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The Metric Bridge Partition Problem

Partitioning of a metric space into two subspaces linked by an
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Abstract Let G = (V, E,w) be a graph with vertex and edge sets V and E, re-
spectively, and w : E — IRT a function which assigns a positive weigth or length
to each edge of G. G is called a realization of a finite metric space (M,d), with
M ={1,...,n} if and only if {1,...,n} C V and d(i,) is equal to the length of the
shortest chain linking ¢ and j in G Vi,j = 1,...,n. A realization G of (M,d), is said
optimal if the sum of its weights is minimal among all the realizations of (M,d).
Consider a partition of M into two nonempty subsets K and L, and let e be an edge
in a realization G of (M, d); we say that e is a bridge linking K with L if e belongs
to all chains in G linking a vertex of K with a vertex of L. The Metric Bridge Par-
tition Problem is to determine if the elements of a finite metric space (M, d) can be
partitioned into two nonempty subsets K and L such that all optimal realizations of
(M,d) contain a bridge linking K with L. We prove in this paper that this problem
is polynomially solvable. We also describe an algorithm that constructs an optimal
realization of (M, d) from optimal realizations of (K, d|x) and (L, d|L).

Keywords metric, partition, optimal realization, decomposition, algorithm

1 Introduction

A metric space is a couple (M, d) such that M is a set and d is a metric, which is a
positive and reflexive function, with respect to the triangular inequalities (i.e. d is a
function defined on M x M such that d(z,y) = d(y,z) > 0 Vz # vy, d(z,z) = 0 Vz,
and d(z,z) < d(z,y) + d(y, z) Va,y, z). Moreover, (M,d) is a finite metric space if
M has a finite number of elements.
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Let G = (V, E,w) be a graph, with vertex and edge sets V and E, respectively,
and w : E — IR" a function which assigns a positive weight or length to each edge
of G. Furthermore, let d(i,j) denote the length of a shortest chain in G linking
vertices ¢ and j. We say that G is a realization of a finite metric space (M, d), with
M = {1,....n} if and only if {1,...,n} C V and d(i,5) = d(i,7) Vi,j = 1,...,n.
The vertices which do not belong to M are called auziliary vertices. A realization of
(M, d) is called optimal when the sum of its weights is minimal among all the realiza-
tions of (M, d). For illustration, a metric space together with an optimal realization
G are shown in Figure 1. All edges of the graph have length one, and the black points
a, b, c,d, e are five auxiliary vertices while the white ones are the elements of M.
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Figure 1. A metric space with an optimal realization

The embedding of finite metric spaces in graphs has applications in varied fields
as computational biology (Landry, Lapointe and Kirsch, 1996; Makarenkov, 2002)
(e.g., constructing phylogenetic trees from genetic distances among living species),
electrical networks (Hakimi and Yau, 1964), coding techniques (Dress, 1984), psy-
chology (Cunningham, 1978), internet tomography (Chung, Garret, Graham and
Shallcross, 2001), and compression softwares (Li, Chen, Ma and Vitanyi, 2004).

The problem of finding optimal realizations of metric spaces was first proposed
by Hakimi and Yau (1964) who also gave a polynomial algorithm for the special
case where the metric space has a realization as a tree. While every finite metric
space has an optimal realization (Imrich and Stockii, 1972; Imrich, Simdes-Pereira
and Zamfirescu, 1984), finding such realizations is an NP-hard problem (Winkler,
1988).

Optimal realizations can be constructed using building blocks. More precisely, for
a graph G, we recall that a cutpoint, respectively a bridge, is a vertex, respectively an
edge, whose removal strictly increases the number of connected component of G; a
block is a maximal two-connected subgraph or a bridge in G. Imrich, Simoes-Pereira
and Zamfirescu (1984) have proved the following theorem.

Theorem 1 (Imrich, Simées-Pereira and Zamfirescu, 1984) Let G be a realization
of a finite metric space (M,d), let Gy,---, Gy be the blocks of G, and let M; be the
union of the points of M in G; together with the cutpoints of G in G;. If every G;
is an optimal realization of the metric space induced by G on M;, then G is also
optimal.



