation level, while
the application has varying workloads. For such applica-
tions, both the interference received from other VMs or a
heavier workload can lead to a degraded performance level
(e.g., longer execution time or larger latency). Consequently,
this increases the difficulty in performance prediction. How-
ever, existing performance prediction schemes [15], [16],
[17], [18] only focus on performance prediction without
interference and fail to consider the performance degra-
dation induced by resource contention. Without discerning
the effect of the interference or varying workload on the
performance metric, the performance predictor from the
existing works will give wrong predictions. Thus mislead-
ing the resource governor to apply unreasonable actions,
finally introducing unnecessary management overhead and
performance degradation.

In summary, current VM management techniques still
lack a state-of-the-art performance prediction method to
predict the performance level of VMs in dynamic work-
load scenarios and guide the resource governor to allo-

cate and migrate VMs for lower performance degrada-
tion. In this context, we propose CloudProphet, a machine
learning-based performance prediction for public clouds.
More specifically, the contributions of this work are listed
as follows:

• We propose an application type identification
method based on the dynamic time warping algo-
rithm. The proposed application type identification
method can accurately identify which application
type is running inside the VM only with hardware
counters information observed from the host server
instead of the VM.

• We propose a neural network (NN)-based VM per-
formance prediction method. The proposed method
uses highly correlated metrics as input and predicts
the performance level of the application accurately.

• On the basis of the proposed NN-based performance
prediction method, we enable the prediction of per-
formance degradation for applications in dynamic
scenarios by discerning whether the performance
variation is caused by workload variation or inter-
ference from other VMs.

• Experiments demonstrate that our proposed method
has over 90% accuracy in application type identifi-
cation and performance prediction for cloud bench-
marks1.

• We compare our proposed method against state-
of-the-art approaches, obtaining improvements of
more than 2× in terms of worst prediction error. In
addition, we achieve accurate performance degra-
dation prediction with variable workload applica-
tions, which the comparison methods fail to consider.
Moreover, we prove the validity of our approach
with different server and VM configurations.

The rest of this paper is organized as follows. Section 2
reviews related work. In Section 3, we provide an overview
of the system characterization of the server as well as
the problem description. In Section 4, we introduce our
proposed machine learning-based performance prediction
method. Sections 5 and 6 present the experimental setup
and results, followed by the conclusions in Section 7.

2 RELATED WORK

As illustrated in the Introduction, the performance predic-
tion method for VMs is critical in optimizing the usage
of the computing server while lowering the performance
degradation induced by collocated VMs. There are two
common ways widely studied in the literature to provide
such information: (1) future workload prediction and (2)
runtime performance prediction, which will be introduced
in this section.

2.1 Future workload prediction
Given the predicted near-feature workload for the VMs,
such as CPU utilization, memory occupation, etc., dynamic
resource management methods can proactively allocate or
migrate VMs, thus adapting to the workload variation and

1. https://github.com/esl-epfl/CloudProphet-Dataset
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lowering the performance interference between allocated
VMs. Numerous works have focused on workload predic-
tion, and various prediction technologies have been utilized.
For instance, a linear regression model is proposed in [19]
to estimate the incoming workload and then scale the cloud
configuration to adapt to the future workload. In addition to
regression-based methods, random forest-based workload
prediction methods are presented in [20], [21]. In [22], a
support vector machine-based workload prediction method
is implemented to predict the workloads of the host server.

To further improve the prediction accuracy, more ma-
chine learning (ML) -based workload prediction methods
have been presented in [23], [24]. In particular, a cluster-
based workload prediction method is proposed in [23],
which first clusters tasks into several categories and then
predicts the utilization of CPU and memory for task
scheduling. Another work tackling the prediction problem
using the long-short-term-memory technique to provide
workload prediction is described in [24].

However, highly dynamic and random requests of
clients entail a tremendous challenge in predicting cloud
servers’ workload. The best prediction error is still 18%
according to [24]. Therefore, unreliable workload prediction
schemes can lead resource governors to make non-optimal
decisions, such as under-provisioning, or over-provisioning
for VM management [25].

2.2 Runtime performance prediction

In addition to managing VMs based on predicted workload
levels, resource governors can also manage VMs relying
on their runtime performance level. To identify the perfor-
mance level of collocated VMs inside a data center, heuristic
performance prediction methods are studied in [26], [27].
By comparing the performance level of the VM in the public
cloud with the performance of a cloned VM running inside
a dedicated sandbox environment, the performance level of
the VM can be identified [26], [27]. However, this method
suffers from the high computation cost of holding a sandbox
environment and difficulties in measuring the performance
level of the VM.

To avoid the large overhead of building a sandbox envi-
ronment, Wang et al. [15] developed an analytical model to
estimate performance interference among multiple Apache
Spark tasks running concurrently on a computing server.
Then, the model can be used in runtime to predict the
performance of the Apache Spark application. As for the
latency-sensitive applications, an ML-based method is pro-
posed to predict system performance at runtime [17]. How-
ever, these methods [15], [17] are solely designed for the
Spark application and lack the support for other cloud
applications.

To estimate the performance interference for a wide
range of cloud applications, Kim et al. [9] targeted some
iconic applications and enumerated all of the available ap-
plication combinations to establish a detailed performance
interference profile for each application combination. How-
ever, this method formulates the interference estimation as
a combinational problem and makes it impossible to solve
with a large number of VMs and applications. To quickly
and accurately identify incoming applications and estimate

possible interference they will receive, a collaborative fil-
tering technique is proposed in [28]. This approach first
analyzes the incoming application to schedule them on the
specific server, thus achieving the lowest interference among
applications while the highest utilization of the server. How-
ever, this method can only take effect at the phase of the
deploying application, i.e., the proposed method fails to
predict performance and take actions after the deployment
at runtime.

There are also several works focusing on predicting the
application’s performance at runtime. Examples of these
works are Aspen [29], Palm [30], PEMOGEN [31], and
COMPASS [32]. They all make the prediction based on the
knowledge of the source code and the detailed runtime state
of the applications, e.g., the number of instructions executed
on the VM. Although these methods can give relatively
accurate results, the requirement of source code availability
and execution state make these methods impossible to apply
on public cloud platforms due to the black-box nature of the
VMs. To get over the limitation of these previous studies,
a two-stage ML-based workflow execution time prediction
method is proposed by Pham et al. [16]. In this research,
various runtime information (i.e., application types, VM
configurations, and cloud server platforms) is collected and
analyzed to predict the execution time of the specific ap-
plication. However, execution time is the sole performance
metric considered in [16], and the interference among VMs
is not considered.

In summary, Table 1 compares the important key pa-
rameters of the related works with our proposed method,
CloudProphet. The table presents a side-by-side comparison
of various aspects, such as black-box scenario assumption,
prediction target, technique used, and experiment settings.
To the best of our knowledge, there is still no comprehensive
work considering performance prediction for cloud appli-
cations in a black-box system. More specifically, no work
has been proposed to accurately predict the performance
of applications with variable workload levels. Therefore,
in this work, we present a novel ML-based performance
prediction method for cloud applications to tackle existing
challenges.

