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ABSTRACT
Rising summer temperatures in Greenland have accelerated the
formation of supraglacial lakes. Since these lakes play a significant
role in ice sheet dynamics and bed lubrication, their continuous
monitoring in a warming Arctic is becoming essential. The 31st
ACM SIGSPATIAL competition (GISCUP 2023) aims to automate
the detection of these lakes using satellite imagery. In this paper,
we present two solutions to this problem based on image segmen-
tation techniques: a DeepLabv3+ model that ranked first, and a
U-Net-based approach that ranked fourth. We provide details about
our implementations and explain the rationale behind our choices
and the challenges we faced. Our results contribute to the under-
standing of supraglacial lake fluctuations and offer a valuable tool
for ongoing environmental monitoring.

CCS CONCEPTS
• Information systems → Geographic information systems; •
Computing methodologies → Image processing; Supervised
learning.
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1 INTRODUCTION
Over the last two decades, rising boreal summer temperatures
in Greenland have accelerated the formation of high-elevation
supraglacial lakes atop the ice sheet. These lakes, which rapidly
grow and drain through ice cracks, significantly affect bed lubri-
cation and ice sheet dynamics. Ongoing research is focused on
understanding the influence of this phenomenon in a warming
Arctic. This necessitates effective solutions for continuously moni-
toring these supraglacial lakes. The 31st ACM SIGSPATIAL com-
petition (GISCUP 20231) addresses the problem of automatically
detecting these lakes from satellite images and tracking their ex-
istence and behavior longitudinally throughout the seasons. This
paper introduces two solutions based on segmentation techniques
that our team devised to address this problem. The DeepLabv3+[2]
based algorithm achieved first position. The U-Net[11] based algo-
rithm ranked fourth. In the following sections, we first describe
our methodology. We then present our solutions, with a focus on
the common processing stages and on the winning algorithm. Fi-
nally, we discuss our results, the challenges encountered during
the competition, and explore possible avenues for future work.

The dataset provided for the challenge comprises four multi-part
satellite images in the GeoTIFF format, captured during the summer
2019 melt season at different intervals. These images depict two
distinct areas of Greenland, each showcasing numerous surface
lakes and hydrologic features. The areas are further subdivided into
six smaller regions within each image, alternately designated as test
and train regions. The corresponding lake labels are represented
as polygons in a geopackage file. Only the training labels were
provided, while the test labels were withheld for the final evaluation
and ranking.

2 METHODOLOGY
We formed a multi-disciplinary team of data scientists and software
engineers. The adoption of MLOps practices and tools has signifi-
cantly streamlined our model development workflow. We utilized
Git for code collaboration and for sharing common preprocessing
and postprocessing steps. Additionally, we integrated DVC to ver-
sion our data. This enabled faster iterative experimentation through

1https://sigspatial2023.sigspatial.org/giscup/
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cached pipeline steps, overnight automated hyperparameter tuning,
and allowed for systematic evaluations and comparisons.

In our development process, we promoted collaboration and a
healthy level of internal competition. We agreed to share code while
also exploring multiple solutions in parallel to prevent stagnation
and ensure continuous improvement. Regular meetings focused on
communicating intermediate results fostered a cooperative environ-
ment and facilitated knowledge exchange. A scoreboard, updated
regularly, showcased the performance of the different solutions and
served as a motivating factor for achieving high levels of perfor-
mance. While our initial goal was to select the best ML model for
the final submission, two models excelled on the validation data,
so we decided to submit both. The final solutions use a common
framework, derived from insights and techniques uncovered during
this process.

In addition to our internal meetings, we presented our work to
two industry experts in GIS and ML, and invited them to challenge
our solutions. This productive session refined our methodologies,
clarified some of our ideas, and deepened our understanding of
potential pitfalls.

3 SOLUTIONS OVERVIEW
This challenge focuses on generating polygons of lakes from satel-
lite imagery. To address it, we performed semantic segmentation.
We predicted binary masks, distinguishing between "non-lake" and
"lake" pixels from RGB images. This process ultimately enabled us
to delineate polygons based on these binary masks. In this section,
we briefly introduce the semantic segmentation approach common
to both of our models. In Section 4 and Section 5, we elaborate on
both of our implementations relying on distinct ML algorithms.

3.1 Preprocessing
Creating a relevant training dataset is crucial to ensure that the
model learns from information-rich images without introducing
excessive bias towards one class or the other. Key factors in this
process include the acquisition of a substantial number of images
and the removal of superfluous ones.

Tiling. To increase the dataset size and obtain multiple views of
the lakes, we extracted overlapping (50%) tiles across all training
regions. We initially extracted these tiles at a size of 448x448 and
then downsampled them to 320x320 (see Figure 1). Using a larger tile
size allowed us to capture a broader context, while downsampling
reduced the model’s computation time and eliminated irrelevant
details. This resulted in around 60, 000 tiles with their corresponding
masks.