For example an optimal realization of the metric space of Figure 1 can be obtained
by putting together optimal realizations of the metric spaces induced on {1,2,3,a},
{a,b}, {4,5,b,c}, {6,c}, {6,d}, {7,8,d, e}, and {9,10,11, e}

It is therefore interesting to be able to recognize metric spaces which contain at
least one bridge in all optimal realizations. This is exactly the topic of our paper.
More precisely, consider a partition of M into two nonempty subsets K and L, and
let e be an edge in a realization G of (M, d). We say that e is a bridge linking K with
L if e belongs to all chains in G linking a vertex of K with a vertex of L. The Metric
Bridge Partition Problem is to determine if the elements of a given finite metric space
(M, d) can be partitioned into two nonempty subsets K and L such that all optimal
realizations of (M, d) contain a bridge linking K with L. For example, on the basis of
the distance matrix of Figure 1 (and without any knowledge of the optimal realiza-
tion), we would like to be able to state that all optimal realizations contain a bridge
linking K = {1,2,3,4,5,6} with L = {7,8,9,10,11}, or K = {1,2,3,4,5} with
L ={6,7,8,9,10,11}, or K = {1,2,3} with L = {4,5,6,7,8,9,10,11}. We prove in
this paper that the Metric Bridge Partition Problem is polynomially solvable.

2 Definitions and Known Results

It is well-known that the unique optimal realization of a metric space on three points
1,7,k is a tree T. The hub of 4, j, k, denoted h;j;i, is the junction point which induces
the shortest path between ¢, j and k. It is defined as follows:

) %(d(i,j) +d(i, k) — d(j,k)),

Assume that the distance d(i,j) is larger than or equal to d(¢,k) and d(j, k).
If d(i,j) < d(i, k) + d(j,k), then T has three leaves i, j and k, and one auxiliary
vertex corresponding to the hub h;j, else T' is a chain linking ¢ and j that traverses
k = hyji; (see Figure 2).

i k i
j J
d(ij) = max{d(i,j); d(i,k); d(j.k)} d(ij)=d(i,k)+d(j.k)

d(ij)<d(i,k)+d(j.k)

Figure 2. Optimal realizations of three points

Let si;ke denote the sum d(4,j) 4+ d(k, ¢). It is also well-known that the optimal
realization of a metric space on four points 4, j, k, £ is a unique tree if and only if two
of the sums s;;xe, Sikje, Siejr are equal and not smaller than the third. Moreover, if
Sijkt < Sikje = Sitjk, then the tree has a bridge (hijka hzk[) of length Sikje — Sijke > 0
linking {i, 7} with {k, £}. The three possible configurations are represented in Figure
3 (the other cases are equivalent).
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Figure 3. Optimal realizations of four points

Definition 1 A finite metric space (M, d) is reducible if and only if all its optimal
realizations contain a vertex of degree one (i.e, a vertex with exactly one neighbor).

In other words (see for example Imrich, Simdes-Pereira and Zamfirescu (1984)),
a finite metric space (M,d) is reducible if and only if M contains an element i,
called endpoint, such that d(i,j) + d(i, k) — d(j, k) > 0 for all j, k # i. An optimal
realization of a reducible metric space (M, d) can easily be obtained from an optimal
realization of a metric space (M’,d") which has fewer endpoints or fewer elements
than M. More precisely, consider an endpoint ¢ in a reducible metric space (M,d),
and define ov =min{1 (d(i,j) + d(i,k) — d(j, k))}, the minimum being taken over all
j, k # i. There are two possible cases:

— If there is an element j € M with d(i,j) = «a, then set M’ equal to M\{i}, and
set d = d|p (i.e., d' is the distance matrix induced by d on M’). An optimal
realization of (M,d) can be obtained from an optimal realization of (M’,d’) by
adding a vertex ¢ and an edge of length « linking 7 with j.

— If there is no element j € M with d(i,j) = «, then set M’ = M\{i} U {a}
and define d'(j,k) = d(j, k) for all j,k # a, d'(a,j) = d(i,j) — « for all j # a.
An optimal realization of (M,d) can be obtained from an optimal realization of
(M',d"), by adding a vertex i and an edge of length « linking ¢ with a.

Definition 2 Consider a finite metric space (M, d), a partition of M into two non-
empty subsets K, L and a mapping f : M — IR*. The triplet (K, L, f) is said nice
if

— d(z,y) < f(x) + f(y) for all x,y in M, equality holding whenever 2z € K and
y € L, and
— f(z) > 0 at least once in K and once in L.