3 SYSTEM CHARACTERIZATION AND PROBLEM
DESCRIPTION

3.1 Could computing and virtualization

This work focuses on the Infrastructure as a Service (IaaS)
cloud, which is widely provided by commercial public
cloud service platforms, such as Amazon, Google, Microsoft,
Huawei, etc. Thanks to the virtualization technology, the
user can create multiple virtual machines and share com-
puting resources at the same time with other users without
knowing the underlying hardware management and inter-
actions.

The overall system architecture is presented as the blue
box in Figure 2. In this work, we focus on a typical config-
uration of the computing node in public clouds, in which
multiple VMs of different types can be executed together,
sharing the same computing resources.
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TABLE 1
Comparison of related work

Approach black-box Prediction Target Technique Experiments

Yang et al. [19] × Workload Linear regression CloudSim simulation

Cetinski et al. [20] × Workload Random Forest AuverGrid dataset

Cao et al. [21] × Workload Machine learning based classification Real servers

Zhong et al. [22] × Workload Wavelet SVM Google cloud dataset

Gao et al. [23] × Workload Clustering Google cloud dataset

Jayakumar et al. [24] × Workload LSTM Public datasets

Novakovic et al. [26] × Performance Heuristic performance model Real servers

Vasic et al. [27] × Performance Heuristic performance model Real servers

Shekhar et al. [17] × Performance Gaussian Processes-based machine learning Real servers

Kim et al. [9] × Performance Heuristic performance model Real servers

Delimitrou et al. [28] × Performance Collaborative filtering Real servers

Spafford et al. [29] × Performance Source-code based performance modeling Real servers

Tallent et al. [30] × Performance Source code annotation Real servers

Bhattacharyya et al. [31] × Performance Runitme performance model generation Real servers

Lee et al. [32] × Performance Automated static analysis Real servers

Pham et al. [16] × Performance Random forest Real servers

This work
(CloudProphet) ✓

Workload-aware
performance degradation Machine learning based method Real servers

VM
WS

VM
S

Storage Network
virtualization solution

Performance monitoring

Application 
identification

Physical server

Monitoring data

Metrics 
selection

Performance 
prediction

Fig. 2. System description and proposed workflow

3.2 VM monitoring

As we discussed previously, state-of-the-art works made
simple assumptions on the full knowledge of cloud service
clients, i.e., the application running inside the VM is known
to the cloud providers [16], or even the source code and
specific application running state are known [32]. How-
ever, such information should be regarded as unknown to
cloud providers due to privacy policies, i.e., cloud providers
and resource governors have no idea about the applica-
tion running inside the VM. Thus, lacking knowledge of
specification applications running inside the VM and their
performance status disables the functionalities of existing
VM management schemes [16], [32].

In this paper, we tackle this dilemma by only using the
accessible basic hardware usage information of VMs, which
can be monitored from the host server without breaching
into the VM. These metrics include various aspects of the
VM’s resource utilization on the host server, such as CPU,
cache, memory, hard disk, and network usage information.
These metrics are extracted from the host server through

TABLE 2
Representative list of typical collected hardware metrics

Category Typical extracted metrics

CPU CPU utilization level (%)
Executed instructions (#)

Memory
LLC misses (#)

Available memory space (KB)
Read requests issued for disk usage (#)

Network Received packets (Bytes)
Sent packets (Bytes)

performance monitoring tools. Utilizing these hardware
metrics does not violate the black-box assumption as all
the profiling is done from outside the VM, i.e., on the host
server. Key representatives of these metrics are listed in
Table. 2.

3.3 Problem description

By regarding the VMs as black-box systems, the proposed
workflow in this work only takes the hardware statistics
data of the VM as the input to predict the application type
and its performance status. To achieve the goal, we break the
workflow into the following three parts as the orange box
illustrated in Fig 2. As for detail solutions to tackle these
problems are introduced in Section 4.

Application type identification: Previous studies [16],
[32] assume that the application running inside the VM
is known to the cloud providers at runtime, which is
unrealistic in public cloud servers. Once removed this in-
valid assumption, how to predict the performance of the
VM remains a question. Therefore, identifying the specific
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application running inside the VM is the first challenge
in public cloud servers and the proposed workflow. In
addition, a general VM can run different applications ac-
cording to the specific needs of users. Therefore, existing
management methods failed to adapt to a more dynamic
scenario and consider different applications running inside
the VM, finally narrowing down their application range. To
solve this problem, we propose to regard the VM as a black-
box and firstly measure the hardware counter information,
including CPU utilization, LLC occupation, memory usage,
etc., for VMs on the host physical server. Then, according
to the relationship between hardware usage information
and the application, we propose to identify the running
application inside the VM solely based on the collected
hardware counter information.

Metrics selection: After the application is identified, the
next step is to predict the application’s performance based
on measured hardware metrics. However, not all of the sam-
pled metrics are useful for predicting performance. Besides,
considering all of the sampled metrics may increase the
complexity or even degrade the accuracy of the proposed
workflow. Hence, a proper selection of runtime metrics will
lead to a better prediction result.

Due to the application’s specific function and its inner
logic, different applications demonstrate different utilization
levels of the hardware. In particular, memory-intensive ap-
plications utilize much more memory resources than com-
puting resources, thus demonstrating much higher memory
usage than the CPU utilization level. From an efficiency per-
spective, it makes sense to predict the performance level of
memory-intensive applications from memory usage metrics
instead of non-related metrics such as CPU utilization.

In summary, the first merit of selecting highly-correlated
metrics is achieving a less biased prediction method by
removing the unrelated metrics. Another benefit of selecting
highly-correlated metrics is that we can shrink the pre-
diction model’s size and then decrease the complexity of
the performance prediction method. From this perspective,
the second step in this work is to perform comprehensive
metrics selection analysis for each application.

Performance prediction: Based on the highly-correlated
hardware metrics information of the target application, this
step first studies the relationship between measured met-
rics and the application’s performance level. Moreover, it
enables the framework to predict the performance level
from the hardware counter information while considering
the interference from other applications and VMs.

The remaining challenge in the performance prediction
is to consider workload-induced performance level varia-
tion, e.g., a longer execution time of the application may
be because of a higher workload level of the application
itself without receiving any interference from other VMs.
Therefore, workload-induced performance variation should
not be regarded as performance degradation. In this regard,
we propose to address this challenge by identifying the
application’s performance baseline in different workload
levels. Then, a performance degradation level is introduced
to normalize the runtime performance level with respect
to its performance baseline. For instance, a performance
degradation level near the value one indicates performance
degradation is negligible. Otherwise, the application suffers

Net::baseline

Net::workload

Net::perf

App 
iden�fica�on

Metrics 
selec�on

Net::perf Peformance

varying 
workload?