Dataset filtering. It is important to concentrate on tiles that pro-
vide essential data to the model. To accomplish this, we filtered
out tiles with an excessive amount of missing data, such as tiles
that were partly extending beyond the boundaries of the raster. We
achieved this by examining their percentage of black pixels and set-
ting a threshold at 60%. While we kept all tiles containing lakes in
the dataset, we carefully selected non-lake tiles. Many of these tiles
were predominantly white with minimal variations, offering limited
information. Moreover, this could have introduced bias towards

Figure 1: Tiles sample
Examples of tiles, with the last one partially extracted at the raster border.

the non-lake class due to its disproportionate representation com-
pared to the other class. To mitigate potential diversity concerns
arising from the random selection of non-lake images, especially
when many of them exhibit visual similarities, we filtered them out.
We eventually obtained a dataset of about 15, 000 tiles with their
corresponding masks.

3.2 Model
To generate segmentation masks from the image tiles, we used
320x320 RGB image tiles as input for our models to generate bi-
nary masks representing the two target classes. For model train-
ing and evaluation, we split the dataset into 80% for training and
20% for validation. We trained the final model for submission us-
ing the entire dataset. To help the model generalize, we used the
Albumentations[1] library for image augmentation with different
kinds of augmentations (rotation, flip, brightness, distortion, . . . ).

3.3 Postprocessing
To transform the model’s predictions into lake polygons, we imple-
mented a two-step postprocessing methodology. First, we generated
predictions by tiling the original raster images with overlap. Subse-
quently, we aggregated the predicted masks and constructed poly-
gons by identifying their contours. In the second step, we merged
overlapping polygons and filtered them out based on their area.

4 DEEPLABV3+ SOLUTION
In this section, we present our DeepLabv3+[2] architecture, which
stands as one of the state-of-the-art models for semantic segmenta-
tion [9]. This solution ranked first in the competition.

4.1 Preprocessing
Clustered-based undersampling. We applied a clustering algo-

rithm and used the resulting clusters, with a probability inversely
proportional to their size, to randomly select non-lake tiles. This
method aims to enhance our chances of selecting tiles that contain
important but less common land covers. The clusters are created
using the k-means algorithm, with k set to 4 on the histograms of
images’ HSV color space. We chose a lower number of bins (specifi-
cally, 5 bins per channel) to reduce computation time. The decision
for the value of k was driven by the intuition that a high k would
lead to numerous clusters, potentially decreasing the method’s ef-
ficiency in representing the rarity of land covers. Conversely, a k
that is too low might capture less disparity between images and
leave fewer chances to distinguish the more uncommon images.
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Figure 2: Modified DeepLabv3+ architecture
Changes include reduced filters and additional spatial dropout layers.

4.2 Model
Model architecture. We used the DeepLabv3+ example provided

on the Keras website[10] as a basis for our solution and subse-
quently introduced several improvements to enhance the model’s
capabilities (see Figure 2). To address concerns related to overfit-
ting and computational efficiency, we chose to reduce the num-
ber of filters. This resulted in a model having approximately 20%
fewer parameters, totalling 9.5M trainable parameters, as opposed
to 11.8M trainable parameters in the original implementation. Ad-
ditionally, for model regularization, we incorporated three spatial
dropout[12] layers. In an effort to reduce the model’s sensitivity to
batch size variations, we replaced batch normalization with group
normalization[14]. Finally, we substituted the conventional ReLU
activations with GELU activations[4], with the expectation that
this change would further enhance model performance.

Training details. The loss function used is a combination of a
weighted Binary Cross Entropy (BCE) and Dice loss. By combin-
ing both, we benefit from the advantages of Dice loss, notably
robustness to class imbalance, while BCE mitigates its drawbacks
by smoothing the loss landscape[6].

Snapshot ensembles. To achieve better performance and ensure
a more robust solution, we chose to employ an ensemble of models
in this approach. To reduce training time, we created this ensem-
ble following the snapshot ensembles technique[5]. We trained
our models using stochastic gradient descent with the following
hyperparameters: a momentum of 0.99 and a clipnorm of 1. Ad-
ditionally, we used a cosine annealing learning rate scheduler[8]
with an initial learning rate set to 0.1. We determined this initial

0 25 50 75 100 125 150
Epoch

0.0

0.1

Le
ar

ni
ng

 R
at

e

Model 1 Model 2 Model 3

Figure 3: Learning rate scheduler for snapshot ensembling
Weight saving times are marked as red dots.

learning rate through a learning rate range test. The training pro-
cess is organized into three cycles, each spanning 50 epochs. At the
completion of each cycle, we saved the model weights (see Figure
3). This approach produced three distinct models that constitute
the ensemble.

4.3 Postprocessing
Model ensemble. To diminish the impact of lake positions in

images, which may lead to errors (for instance, when there is a
small portion of lakes at the image’s borders), and to enhance the
robustness of our solution, we made predictions with a three-fold
overlap. Since we used three models for predictions, we averaged
nine predictions in total, except at the raster’s borders where we
had a minimum of three predictions.