The above definition is motivated by the following result proved by Imrich and
Stockii (1972) and Imrich, Sim&es-Pereira and Zamfirescu (1984)

Theorem 2 (Imrich and Stockii, 1972; Imrich, Simdes-Pereira and Zamfirescu,
1984) Suppose (M,d) is a finite metric space to which there exists a nice triplet
(K, L, f). Then every optimal realization G of (M,d) has a cut-point ¢ or a bridge
with a point ¢ on it such that all chains linking K with L go through ¢, and d°(z,c) =
f(z) Vze M.



3 New Results and algorithms

We give two results, which will justify our decomposition algorithm 1. Only a sketch
of the proofs is given here; a complete proof of each theorem is available in the
Appendix.

The following theorem provides a sufficient condition for the existence of a bridge
in every optimal realization of a finite metric space (M, d). It states that if a partition
of the metric space into two parts satisfies some properties, then there is a bridge
between those two parts in every optimal realization.

Theorem 3 Suppose (M,d) is a finite metric space to which there exists a partition
of M into two non-empty subsets K, L with |K| > 1 and |L| > 1, and assume
(1) Sijke < Sikje = Sitjk Vi,j € K and k.l € L.
(2) Jz,y € K and z,t € L such that
Spayt — Swyzt < Sikje — Sijke Vi,j € K and k., € L
Then every optimal realization of (M,d) has a bridge (hgy-, hyxt) linking K with
L.

In order to prove this result, we build two distance functions f and g that measure
the distance from the borders of the bridge (if any) to a vertex in K or in L. We
show that (K, L, f) and (K, L, g) are both nice triplets, which implies the existence
of a bridge in every optimal realization.

A necessary condition for the existence of a bridge is given by the next theorem,
whose proof is rather technical (see Appendix for the proof).

Theorem 4 Suppose (M, d) is an irreducible finite metric space. If there is a par-
tition of M into two non-empty subsets K, L such that all optimal realizations of
(M,d) contain a bridge (u,v) linking K with L, then
(1) |[K|>1 and |L| > 1,
(2) Sijke < Sikje = Sitjk Vi,j e K and k,l € L,
(3) 3z,y € K and z,t € L such that
05,2yt — Suyzt < Sikje — Sijke Vi, J € K and k.l € L
oi € K & d(z,i) —d(z,1) <d(z,y) —d(z,y).

Algorithm M etricBridge Partition determines if a given finite irreducible metric
space (M, d) contains a bridge.

Theorem 5 The MetricBridgePartition algorithm works correctly and is polyno-
mial.

Proof Correctness of the algorithm follows from the results of the two previous the-
orems. Indeed, if the algorithm stops with four elements x,y, z,¢ and a partition of
M into two sets K and M\ K, then properties (1) and (2) of Theorem 3 are satisfied,
and we conclude that every optimal realization of (M, d) has a bridge linking K with
L. Moreover, if there exists a partition of M into two sets K and L such that every
optimal realization of (M, d) has a bridge, then we know from Theorem 4 that such
a partition will be found.

The first loop can be simplified by choosing x (or any variable among z, vy, z,t) at the
beginning of the algorithm, and has therefore a complexity of O(]M|?). The inner
loop is done in O(|M|). The condition on the sums can be checked in O(|M|?) by



Algorithm 1 MetricBridgePartition

Require: A finite irreducible metric space (M, d);
Ensure: Four elements z,y,2,t € M and a set K such that there is a bridge linking K with
M\K, or a message indicating that no optimal realization of (M, d) has a bridge;

for all z,y,z,t € M such that sgyzt < Szzyt = Szty> do
K — {z,y} and L «— {z,t};
for all i € M\{z,y,z,t} do
if d(z,i) — d(z,i) < d(z,y) — d(z,y) then
K — KU{i}
else
L — LU{i}
end if
end for
if Spzyt — Swyzt < Sikje — Sijke and Sijre < Sikje = Sigjk Vi,J € K k£ € L then
STOP: return z,y, z,t and K.
end if
end for
return a message indicating that no optimal realization of (M, d) has a bridge.

choosing i (or any variable among i, j, k, [). All other instructions in the algorithm are
done in constant time. Therefore, the algorithm is polynomial since its complexity
is O(|M|%) 0.

