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Abstract: Osteoporotic vertebral fractures (OVFs) are often not reported by radiologists on routine
chest radiographs. This study aims to investigate the clinical value of a newly developed artificial
intelligence (AI) tool, Ofeye 1.0, for automated detection of OVFs on lateral chest radiographs in
post-menopausal women (>60 years) who were referred to undergo chest x-rays for other reasons.
A total of 510 de-identified lateral chest radiographs from three clinical sites were retrieved and
analysed using the Ofeye 1.0 tool. These images were then reviewed by a consultant radiologist
with findings serving as the reference standard for determining the diagnostic performance of the AI
tool for the detection of OVFs. Of all the original radiologist reports, missed OVFs were found in
28.8% of images but were detected using the AI tool. The AI tool demonstrated high specificity of
92.8% (95% CI: 89.6, 95.2%), moderate accuracy of 80.3% (95% CI: 76.3, 80.4%), positive predictive
value (PPV) of 73.7% (95% CI: 65.2, 80.8%), and negative predictive value (NPV) of 81.5% (95% CI: 79,
83.8%), but low sensitivity of 49% (95% CI: 40.7, 57.3%). The AI tool showed improved sensitivity
compared with the original radiologist reports, which was 20.8% (95% CI: 14.5, 28.4). The new AI
tool can be used as a complementary tool in routine diagnostic reports for the reduction in missed
OVFs in elderly women.

Keywords: AI; spine fractures; diagnosis; thoracic X-ray; medical imaging; accuracy

1. Introduction

The prevalence of osteoporosis has been on the rise, in part due to the ageing pop-
ulation [1]. This condition is characterised by reduced bone mineral density (BMD) and
mechanical strength, which increases the risk of pathological osteoporotic fractures [2].
Among osteoporotic fractures, vertebral fractures are the most common which is attributed
to the spine’s abundant composition of trabecular bone that is more prone to microar-
chitectural deterioration compared with cortical bone [3,4]. Post-menopausal women are
at a higher risk of osteoporotic vertebral fractures (OVFs), given the high prevalence of
osteoporosis and osteopenia in this population [5,6].
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OVFs are a significant burden to healthcare due to reduced quality of life associ-
ated with pain, morbidity, and mortality [2,6]. These fractures can limit mobility, inter-
fere with activities of daily living, and decline pulmonary capacity due to OVF-related
hyper-kyphosis [3]. Fortunately, many of these negative effects can be avoided by prompt
pharmacological management, non-pharmacological treatment, and lifestyle changes [6–8].
Therefore, timely diagnosis of OVFs is essential in order to aid in their early treatment and
management [2].

Osteoporotic fractures predict an increased risk of future fractures and it is therefore
important to diagnose OVFs and commence effective treatments to reduce the risk of future
fractures [4]. Therefore, using OVF status as a more definitive biomarker for osteoporosis
has gained attention [4,7,9]. OVFs can also predict the risk of more severe fractures such as
those of the hip and pelvis, as OVFs tends to precede these critical and potentially life-altering
fractures [3,9,10]. However, OVFs are challenging to diagnose due to the common and indistinct
symptoms of back pain, which can delay timely detection. Furthermore, up to two-thirds of
OVFs are clinically silent, but in time, may progress to more disruptive clinical features [3].

Chest radiograph is a widely used imaging modality in clinical practice and can act as
a convenient and opportunistic screening tool for OVFs [10,11]. Nevertheless, OVFs remain
underdiagnosed on chest radiographs [7]. This is because radiologists tend to focus on the
cardiopulmonary anatomy that predominantly forms the basis of the clinical inquiry, whilst
overlooking the examination of the vertebral column [10]. Additionally, mild vertebral
fractures can be subtle, requiring closer inspection, often leading to missed diagnoses even
when the radiograph is requested for spinal analysis [12].

Artificial intelligence (AI) is at the forefront of healthcare and is garnering significant
interest in its application for medical imaging practice [13]. AI applies trained models and
algorithms that use pattern recognition and experiential learning to process, analyse, and create
solutions to problems [14,15]. Machine learning and deep learning models are increasingly
used for the automatic detection of vertebral compression fractures or osteoporotic vertebral
fractures with the ability to meet the performance of human experts [16–20]. These previous
works mainly focus on AI’s automatic recognition of vertebral fractures on either spinal
radiographs [17,18], computed tomography [19], or magnetic resonance images [16], achieving
high diagnostic value. The performance of the developed AI model is convincing with
automatic localization of vertebral fractures, thus assisting clinicians to manage busy workloads
whilst avoiding missed detection of vertebral fractures [16–20]. However, research on the use
of AI in the identification of osteoporotic vertebral fractures on chest X-ray images is limited.