Metrics 
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Net::workload

Workload
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Performance
baseline
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Metrics from 
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Fig. 3. Overall workflow of proposed method
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Fig. 4. CPU load traces for different CloudSuite benchmarks. When the
CPU load is more than 100%, it implies that more than one core is
required to fulfill the performance requirements of the application

from performance degradation.
Based on the above system and problem description, the

proposed machine learning-based performance prediction
method to address the existing challenges is introduced in
detail in Section 4.

4 MACHINE LEARNING-BASED PERFORMANCE
PREDICTION

We introduce the proposed method in this section by fol-
lowing the workflow illustrated in Fig. 3. In particular,
we introduce a novel application identification method to
tackle the dilemma of the black-box nature of cloud VMs in
Section 4.1. Then in Section 4.2, we introduce how to select
highly correlated metrics for the purpose of performance
prediction. Finally, we present the prediction of performance
and performance degradation in Sections 4.3 and 4.4, respec-
tively.

4.1 Application type identification method
The proposed application type identification method is
based on the fact that different applications have diver-
gent runtime behaviors (e.g., CPU load trace, LLC occu-
pancy). Fig. 4 shows the CPU load traces of four applica-
tions from the CloudSuite benchmark [10], including Data
Serving (DS), Media Streaming (MS), In-memory Analytics
(InMem), and Web Serving (WS). This selection of cloud
benchmarks covers the most representative applications of
public clouds [10], and was used to carry out the experi-
ments. These divergent behaviors indicate clear changes in
the specific function and the inner logic of applications.

For clarification purposes, let’s consider that only the
CPU load metric is used to identify the application. In this
scenario, our approach first builds a “fingerprint” database
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Fig. 5. CPU load traces for the application DS (a) Orginal traces (b)
DTW processed traces. Note that a load higher than 100% implies a
need for more than one core to respect performance requirements of
the application

(D) with CPU load traces of existing applications. In the
inference step, the unknown application’s CPU load trace
will be sampled and compared with the traces inside the
reference dataset. Finally, the application running inside the
VM can be determined based on the similarity analysis.

However, the problem of addressing the temporal mis-
match between traces remains before any similarity analysis
is applied. Indeed, even the traces of the same application
can have different shapes because of its own workload vari-
ation or the interference the application received from other
VMs. Therefore, the same application can give two traces
with different dimensions, i.e., p ∈ R1×M and q ∈ R1×N .
For instance, Fig 5(a) shows two sampled CPU load traces
for the same application (DS). The trace DS-2 looks like
being stretched when compared with DS-1.

In this work, we propose to use the Dynamic Time
Warping (DTW) algorithm [33] to eliminate the temporal
mismatch between different traces, thus highlighting the
maximum similarities between the traces. DTW algorithm
uses a cost matrix C ∈ RM×N to find the maximum
similarity between two variables. The cost matrix is formu-
lated by calculating the Euclidean distance of each pair of
elements inside p and q, i.e., C(m,n) = d(pm, qn). To find
the minimum Euclidean distance between two traces, the
DTW algorithm finds a minimum cost path from C(1, 1) to
C(M,N) such that it has the minimum distance that is the
following:

dmin =
∑

m∈[1:M ]
n∈[1:N ]

C(m,n) (1)

In the process of DTW, input traces will be stretched to
eliminate the temporal mismatch and reach the minimum
Euclidean distance, i.e., each element of variables p and
q may have a chance to be repeated as many times as
necessary to achieve a stretch operation. After the DTW pro-
cessing, the original mismatched traces in Fig 5(a) become

Unknown
trace

DS

MS

...

WS

Reference
dataset

DTW

...

Euclidean 
distance

Iden�fica�on Result

dDS

dMS

dWSDTW

DTW

Fig. 6. Overall proposed workflow for application type identification

warped traces in Fig 5(b), where the temporal mismatch
between two traces is eliminated. In summary, the DTW
removes the temporal mismatch between different traces
and highlights the maximum similarity between them, thus
making it possible to identify the unknown application
accurately.

After highlighting the maximum similarity between
traces by the DTM processing, our method uses the
Euclidean distance to measure the similarity between
two traces. Given two traces after DTW process, p′ =
(p′1, p

′
2, · · · , p′M ′) and q′ = (q′1, q

′
2, · · · , q′M ′), the Euclidean

distance between p′ and q′ is defined as:

d(p′, q′) =
√

(p′1 − q′1)
2 + (p′2 − q′2)

2 + · · ·+ (p′M′ − q′M′)2 (2)

A distance value (d(p′, q′)) of zero indicates a perfect match
between the traces p′ and q′, while the similarity between
the two traces are decreasing with the increase of calculated
distance value. Therefore, the unknown trace is identified
as the application with the minimum Euclidean distance.
Moreover, we empirically set a distance threshold (i.e., 800)
to avoid mistakenly categorizing an unknown application
and for the best identification accuracy. If the minimum
distance is larger than the set threshold, the application type
identification workflow will output “unknown” because
there is no significant similarity between the sampled trace
and known applications. And therefore, no performance
prediction is made for unknown applications.

The overall workflow of application type identification
is summarized in Fig. 6. The unknown trace and each
trace inside the dataset will be processed through DTW
to eliminate the temporal mismatch. Then, the Euclidean
distance between the processed signals is calculated. Finally,
the unknown trace is identified as the application in the
reference dataset with minimum distance.

Please note that hardware metrics for application type
identification are not restricted to CPU load traces in this
work. Moreover, our proposed workflow enables multiple
metrics to be combined through a voting mechanism to im-
prove type identification accuracy. The final application type
identification result is the most voted application candidate
based on all the hardware metrics monitored from the host
server. Once the application has been identified as one of the
applications in the dataset, the proposed method can initiate
the metrics selection step for the specific application, thus
enabling further performance prediction.
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Fig. 7. Correlation between hardware metrics and performance for WS

4.2 High-correlated metrics selection

The goal of metrics selection is to find hardware metrics that
are highly correlated with the target we want to predict.
Thus, improving the efficiency and reducing the model
complexity of the prediction model. This proposed method
is based on correlation analysis of two variables, which are
the metric information and the target information (called
a and b respectively in the following). We assume both of
them have K observations, then the correlation of a and b is
defined with the Pearson correlation coefficient [34]:

ρ(a, b) =
cov(a, b)

σaσb
=

1

K

K∑
i=1

ai − µa

σa

bi − µb

σb
(3)

where σa, µa and σb, µb are the standard deviation and
mean for a and b, respectively. For instance, the correlation
between the CPU load level and execution time of the
application can be estimated by using the above Eq. 3 with
provided CPU load level information a and execution time
information b. Similarly, we can enumerate all hardware
metrics and performance combinations by substituting the
CPU load level metric with other hardware metrics. As an
example, the correlation between metrics and the perfor-
mance of the application Web Serving (WS) is shown in
Fig. 7. Please note that the correlation has a range of [-1, 1].
The value of exactly -1 or 1 implies a perfect linear relation-
ship between two variables, while values near 0 indicate a
weak linear dependency between the variables. In this work,
we select highly correlated metrics that provide an absolute
correlation value higher than a set threshold to screen out
low-relevant metrics, thus reducing the complicity of the
performance prediction workflow.