The MetricBridgePartition algorithm can be used to decompose a given finite
metric space (M,d) into metric spaces (My,dy), -+, (M,,d,) such that no optimal
realization of (M;, d;) (i = 1,---,r) has a bridge. According to Theorem 1, an optimal
realization of (M,d) can then be obtained by connecting optimal realizations of
(My,dy),- -+, (M,,d,) with bridges. More precisely, assume the existence of the three
following algorithms:

— algorithm NoBridge constructs an optimal realization of a finite metric space if
such a realization has no bridge;

— algorithm Reduce transforms any finite reducible metric space (M,d) into an
irreducible metric space (M’,d');

— given a finite reducible metric space (M,d) and an irreducible metric space
(M',d") obtained by applying Reduce on (M, d), and given also an optimal real-
ization G" of (M',d"), algorithm Eatend constructs an optimal realization G of
(M, d).

As explained in Section 2, algorithms Reduce and Extend are easy to implement.
Assume now that algorithm MetricBridgePartition produces an output x, vy, z,t, K
when applied on a metric space (M, d). This means that there is a bridge (hgyz, azt)
linking K with L = M\ K in all optimal realizations of (M, d). According to the proof
of Theorem 3, such an optimal realization G can be obtained as follows.

— Compute f(i) = d(z,i) — 3(d(z, z) + d(y, 2) — d(z,y)) for all i € K, and g(i) =

d(z,1) — 2(d(z,z) + d(z,t) — d(z,t)) for all i € L.
— Construct a metric space (K’,dg-) as follows: if there is an element i € K with
f(i) = 0 then set K’ = K and u = 4, and define dgs = d|k; else build K’ by
adding an auxiliary element u to K, and define dg(4,j) = d(i,7) for all 4, j € K

and dg(i,u) = f(i) for all i € K.



— Construct a metric space (L',dr/) as follows: if there is an element ¢ € L with
g(i) = 0 then set L' = L and v = i, and define dr, = d|r; else build L’ by adding
an auxiliary element v to L, and define dy/(i,5) = d(i,j) for all i,j € L and
dr (i,v) = g(i) for all i € L.

— Construct two optimal realizations Gk and G of (K',dk+) and (L', dy).

— Construct an optimal realization G of (M,d) by linking Gx: and G, with an
edge (u,v) of length sy.yt — Sgyzt-

Algorithm Optimal Realization uses M etricBridge Partition recursively to build
an optimal realization of any finite metric space (M, d). Figure 4 illustrates its use on
the example of Figure 1. The possible outputs (up to symmetry) of M etricBridge Partition
applied on (M, d) are

Algorithm 2 Optimal Realization

Require: A finite metric space (M, d);
Ensure: An optimal realization G of (M, d);

if (M, d) is reducible then

Apply Reduce on (M,d) to build an irreducible metric space (M’,d’);
else

(M',d') — (M,d);
end if

Apply MetricBridgePartition on (M’,d’);
if the output indicates that no optimal realization of (M’,d’) has a bridge then
Apply NoBridge on (M’,d’) to build an optimal realization G’ of (M’,d’);
else
Let z,y, z,t, K be the output of MetricBridgePartition;
Build the metric spaces (K’,dg) and (L’,dy/) as explained above;
Get Gg and G/ by applying Optimal Realization on (K',dg+) and (L', dy/);
Build G’ by linking G+ and G/ with an edge (u, v) of length sz2yt — Swyzt;
end if

if (M,d) # (M',d’) then

Apply Eztend to G’ to build an optimal realization G of (M, d);
else

G—G'.
end if

—x=1y=3,2=4,t€{6,7,8,9,10,11}, K = {1, 2, 3};
—we{1,2,3},y=52=06,t e {7,8,9,10,11}, K = {1,2,3,4,5:
Cwe{1,2,3,4,5),y=6,2=7.tc {9,10,11}, K = {1,2,3,4,5,6).