5 U-NET SOLUTION
In this section, we present our U-Net model. This solution ranked
fourth in the competition.

5.1 Preprocessing
pHash similarity based filtering. We used a perceptual hashing

algorithm [7] to calculate the hashes of the generated tiles in the
preprocessing step. For each image and region, we included all
the tiles containing lakes and then selected the ones that did not
contain lakes and did not have the same hash. This process ensures
that we maintain a consistent distribution of images throughout
the images and regions while eliminating similar images.

Dataset bias. Each tile is labelled as either containing a lake or
not containing a lake. To create the dataset, we picked a ratio of
0.7 "lake" to "non-lake" images. As more images were available for
training, this introduced a bias in the dataset, predicting fewer lakes,
but enhancing the model’s robustness to false positives.

5.2 Model
Model architecture. We used the U-Net[11] encoder-decoder ar-

chitecture with a pre-trained ResNet50[3] encoder for predicting
the masks. The weights were left trainable with a total of 32.6M
parameters. We started with an implementation from NAU-Net[13]
using the Pytorch Lightning framework.

Training details. We used the Adam optimizer and a custom
loss function that combines, in a weighted sum, a Tversky loss
(𝑤𝑇 𝑣𝑒𝑟𝑠𝑘𝑦 = 0.25) and a custom blob detection loss (𝑤𝑏𝑙𝑜𝑏 = 0.75)
to train the network. The Tversky loss (𝑎𝑙𝑝ℎ𝑎 = 0.6, 𝑏𝑒𝑡𝑎 = 0.4)
is used to ensure that the model is accurate pixel-wise. The blob
detection loss is used with the idea of improving the accuracy of
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the number of predicted lakes. The combination of the two losses
allows for more stable training.

We trained the network for 140 epochs with a batch size of 32.
Through a learning rate range test, we set the learning rate to
0.00015 and multiplied it by a factor of 0.8 every 20 epochs. We
incorporate the StepLR learning rate scheduler from PyTorch to
enhance the model’s convergence.

5.3 Postprocessing
Edge significance mask. To enhance the quality of the predictions

near tile edges (where lakes may be truncated), we multiplied each
one of them with a mask designed to diminish edge significance.
We then averaged the predictions over a 50% overlap. The mask
consisted in a 25% border around all edges, set at a value of 0.75,
while maintaining a value of 1.0 for the inner area. The border
dimensions and valuewere determined based on the 50% tile overlap.
This ensures that overlapping tile edges have a minimum of three
confident predictions for annotating border pixels.

6 RESULTS
The final evaluation of the submitted geopackage files for lake
identification was based on 𝐹1-score, which considers precision and
recall. Each submitted polygon was to be classified as "true positive",
"false positive", or "false negative" in comparison to the withheld
test dataset. As defined by the competition rules, the criteria for
a "true positive" includes: no overlap with other polygons in the
submitted file, partial or full overlap with a polygon in the test
dataset (the predicated area should be between 50% and 160% of
the overlapping test area).

The DeepLabv3+ based model ranked first with a 𝐹1-score of
0.712, whereas the U-Net based model ranked fourth with a 𝐹1-
score of 0.673. Using our Linux server (112 cores, 128GB RAM
and four NVIDIA A40 graphic cards), computation completes in
approximately 8 hours and 4 hours, respectively.

7 DISCUSSION
We encountered some noteworthy difficulties with ensuring reli-
able validation being a particular challenge. Since we employed a
random split for validation, there was a possibility of encounter-
ing images and their overlaps in both the training and validation
datasets. Additionally, it was possible that images taken at the same
location but at different times could appear in both the training and
validation sets.

To mitigate these issues, we implemented image augmentation.
Nevertheless, we found that the metrics we used were not entirely
reliable. We noticed that the training and validation Intersection
over Union (IoU) were still consistently increasing without any sign
of overfitting. It was only when we thoroughly examined the pre-
dictions in QGIS that we realized overfitting could still be an issue.
We acknowledge that room for improvement exists, particularly in
enhancing the model evaluation.

As future endeavour, we could explore the possibilities of com-
bining the various preprocessing and postprocessing methods with
the algorithms. This entails experimenting with different param-
eters settings. Also, we were unable to dedicate enough time to
fully experiment with additional data sources, such as the near

infrared channel to implement the Normalized Difference Water
Index (NDWI), which has the potential to further enhance lake
detection performance. However, it is worth mentioning that our
experimentation with gradients computed from ArticDEM as an
additional channel did not result in performance improvements.
One possible reason is that the DEM model represents the mean
average of each image.

These directions are however promising for enhancing the over-
all performance of our methods.

8 GUIDELINES TO RUN THE CODE
The code of both implementations can be found on GitHub2 3 under
the MIT license. Refer to the related README files to set up the
required dependencies, pull data from the remote storage, and run
the ML pipeline.
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