The proposed metrics selection method works in two
aspects as illustrated in Fig. 3. The only difference between
these two usages is the prediction target, i.e., one is for
performance prediction for all of the applications and an-
other for workload prediction of applications with varying
workloads.

Note that none of the hardware metrics exhibit a high
correlation (greater than 0.8), as illustrated in Fig. 7. This in-
dicates the absence of a clear linear relationship between re-
source usage and performance levels. Therefore, we propose
a neural network-based performance prediction method to
capture nonlinear patterns. This method will be introduced
in the next section.

4.3 Neural network-based prediction method

Artificial neural networks (ANNs), or simply neural net-
works (NNs), are machine learning models designed to
mimic the biological neural networks inside animal brains.
A NN is composed of interconnected artificial neurons,
which can send information to each other according to the
input it receives and the connections among the neural
network. A NN usually needs to be trained from a large
set of given inputs and outputs. Then the trained network
can be applied to estimate the output from the given input.

The NNs used in this work are all well trained before
being plugged into the proposed workflow. The training
phase aims to accurately predict output y from the given
input information x. In this work, we utilize the widely used
Levenberg-Marquardt backpropagation algorithm to train
NNs [35]. Backpropagation optimizes the loss function with
respect to the weights parameter used in the network. The
weights of the NN will be set randomly before the training.
During the training phase, the weights will be updated by
the backpropagation algorithm to minimize the lost func-
tion. Then, for each training iteration, the training sample
is composed of an input set X and output set Y . Based
on the input X , NN gives its own prediction Ŷ according
to its structure and weights parameter. During the training
phase, the backpropagation algorithm adjusts the weight
parameter of the NN to approximate Ŷ to Y . Note that
our approach only uses internal performance and workload
metrics of the application in the initial training phase. For
the inference phase, the NN will provide the prediction
by only using low-level hardware metrics. Therefore, our
method is agnostic to each application’s internal metrics
and follows the required black-box model setting for VMs
performance inference.

The input and output of the NN, i.e., X and Y , differ
from the specific application or purpose. In this work,
three different purposes of NNs are used in the workflow
described in Fig. 3, where:

• Net::performance: The output Y of the NN is a
scalar value to indicate the performance level of the
application. It differs from application to applica-
tion. For instance, the performance metric for the
application Data Serving (DS) is the execution time,
while it is operations per second for the application
Web Serving (WS). The input X contains metrics that
show high correlations with the performance metric,
and it is given by the metric selection analysis from
Section 4.2.

• Net::workload: The output Y of the NN is a scalar
value that indicates the workload level of the appli-
cation. It also depends on the specific application. For
instance, the DS uses the operation count as its work-
load indicator, while WS’s workload is measured by
the user number. Similar to Net::performance, the
input X contains metrics that show high correlations
with the workload level of the application, and it is
given by the prior metrics selection step.

• Net::baseline: The input of this performance baseline
prediction NN is the output Net::workload, which
is the workload level of the application, while the
output of Net::baseline is the performance baseline
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of the application under the specific workload level.
In this work, we regard the best performance the
application can achieve on the target system in the
specific workload level as the performance baseline.

Deep learning models, thanks to their greater complexity
and learning capacity, have the potential to capture more
complex patterns in data, potentially leading to enhanced
accuracy. In this work, we include three representative deep
learning models [36], namely, deep neural network (DNN),
convolutional neural network (CNN), and long short-term
memory network (LSTM), in our evaluation.

In this work, each application has an individual set of
the above NNs. The purpose of this configuration is to
have a robust and elastic prediction workflow. Otherwise,
the proposed workflow will have numerous drawbacks if
all applications use the same all-purpose NN set. First,
the proposed workflow will suffer from a high training
overhead because the trained neural network needs to be
retrained from scratch to support a new application. Second,
the retrained NN cannot guarantee robustness or remain
consistent for existing applications. i.e., the newly trained
network’s performance cannot be guaranteed the same as
the previously trained network. Last but not least, trained
DNN needs to be redesigned to deal with increasing com-
plexity while supporting both existing and new application
types. In summary, it does not make sense to train an all-
purpose NN set for all applications. Instead, we choose to
train a dedicated set of NN for each application to make the
framework more elastic and robust in supporting possibly
new applications while reducing the training complexity
and overhead.

4.4 Performance degradation prediction

As introduced before, the predicted performance level of the
application cannot fully reflect the interference VM received
due to the existence of workload-induced performance vari-
ation. To address this challenge, we propose an NN-based
prediction method for performance degradation. First, the
proposed method will check if the application can have
variable workload levels after the running application is
identified. Suppose the application belongs to one without
variable workloads, which indicates the application has
a constant performance baseline. Therefore, the proposed
method can directly give the performance baseline from the
knowledge of these applications. Please note that the perfor-
mance baseline is the best performance the application can
achieve in the system without interference.

Otherwise, if the application has variable workloads,
i.e., DS and WS, the proposed method will first select
the metrics which are highly correlated with the workload
level of the application. By using these chosen metrics, the
workload level is predicted using the NN Net::workload.
Then, another NN, Net::baseline introduced in Section 4.3,
is used to predict the performance baseline from the pre-
dicted workload level. Finally, the performance degradation
is calculated by dividing the predicted performance level
by the performance baseline in the current workload level.
If the application is running without interference, the per-
formance degradation always gives a value of one despite

Algorithm 1: Neural Network-based Performance
Degradation Prediction

Input: System runtime metrics: Metrics
Output: Performance degradation level: Perfdeg

1 Identify the application from the runtime metrics;
2 Metricsperf ← metrics highly correlated with the

runtime performance level;
3 Perf ← Net :: performance(Metricsperf ) ;
4 if The application has variable workloads then
5 Metricswkload ← metrics highly correlated with

the runtime workload level;
6 Workload← Net :: workload(Metricswkload) ;
7 Perfbase ← Net :: baseline(Workload) ;
8 else
9 Perfbase ← best performance the application can

achieve in the system ;
10 end
11 Perfdeg = Perf

Perfbase
;

the workload level varying, thus indicating the runtime per-
formance is exactly the same as the performance baseline.
Otherwise, the performance degradation will be larger than
one to indicate the runtime performance is inferior to the
performance baseline because of the interference. Finally,
the resource governor can utilize the predicted performance
degradation value to schedule VMs on the server for better
performance and lower interference.