Assume the algorithm produces the output x = 1,y = 3,z = 4,t = 6, K = {1,2,3}.
Since f(1) = 1,f(2) = 2, and f(3) = 1, we construct a metric space M; on
{1,2,3,u}. Algorithm M etricBridgePartition applied on M; produces a message
indicating that no optimal realization of M contains a bridge. An optimal real-
ization GGy of M; is therefore obtained by applying the NoBridge algorithm. Since
g(4) =1,9(5) = g(6) =2,9(7) = 4,9(8) = g(9) = g(11) = 5, ¢(10) = 6, we construct
a metric space My on {4,5,6,7,8,9,10,11,v}. Then, the possible outputs (up to
symmetry) of MetricBridgePartition applied on My are



ex=v,y=>52=06,tc{7,8,9,10,11}, K = {4,5,v};
exc{45v}y=062="71tc{9,10,11}, K = {4,5,6,v}.

A metric space (M,d)
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Optimal realization G of (M.,d)

Figure 4. Construction of an optimal realization

Assume the output is z = v,y = 5,2 =6,t =7, K = {4,5,v}.

— Since f(4) = 2,f(5) = 1, and f(v) = 1, we construct a metric space M3 on
{4,5,v,u'}. Since MetricBridge Partition detects that no optimal realization of
M3 has a bridge, we apply NoBridge on M3 to get an optimal realization Gg.

— Since g(6) = 0, we consider the metric space My induced on {6,7,---,11} and set
v/ = 6. My is first reduced to a metric space M3, where an auxiliary element a



replaces element 6. An optimal realization G5 of M3 is then obtained by applying
NoBridge (since G5 has no bridge), and an optimal realization of My is then
obtained by applying Fxtend on Gs.

Finally, G3 and G4 are linked together with an edge (u/,v" = 6) of length 1 to
produce an optimal realization Gy of My; G7 and G2 are linked together with an
edge (u,v) of length 1 to produce an optimal realization G of the original metric
space (M, d).

4 Final Remarks and Conclusion

We have proved that the Metric Bridge Partition Problem is polynomially solvable.
The proposed algorithm can be used to decompose any metric space (M,d) into
metric spaces (My,dy), -+, (My,d,) such that no optimal realization of (M;,d;) (i =
1,---,r) has a bridge. An optimal realization of (M,d) can then easily be obtained
by adding some edges linking optimal realizations of (My,dy), -+, (M,,d,).

Although the time complexity of the decomposition algorithm is relatively high
O(|M|%), this time denotes the worst possible case. In practice, some strategies can
be tried in order to find as quickly as possible the right decomposition. For example,
one might choose x and y by decreasing distances, as well as z and . Notice also that
in real data, there is often some noise. An open question is to find an adaptation of
our decomposition algorithm in case of noisy data.

An ideal algorithm, as indicated in Theorem 1, should decompose a metric space
into blocks (i.e., maximal two-connected subgraphs or bridges). The proposed algo-
rithm is not able to detect cutpoints that do not belong to a bridge. For example,
we have not been able to further decompose Mj in the example of Figure 4, while
its optimal realization G5 has two blocks sharing the cutpoint . Our algorithm for
the solution of the Metric Bridge Partition Problem relies on the fact that if there is
a bridge (u,v) linking K and L, it is possible to decide if an element of M belongs
to K or L by computing its distance to v and v. We do not know how to make such
a partition using only a cutpoint u. Future work will consist in studying the more
general Metric Cutpoint Partition Problem, which is to determine if the elements
of a metric space (M,d) can be partitioned into two nonempty subsets K and L
such that all optimal realizations of (M, d) contain a cutpoint linking K with L. The
complexity of this problem is still unknown.
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Appendix

In this appendix we prove Theorem 3 and Theorem 4. We start with a sufficient condition
for the existence of a bridge in all optimal realizations of a finite metric space (M,d). It is a
corollary of Theorem 2.

Corollary 1 Suppose (M,d) is a finite metric space to which there exist a partition of M
into two non-empty subsets K, L and two different mappings f : M — IRT and g : M — IRt
such that both (K, L, f) and (K, L,g) are nice triplets. Then every optimal realization G of
(M, d) has a bridge.

Proof Let (K, L, f) and (K, L,g) be two nice triplets with f # g, and let G be any optimal
realization of (M, d). We know from Theorem 2 that all chains linking K with L go through
two points ¢ and ¢’ such that d%(z,c) = f(x) and d% (z,¢') = g(z) Vo € M. Since f # g, we
conclude that ¢ # ¢’, which means that all chains linking K with L traverse a bridge containing
points c and ¢/. 0O

The next Theorem also provides a sufficient condition for the existence of a bridge in every
optimal realization of a finite metric space (M, d).

Theorem 3 Suppose (M,d) is a finite metric space to which there exists a partition of M
into two non-empty subsets K, L with |K| > 1 and |L| > 1, and assume
(1) Sijke < Sikjt = Sitjk VZ,] € K and k,g e L.
(2) z,y € K and z,t € L such that
Syzyt — Swyzt < Sikjt — Sijke Vi,j € K and k,L € L
Then every optimal realization of (M,d) has a bridge (hzyz, hezt) linking K with L.

Proof Notice first that we know from (1) that the optimal realization of the metric space
induced by four elements i, j € K and k,¢ € L is a tree U with dU(hijk, hike) = Sikje — Sijke =
Siejk — Sijke > 0 (see Section 2). Let T be the optimal realization of the metric space induced
by x,y, z and t, and define

N d(z0) —dT (2, hays)  ifi€ K
f(z)_{ d(%i)—dT(w,hzzz) ifiel

and

(45) = d(z,i) —d¥(z,hpzt) ifi€ K
YW= d(w,i) —dT (@, hest) ifi€ L
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Consider any element ¢ # z in K, and let U denote the optimal realization of the metric
space induced on z,z,t and i. By (2), we have dU(hmz,hmt) > dT(h,cyz,hmt)7 and since
dU(hzzt7 2) = d¥(hgzt, 2), we have

f(@) = d(z,i) — dT (2, hay:)
= dU(Z7 haczt) + dU(hxzty haciz) + dU (haciz7 7/) - dT(zy hacyz)
Z dT(27 hzzt) + dT(hzzty hzyz) + dU (hzizy 74) - dT(27 h:vyz)
= dU(haciz7 'l) > 0.

Since f(z) = d(z,z) —dT (2, hay:) = dT (2, hay=) > 0, we have f(i) > 0 for all i € K. Consider
now any element ¢ # z in L, and let U denote the optimal realization of the metric space induced
on x,y, z and i. Again, dV (hayz, hezi) > d7 (hayz, hazt) and dY (z, heyz) = d7 (2, hay.). Hence,

f@@) = d(z,i) — d¥ (z, hayz)
= dU ((E, hzyz) + dU (h:vyzy h;vzz) + dU(hzzi7 74) - dT(xy hzyz)
> dT(Z'y hacyz) + dT(hxyZ7 haczt) + dU(hmzi7 'l) - dT(xy hxyz)
= dT(hxyZ7hxzt) + dU(hxziyi) > dU(hmzi7i) 2 0.

Since f(z) = d(z,2) — d¥ (z, hay=) = d* (2, hay=) > 0, we have f(i) > 0 for all i € L. Consider
now two elements ¢ € K and j € L. We have

F@) + f(G) = d(z,9) — dT (2, hayz) + d(z, 5) — d7 (2, hayz)
(27 Z) + d((E,_]) - d(w7 Z)'

d
d

It follows that if ¢ = = or/and j = z then f(i) + f(j) = d(¢, ). Otherwise, let U denote
the optimal realization of the metric space induced by z, 2,4 and j. We have d(z,1) + d(z, j) —
d(z,2) = dY (z,i)+dY (z, j)—dY (z, z) = dY (4, 5) = d(i, j). We conclude that f(i)+f(j) = d(i, j)
forallt € K and j € L.

We know from (1) that hzyz = hey; for all i € K, and hgz¢ = hiz¢ for all i € L. Consider
now two elements 7 and j in L, and let U denote the optimal realization of the metric space
induced by z,y,? and j. We have

F@) + £G) = d(w,3) + d(z, §) — 2d7 (x, hay2)
= dU(w7i) + dU(:B,j) - 2dU (IE, h:vyi)
= dY (4, 5) 4 2dY (hayi, haeig) > dU(i,5) = d(, §).

Consider finally two elements ¢ and j in K, and let U denote the optimal realization of the
metric space induced by ¢, 7,2 and t. Since dU(hijz,hizt) > dT(hxyz,hmt) and dY (hizt,z) =
d" (hyzt, 2), we have

F@) + () = d(z,9) + d(z, ) — 2dT (2, hay=)
= dY(i,5) + 2dY (hijz, hize) + 2dY (Rize, 2) — 2d7 (2, hays)
> d(i,7) + 2dT (hayz, hozt) + 2dT (hazt, 2) — 2dT (2, hay:) = d(i, 7).