In summary, the overall algorithm of the proposed
method is described in Algorithm 1. The algorithm takes
measured metrics from the host server as the input and
predicts the performance degradation of the application. In
the first step, the proposed application type identification
method is used to identify the running application (Line 1).
Then, only the metrics that are highly correlated with the
runtime performance level of the application are selected by
the proposed method (Line 2). Given the selected runtime
metrics, the runtime performance level of the application
is predicted by using the trained NN Net::performance
(Line 3). As for performance baseline prediction, the pro-
posed method will first check if the application has vari-
able workloads. If yes, metrics highly correlated with the
workload level will be selected first (Line 5), and then
the runtime workload level will be predicted by using the
NN Net::workload (Line 6). After the workload level is
predicted, the corresponding performance baseline under
this workload is predicted using the NN Net:baseline (Line
7). Otherwise, if the application has a constant workload,
the performance baseline is the best performance the appli-
cation can achieve in the system without interference. In this
circumstance, we directly get the performance baseline from
the knowledge base (Line 9). Finally, after the performance
and performance baseline are both predicted, the perfor-
mance degradation is calculated by dividing performance
by the performance baseline (Line 11).

Thanks to the sophisticated proposed method, it has a
remarkable ability to perform accurate performance pre-
diction. In the meantime, we also take several measures
to reduce the complexity of our method while retaining
its effectiveness: 1) Divide and Conquer: We create specific
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neural networks (NNs) for each application to minimize the
computational load compared to a single, larger NN. As
discussed in Section 4.3, this not only ensures robust, flexible
predictions but also reduces runtime complexity. 2) Hyper-
parameter Optimization: Hyperparameter optimization is
adapted in this work to balance accuracy and computational
efficiency. 3) Modular Design: We implement a modular
design, separating different NN functionalities. This results
in smaller, fine-tuned NNs, enhancing performance and
reducing complexity.

5 EXPERIMENTAL SETUP

5.1 Server and VM configurations

The cloud infrastructure used in this work is composed of
two different types of servers, listed in Table 3. The first
server, S1, corresponds to a computing node provided by the
Huawei public cloud infrastructure located in Xi’an, China.
With the purpose of verifying the versatility of the proposed
method, another server, S2, is configured in our computing
experimental facility in the datacenter of EPFL, by following
the configuration listed in Table 3.

In this work, the virtualization solution is based on
OpenStack, which has been vastly deployed for cloud ser-
vices [37]. OpenStack enables cloud service providers to
create and manage multiple VMs on a single computing
server thanks to its key components, including Ceph for
distributed block storage [38], Open vSwitch for network-
ing [39], and KVM for launching virtual machine [40].

A total of three different types of VM are used in this
work, which are listed in Table 4. The three tiers of VM
configurations correspond to VM configurations widely em-
ployed by popular cloud service providers among Amazon
Elastic Compute Cloud, Microsoft Azure, Google Compute
Engine, and Huawei Elastic Cloud Server. Then, to provide a
fair comparison among different VMs and servers, the same
operating system, Ubuntu 20.04, is installed on all VMs.

With contemporary virtualization solutions and mon-
itoring tools, such as libvirt and Linux perf-kvm, com-
prehensive support is available for monitoring individual
hardware resource usage of each guest VM atop the whole
physical server. Hence, in this work, we employed the exist-
ing libvirt monitoring tools [41] to account for the hardware
resource usage for a single VM on the entire physical server
while serving multiple VMs, allowing us to scrutinize the
hardware resource utilization of each VM individually and
export the corresponding data into a separate database for
each VM.

In addition, the monitoring tools are employed on the
host server (outside the VMs) to monitor each colocated
VM running on the same physical server. This choice not
only aligns with the black-box assumption adopted in our
study but also allows for resource usage accounting and
exclusive partitioning outside the VMs. Consequently, elim-
inating any potential errors associated with in-guest VM
measurements.

5.2 Comparison methods

For the comparison methods, we first compare our proposed
ML-based method with three representative deep learning

TABLE 3
Server configurations used in the experimental section

Server CPU Memory OS

S1 2× Intel Xeon
E5-2620 v3 @ 2.4GHz 128GB ECC EulerOS 2.0

S2 2× Intel Xeon
Gold 6242R @ 3.1GHz 384GB ECC CentOS 7.9

TABLE 4
VM configurations tested in the experiments

VM name CPU Memory OS

VM1 2× vCPU 4GB Ubuntu 20.04
VM2 4× vCPU 4GB Ubuntu 20.04
VM3 4× vCPU 8GB Ubuntu 20.04

models, namely, DNN, CNN, and LSTM, in terms of per-
formance prediction. Moreover, we compare the proposed
method with three state-of-the-art prediction methods for
cloud applications.

5.2.1 Kong et al. [42] - DNN
Kong et al. [42] assessed the performance of various DNN
models specifically developed for classification tasks. DNN
is similar to the artificial neural network (ANN) used in
this work, but they are more complex, featuring multiple
hidden layers between the input and output. For a fair
comparison, we implemented the DNN method that uses
hardware metrics for performance prediction.

5.2.2 Xu et al. [43] - CNN
Xu et al. [43] proposed a CNN-based methodology to
forecast the security performance of IoT networks. CNNs,
famous for their effectiveness in image recognition and
processing, typically encompass various layers that perform
distinct functions such as convolution, pooling, and rectified
linear activation. In this work, we adapt the CNN prediction
method to predict the performance of VMs.

5.2.3 Jayakumar et al. [24] - LSTM
Jayakumar et al. [24] developed a method to predict work-
loads, focusing on accurately forecasting variables such
as job arrival and user request rates, which are crucial
for efficient resource management and elasticity in cloud
environments. The approach utilizes an LSTM model, a
variant of Recurrent Neural Networks (RNNs) known for
their ability to handle complex sequential tasks that require
contextual awareness and memory. An LSTM model is
composed of multiple units, each featuring an input gate,
an output gate, and a forget gate, all working together to
process input metrics. In this work, we adapt this method
for the performance prediction of the VMs.

5.2.4 Cao et al. [21] - Decision tree
The first comparison method is from Cao et al. [21]. It
can predict the incoming workload for servers based on a
decision tree method. The decision tree is a tree-like model
of decisions and their possible consequences, where each
non-leaf node represents the condition of the characteristic
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attributes and each leaf node indicates a category. The
decision-making process starts from the root node, then
makes a decision and chooses a path until it reaches a
leaf node and gives the final decision and prediction. The
prediction method proposed by Cao et al. [21] can provide
predicted incoming workload information to the resource
governor, which then handles server configurations to tackle
the possible workload stress. In this work, we adapt the
workload prediction method proposed by Cao et al. [21] to
consider performance prediction for the VM in the exper-
iment. Besides, we use the Bayesian optimization method
to optimize the minimal leaf size of this method, thus
achieving its best performance.