Since 0 < d(z,y) < f(z)+ f(y) we know that f(z) or/and f(y) is strictly positive. We can
therefore conclude that (K, L, f) is a nice triplet. The proof that (K, L, g) is a nice triplet is
similar and can be obtained by permuting the roles of =,y and K with those of z,t and L.

Notice that f # g since

g(1) = f(4) + d¥ (2, hayz) — dT (2, hazt) = f(3) + d¥ (hayz, hazt) > f(i) Vi€ K
g(i) = f(i) + dT(xyhzyz) - dT(-’% hezt) = f(2) — dT(hzyz,hzzt) < f(i) Vi € L.

By Corollary 1, we know that each realization G of (M, d) has a bridge (u,v) linking K
with L. It follows from Theorem 2 that d©(i,u) = f(i) and d(i,v) = g(i) for all i € M.
Since f(i) = d” (i, hay-) and g(i) = d” (i, hy ) for i = x,y, 2, we conclude that u = hgy. and
v ="hg,t. O

We now give a necessary condition for the existence of a bridge.
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Theorem 4 Suppose (M,d) is an irreducible finite metric space. If there is a partition of M
into two non-empty subsets K, L such that all optimal realizations of (M,d) contain a bridge
(u,v) linking K with L, then
(1) |K|>1 and |L| > 1,
(2) Sijke < Sikj¢ = Sitjk Vi,j € K and k, ¢ € L,
(3) Jz,y € K and z,t € L such that
®Suzyt — Suyzt < Sikje — Sijke Vi, j € K and k,L € L
oi € K & d(z,i) —d(z,1) < d(z,y) — d(z,y).

Proof Consider a partition of M into two non-empty subsets K, L such that all optimal real-
izations of (M, d) contain a bridge (u,v) linking K with L. If | K| = 1 then the unique element
in K is a vertex of degree 1 in all optimal realizations of (M, d). But this is impossible since
(M, d) is irreducible. Hence |K| > 1, and |L| > 1 by symmetry.

Consider now any four elements i,j € K and k,¢ € L and let G be any optimal realization
of (M, d). Since all chains linking K with L in G traverse the bridge (u,v), we have

—~

Sikje = d(i, k) 4 d(4,0)

(i, u) + d (u, v) 4+ d (v, k) + d° (j,u) + d° (u,v) + d° (v, £)
i,0) +d(4, k) = sivjk

(i, u) +d%(j, u) +d% (v, k) + d(v, £)

(i,) + dO (k, ) = d(i, ) + d(k,£) = Sijke-

[SHESHES Sy
= Q

VvVl
Q Q

Consider now four elements z,y in K and z,t in L such that syzyt —Szyzt < Sixj0 — Sijre for all
4,7 in K and k, £ in L, and let T be the optimal realization of the metric space induced on x,y, z
and t¢. Also, consider any ¢ € M. If ¢ = z, then d(z,i) — d(z,1) = —d(z,z) < d(z,y) — d(z,v),
and if ¢ = z, then d(z,1) — d(z,1) = d(z,2z) > d(z,y) — d(z,y). So assume i # x, z, and let W
be the optimal realization of the metric space induced on z, z, 7.

— If i € K, then let U be the optimal realization of the metric space induced on z, z,t and
i. Since dY (hgizy haozt) > d7 (hayz, hozt) and dY (hazt, 2) = d7 (hgzt, 2), we have

dW(x7 haciz) = dU(x7 haciz) = d(:l?7 Z) - dU(hxizy hxzt) —dv (haczty Z)
S d(xv Z) - dT(hacyZ7 haczt) - dT(hxzt7 Z) = dT(Z‘, hgcyz).

— If ¢ € L, then let U be the optimal realization of the metric induced by z,y, z and i. We

have
dw(xy hxiz) = dU(xy haciz) = dU (:C7 hacyz) + dU(hacyzy haczi)
= dT (2, hoyz) + dY (hayz, hazi) > d7 (@, hay2).

We therefore conclude that
i€ K < dV (2, heiz) < dT (2, hays)

RS %(d(:tc7 z) +d(x,i) —d(z,1)) < %(d(:tc7 z) + d(z,y) —d(z,v))
& d(z, 1) —d(z,1) <d(z,y) —d(z,y). O