5.2.5 Pham et al. [16] - Random forest

Pham et al. [16] propose to use a random forest method
to predict task execution time in the cloud. Random for-
est packs multiple decision trees to make the decision by
utilizing a voting mechanism of all the individual decision
tree models. Thus, it addresses the overfitting problem
suffered by the solution proposed by Cao et al. [21] How-
ever, this work does not consider the interference-induced
performance variation of the application. In other words,
the execution time solely depends on the server type and
VM configuration. Therefore, it is unfair to compare their
proposed random forest method because it can only give
a fixed performance value once the cloud platform, VM
type, and application are determined without respecting the
interference the application received. In the end, to achieve a
fair comparison, we adapt the prediction method proposed
by Pham et al. [16] in predicting the runtime performance
level of the application by using the application’s runtime
metrics. Moreover, to achieve the best performance for this
method, we use the Bayesian optimization method to opti-
mize its hyperparameters (i.e., number of trees and minimal
leaf size).

5.2.6 Bader et al. [18] - Bayesian regression

Bader et al. [18] introduced an innovative technique called
Lotaru, aims to estimate task runtimes in scientific work-
flows deployed on heterogeneous cloud servers. Lotaru op-
erates in several steps: initially, it performs comprehensive
profiling of all servers using a set of benchmarks. Subse-
quently, it takes advantage of the obtained measurements
to train a Bayesian regression model. This model enables
the prediction of a task’s runtime based on its input size.
Moreover, Lotaru fine-tunes the predicted runtimes for each
different server in the cluster, incorporating the benchmark-
ing results as specific adjustments. To facilitate a detailed
analysis, we implemented the Lotaru method that uses
workload as input for estimating task performance, named
as Lotaru-workload. Additionally, in order to ensure a fair
comparison, we extend the Lotaru to support runtime hard-
ware metrics, the same ability as other comparison methods,
for estimating task performance, named as Lotaru-trace.

5.3 Cloud benchmarks

Target cloud benchmarks are selected from CloudSuite [10],
an open-source benchmark suite of emerging scale-out

workloads. It contains a collection of representative appli-
cation categories commonly found in today’s data centers.
We also added the Redis benchmark [44] to the benchmark
set to test the performance of the data structure server and
also enlarge the variability of target cloud applications. In
summary, target cloud applications used in this work are
listed in Table 5. Note that both DS and WS applications
exhibit a performance baseline range due to their variable
workload levels. On the contrary, the remaining three appli-
cations have a fixed performance baseline as a result of their
fixed workload level.

Different from the non-interference setting used in the
comparison method [16] where the application runs without
receiving interference from other activities of the server,
the interference between applications and VMs is well con-
sidered in our work. To incorporate as many interference
combinations as possible, a dynamic scenario is considered
in this work. During the experiment, there are five VMs run-
ning concurrently inside the server. This scenario definition
guarantees that each VM receives a moderate stress level, as
we showed previously in our motivation example in Fig. 1.
In this figure, the performance of DS can degrade more
than eight times. If more VMs are running on the server,
the VMs always experience some performance degradation.
On the contrary, a fewer number of VMs will not provoke
enough interference to each other. Each VM has a total of
six operation modes (0-5), as listed in Table 6. The operation
mode for each VM is randomly chosen at runtime. If the
mode is 0, the VM is idle and does not run any application
for three minutes. Otherwise, the VM runs the application
listed in Table 6. With five VMs concurrently running on the
server and following the six operation modes setting, the
designed experiment can cover every running application
combination and interference level for each VM.

In this work, we have collected over 10,000 instances of
applications running on servers. The neural network in the
proposed method takes 70% of data samples for training,
and each validation and test phase takes 15% of overall data
samples. For a fair comparison, both comparison methods
are also tested with the same 15% samples. Considering
comparison methods, based on decision tree, random forest,
and bayesian regression techniques, do not have the valida-
tion phase as the neural network. They are all trained with
85% data samples (i.e. 15% more training samples than our
proposed method).

6 EXPERIMENTAL RESULTS

In this section, we first target the server S1 and VM1 to
evaluate the accuracy of the application type identification
method proposed in Section 6.1. Then, the performance
prediction results are compared against different methods
in Section 6.2. Section 6.3 investigates the prediction of
performance degradation by using the proposed method. To
verify the proposed method can also fit into various VM and
Server configurations, the workflow versatility is examined
in Section 6.4 with new server S2 and VM types 2 and 3.
In addition, the sampling and computation overheads of
the proposed method are studied in Sections 6.5 and 6.6
respectively.
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TABLE 5
Applications used in the experiments

Application name Purpose Performance metric Performance baseline

Data Serving (DS) stress the data store and serving server execution time (s) [40.2 100.0]
Web Serving (WS) stress the throughput and latency of web services operations/s [3.0 8.6]

Media Streaming (MS) stress the server with video streaming applications requests/s 25.7
In-Memory Analytics (InMem) stress the server with the recommender algorithm execution time (s) 35.8

Redis benchmark evaluate the performance of the data structure server requests/s 5.4e4

TABLE 6
VM’s operation modes and relevant actions

Mode Action

0 Idle for 3 minutes
1 Run DS
2 Run WS
3 Run MS
4 Run InMem
5 Run Redis

5 10 15 20 25

Number of traces in the reference dataset

60

70

80

90

100

Id
en

tif
ic

ai
to

n 
ac

cu
ra

cy
 (

%
)

Without DTW With DTW

Fig. 8. Validation results of our proposed application type identification
algorithm

6.1 Application type identification

The proposed application type identification method com-
pares the trace of the unknown application with the refer-
ence dataset to find its identity. Therefore, a comprehensive
reference dataset that contains many runtime features of
the application has a crucial impact on the accuracy of the
identification process. The relationship between the com-
plexity of the reference dataset and identification accuracy
is studied in this section. As an automatic method without
expert knowledge, the complexity of the reference dataset is
expressed in the number of traces contained in the dataset.
With a larger number of traces in the reference dataset for
each application, the application’s possible behaviors are
more likely to be captured by the reference dataset and
identified with the proposed method.

Fig. 8 collects validation results of the proposed applica-
tion type identification method (with DTW) along with the
identification method without using DTW. The evaluation
starts with only one trace for each application, i.e., five traces
in the reference dataset for all of the five applications used in
this work. Thanks to our proposed use of DTW technology,
we achieve very high accuracy, 93%, in the application type
identification process even with only one trace for each
application. However, the identification method without
using DTW can only achieve 68% accuracy in the same
setting. With increasing the number of traces to 20, i.e., four
traces for each application, the identification results increase

to 97% with the proposed method. Beyond 20 traces, the
accuracy stops growing with the number of traces in the
reference dataset. In comparison, the identification method
without DTW reaches a plateau only at a 74% accuracy
when increasing the number of traces. In summary, Fig. 8
demonstrates that the proposed DTW-based application
type identification method can achieve less than 3% error
in identifying running applications.

Hardware configurations can differ across various phys-
ical servers, thus influencing the resource usage level of
applications across different servers. Therefore, the pro-
posed approach requires a retraining step to adapt to these
variations and ensure high accuracy. For the new server
configuration, it is necessary to re-sample and store the
application traces within a new reference dataset target.
Note that this retraining process, only needs to be done
when server configuration changes. Once retrained, it can
be employed on the same type of server without additional
training overhead. In this work, we verified the proposed
application type identification method for both types of
server S1 and S2, all achieving a precision greater than 97%
despite variations in server configurations.

6.2 Performance prediction with interference

In this section, we compare the performance prediction re-
sults between the proposed method and comparison meth-
ods. To make a fair comparison between different methods,
the proposed method is compared with the state-of-the-arts
only in performance prediction. In other words, only the
neural network Net::performance in the proposed method
is used in the following experiments.

A set of boxplot figures listed in Fig. 9 are used to show
an overall graphical comparison of different methods in
terms of training and test performance. The first row of
Fig. 9 shows the training phase error for different methods,
while the second row focuses on the test error. Inside each
boxplot, there are results for the five applications. The blue
box of the quartile captures the error data in the range of
25% to 75%. The red line inside the blue box is the median of
the error. Therefore, a lower and smaller blue box indicates
a lower prediction error and a smaller standard deviation.
Note that in the figure, the method presented by Bader et al.
primarily focuses on the Lotaru-trace approach. In our study,
we also implemented the Lotaru-workload method. However,
we observed that the train and test errors for Lotaru-workload
method are significantly higher, reaching above 39% and
20% for DS and WS, respectively. This can be attributed to
the fact that the application’s performance is not solely de-
termined by the workload itself, but also by the interference
the application experiences. Modeling the workload alone
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fails to capture the complete performance characteristics
of the application. Consequently, by incorporating runtime
hardware metrics using the Lotaru-trace approach, it can
achieve more accurate prediction results at a similar level
compared to other methods.

In summary, all four methods have similar performance
and high accuracy in predicting performance for applica-
tions without variable workloads (i.e., MS, InMem, and
Redis). However, the comparison methods fall short in
performance prediction for applications with variable work-
loads (i.e., DS and WS). In contrast, the proposed neural
network method demonstrates its advantage and shows the
best accuracy in predicting performance for application DS
and WS.

In this work, we also investigate whether deep learning
models enhance performance prediction. Therefore, we in-
clude three representative deep learning models, namely,
DNN, CNN, and LSTM, in our evaluation. For a fair
comparison, each model goes through hyperparameter op-
timization to maximize its performance potential in VM
performance prediction. The results, as detailed in Table 7,
illustrate that in almost all of cases, the proposed NN-based
method outperforms all deep learning models.

TABLE 7
Performance prediction errors of different NN-based methods

DS WS MS InMem Redis

Kong et al. [42] - DNN 6.2 8.6 1.0 0.5 0.4
Xu et al. [43] - CNN 6.7 5.2 0.9 2.5 1.1

Jayakumar et al. [24] - LSTM 4.6 7.1 1.1 1.8 0.8
Proposed 3.7 6.6 0.6 1.1 0.4

Deep learning models, despite their capacity to capture
complex patterns and potentially yield better performance,
tend to have more complex structures compared to our pro-
posed method. This complexity often leads to overfitting,
resulting in worse performance. This finding aligns with
observations in the literature [42], [45], [46], which report
performance degradation with increased DNN complexity.
To mitigate the problem of overfitting, expanding the data
set is an effective approach. For example, the well-known
ResNet deep learning model requires a dataset comprising
over a million samples [47]. However, this approach con-
flicts with the need for maximum uptime in cloud servers,
as more time spent on application profiling to augment
the dataset reduces the available server time for end users.
Consequently, dataset scarcity is an inherent challenge in
this context, hindering the use of deep learning models to
predict VM performance in public clouds.

Furthermore, deep learning models are typically more
complex, demanding more computational and memory re-
sources as demonstrated in Table 8. Our analysis of the
computational overhead associated with various deep learn-
ing models reveals that, on average, deep learning models
incur over three times the computing overhead compared
to the proposed method, but still fail to provide better
performance. Therefore, we focus on NN-based prediction
methods in this work.

TABLE 8
Computation overhead of different machine learning methods in µs

DS WS MS InMem Redis

Kong et al. [42] - DNN 44.8 114.9 37.8 24.4 22.9
Xu et al. [43] - CNN 68.4 30.6 43.2 61.2 93.9

Jayakumar et al. [24] - LSTM 45.1 43.5 40.6 38.6 39.2
Proposed 4.8 5.2 13.0 15.6 13.0

TABLE 9
Accuracy of the proposed method in the prediction of performance

degradation

App
Train error (%) Test error (%)

mean max std mean max std

DS 4.5 44.7 5.6 5.4 26.0 5.2
WS 4.6 27.0 4.3 6.8 32.1 6.1
MS 0.5 7.6 0.9 1.2 16.4 2.9

InMem 0.4 3.3 0.4 0.6 7.4 0.8
Redis 0.2 1.3 0.2 0.3 1.7 0.3

6.3 Prediction of the performance degradation

In the previous section, the advantages of the proposed
method in performance prediction are well demonstrated.
However, only the application’s performance level cannot
fully reflect the interference the VM received. For instance,
the performance level of application WS also varies with
the number of users, i.e., workload level. Therefore, a small
number of users or a VM receiving interference from other
VMs, can both lead to a low performance level of WS. There-
fore, we proposed a novel method to tackle the existing
problem. Since the comparison methods do not support the
prediction of performance degradation, this section mainly
focuses on verifying the proposed method in the prediction
of performance degradation.

The prediction results are collected in Table 9. The pro-
posed method achieves less than 5% error in the training
phase and 7% error in the test phase for both DS and WS.
As for the applications without variable workloads (i.e., MS,
InMem, and Redis), the proposed method predicts perfor-
mance degradation with less than 0.5% and 1.2% error in
the training and test phases, respectively. The above results
fully verify that the proposed method outperforms the state-
of-the-art methods in the application range and can predict
the performance degradation for the VM with high accuracy.

6.4 Workflow versatility: porting the solution to differ-
ent servers and VM types

In this section, we configure another new server to verify
that the proposed workflow can be adapted to different
servers. Besides, we also configure different types of VMs
running on the new server to further prove that the pro-
posed method can also work with different types of VMs.

6.4.1 New server
The configuration of the new server (i.e., Server 2), is listed
in Table 3. Other than the server hardware configuration, we
keep all other settings the same as the previous experiments.
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Fig. 9. Comparison of different methods for performance prediction. Note that DS and WS present a varying workload, conversely to other
benchmarks

The new server, S2, has much better performance than
another server, S1, because it is equipped with a faster CPU,
more memory, etc. For instance, our experiments demon-
strate that the Redis benchmark achieves a 62% average
performance improvement on server S2 than S1. After col-
lecting the experimental samples, the training and test errors
are illustrated in the boxplot Figs. 10 (a) and (b). The average
prediction error is below 7% for all of the applications in
both training and test phases. Therefore, a similar error
with the previous results for Server configuration S1, shown
in Table 9 of Section 6.3, demonstrates that the proposed
method works well for different server configurations.

6.4.2 New VMs
In addition to the new server configuration, the proposed
workflow was also tested with different VM configurations
in this work. Different types of VMs, as introduced in
Section 5, are configured and then sampled on Server S2.
Based on the experiments with these new VM configura-
tions, Figs. 10 (c) to (f) illustrate the prediction error for
both VM2 and VM3. The prediction error distributes in a
similar range for all of the three different VM types, i.e.,
lower than 5% in terms of median prediction error. This
observation demonstrates that the proposed workflow can
be extended to new server configurations and different VM
types widely used in public clouds without compromising
prediction accuracy.

6.5 Trade-off between sampling time and prediction ac-
curacy
Machine learning methods require adequate samples of the
target application to achieve good prediction accuracy. In
this section, we regard DS as a case study to investigate
the trade-off between the sampling time and prediction
accuracy, as illustrated in Fig. 11. In the beginning, the
prediction error, in terms of training, validation, and test
errors, sharply decrease thanks to the increase in sampling
time. This phenomenon indicates that the neural network
can achieve better prediction accuracy with more samples
for training purposes. However, the prediction accuracy
improves limitedly after the sampling time over 1000 hours,

when the neural network receives an adequate amount of
data samples for the training purpose.

Please note that the sampling time of 1000 hours does
not necessarily require the server to run for 1000 hours. It
can be achieved with 5 VMs concurrently running on the
server for 200 hours. Thus, making it feasible to get adequate
application samples in a short period of time with multiple
VMs.

6.6 Computation overhead analysis

Note that the training time belongs to the offline time over-
head. Once trained, the model can be deployed on multiple
servers for execution without incurring additional training
time. Therefore, offline training time is usually neglected in
related work and in this work. Moreover, training time is
much smaller than any of the recent (large) AI/ML models
(e.g., Transformers, etc.), so the overhead for this training
process can be considered very limited.

The runtime computational overhead of different meth-
ods for performance prediction is studied and listed in
Table 10. Based on the results shown in the table, the
proposed neural network-based performance prediction
method shows the largest computation overhead due to
its higher complexity and accuracy. In comparison, both
the methods proposed by Bader et al. and Pham et al. can
achieve less computation overhead because of the non-
complicated underlying prediction techniques, which are
Bayesian regression method and Random tree, respectively.
The method proposed by Cao et al. has the minimum com-
putation overhead because of the Decision tree it utilized.
However, the overhead of the neural network is still in
the µs scale, being negligible compared to the applica-
tion’s execution time, which usually ranges from minutes to
hours. Therefore, the runtime inference time of the proposed
method is also not a concern. Moreover, with this negligible
computing overhead, our proposed method brings the abil-
ity to discern different application types running in a black-
box scenario of public servers and predict applications’ per-
formance degradation level with the awareness of workload
variation.
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Fig. 10. Prediction error of the proposed method tested under different server and VM configurations
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Fig. 11. Trade-off between sampling time and prediction accuracy

TABLE 10
Computation overhead of different methods in µs

DS WS MS InMem Redis DS Deg WS Deg

This work 4.8 5.2 13.0 15.6 13.0 16.7 16.1
Bader et al. 4.7 4.5 4.0 4.1 3.6 - -
Pham et al. 2.8 3.1 5.1 7.1 6.3 - -
Cao et al. 0.4 0.3 0.7 1.2 1.1 - -

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a machine learning-
based performance prediction method for cloud applica-
tions based on the realistic assumption that resource gover-
nors should regard VMs as black-box systems. The proposed
method first identifies the application based on accessi-
ble hardware metrics from the host server. Next, highly-
correlated metrics are selected to accurately predict the
performance level of the application by using the proposed
machine learning-based approach. Finally, the performance
degradation is predicted for the VM, which can be further
used by the resource governor to schedule or migrate the
VM.

Experiments with state-of-the-art cloud benchmarks
demonstrate that our proposed machine learning-based
method outperforms the state-of-the-art comparison ap-
proaches. We observed that the proposed method can
achieve improvements of more than 2× in terms of worst
prediction error. In addition, the proposed method performs

accurate performance degradation prediction for applica-
tions with the variable workload while the comparison
methods fail to consider. Moreover, we also showed that
the proposed method can be ported to new server and
VM configurations without degradation in prediction accu-
racy. When studying the trade-off between sampling time
and prediction accuracy of the proposed method, the main
conclusion is that the proposed method can achieve high
prediction accuracy with a reasonable sampling time for the
application.

Finally, the computation overhead was analyzed in detail
when compared to the state-of-the-art methods. Although
the proposed method has the largest computation overhead
due to its highly sophisticated structure and high accuracy,
the overhead is negligible when compared to the application
execution time (microseconds vs. minutes/hours).

In terms of future endeavors, several key aspects need
attention and improvement:

Integration: Our work paves the way for the implemen-
tation of a new generation of VM management engines that
leverage the accurate performance prediction results pre-
sented in this work. Furthermore, the future development
of VM management and analysis will enhance the practical
applicability of our research. Therefore, our future work will
concentrate on integrating CloudProphet within the public
cloud monitoring and management system to demonstrate
the benefits of accurate performance prediction.

Cost Savings: To determine the actual benefits of Cloud-
Prophet for both cloud providers and customers, we intend
to perform performance and energy assessments utilizing
real public clouds. This evaluation will enable us to fully
explore the advantages of incorporating artificial intelli-
gence into existing research regarding live VM migration
on public clouds [48]. We aim to develop more effective VM
migration strategies in the future and highlight the potential
cost savings benefits of CloudProphet.

Nevertheless, several challenges persist in our future en-
deavors that demand further consideration and resolution
for AI and Cloud systems [2]:

Automation: A significant challenge lies in integrating
the machine learning-based performance degradation pre-
diction method into the cloud monitoring and management
system, with particular emphasis on devising strategies to
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effectively manage running virtual machines (VMs). Devel-
oping an automated approach to this process remains a
critical obstacle that needs to be addressed.

Inadequate Data and Privacy Concerns: An ongoing con-
cern revolves around the availability of sufficient data for
performance monitoring and prediction, as well as the asso-
ciated privacy issues. Determining the boundaries between
the data that the public cloud provider can collect and the
data users are willing to share requires careful examination.
Consequently, it is imperative to explore potential solutions
that address data scarcity and privacy concerns while main-
taining the efficacy of machine learning-based performance
degradation prediction methods.
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