Recently, Xiao et al. [10] developed an AI software program called “Ofeye 1.0” that
enables the detection of OVFs on lateral chest radiographs with 93.9% accuracy, 86%
sensitivity, and 97.1% specificity. Despite promising results reported in their study, this
model was validated solely on an Asian population, and its generalizability to other
populations, such as Caucasians, is unclear. Its performance may differ when applied
to Caucasians due to differences in lifestyle, cultural factors, osteoporotic trends, and
susceptibility to OVFs [21]. It is pertinent to validate this software tool so that it can reliably
be implemented in more clinics in order to support the timely, efficient, and accurate
diagnosis of OVFs. This is due to the fact that the Ofeye 1.0 tool has the advantage of
processing up to 100 radiographs in a single operation, which can help manage the high
demand for reporting while reducing the likelihood of missing OVFs [10]. This motivates
the conduction of this study in which the diagnostic value of the newly developed AI tool
Ofeye 1.0 is explored in the automatic detection of OVFs on lateral chest radiographs.

This study aims to test the performance of Ofeye 1.0 for detecting OVFs on lateral chest
radiographs in a Caucasian population by assessing its sensitivity, specificity, and accuracy.
We hypothesised that this AI tool could serve as a complementary tool to routine diagnostic
radiology practice when reporting chest radiographs in elderly women by improving the
detection of missed OVFs in these patients not referred for spinal disorders. By reducing
the risk of missed diagnoses and streamlining radiologist workloads, it is expected that
patient outcomes will be improved.
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2. Materials and Methods
2.1. Study Design and Data Collection

This is a cross-sectional study with data collection from three clinical sites. Two of
these clinics were Australian, one in a private practice and the other in a public hospital,
while the third clinic was situated in a public hospital in Switzerland. These sites were
selected through a convenience sampling method, and the cases were chosen by searching
the Picture Archiving and Communicating System (PACS) using the search terms “X-RAY
CHEST” and “at least 60 years” and “female”. The selected date range included data from
approximately six months prior to the time of the search.

Lateral chest radiographs were manually extracted from the dataset. Some sites
retrieved the most recent X-rays from the search, while other sites occasionally selected
previous cases with the aim of randomising the sample. All images were anonymised for
image processing and analysis using the Ofeye 1.0 tool, as well as read by observers.

Inclusion criteria were as follows: Lateral chest radiographs from women over 60 years
old with acceptable image quality. Patients with surgery history such as stabilization or
vertebroplasty were also included. The defined exclusion criteria were: anteroposterior chest
radiographs, lumbar spines, repeat examinations of the same patient, illegible due to poor im-
age quality, or because the vertebrae were obscured by marked lung pathology. Additionally,
images were further excluded if the original radiologist reports were not available.

A student radiographer (with 3 years of experience in medical imaging) and an aca-
demic radiologist (with more than 20 years of experience in interpreting chest radiographs
and CT images) screened the images independently according to the inclusion and exclu-
sion criteria using an open source RadiAnt DICOM viewer (2023.1, 64 bit). Discrepancy
about the presence or absence of OVFs between the two observers was resolved by reading
the images together.

We collected 563 lateral chest radiographs of post-menopausal women and their
corresponding radiological reports from three radiology clinics. A total of 510 studies were
included, and 53 studies were excluded (Figure 1). Ethics approval was obtained from
all of these clinical sites, as well as from the Human Research Ethics Committee at Curtin
University. Figure 1 is a flow chart showing data collection from the three clinical sites.
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2.2. Image Analysis Using Ofeye 1.0 for Automatic Detection of OVFs

The accuracy and reliability of the Ofeye 1.0 AI algorithm have been validated by
Xiao et al. [10]. As explained before, the primary application of this AI tool is to assist
rapid and efficient identification of OVFs on chest radiographs for routine examinations
and not for spinal disorders. Digital Imaging and Communications in Medicine (DICOM)
images can be opened using either the “open file” or “open directory” icons. The “Calculate
and identify all images” icon batch processes up to 100 images in less than 3 min [10],
outputting a red box around identified OVFs with a percentage indicating the likelihood of
a true fracture (Figure 2). Ofeye 1.0 only displays an identified fracture if the percentage
likelihood is at least 60% [10].

J. Clin. Med. 2023, 12, 7730 5 of 15 
 

 

 
Figure 2. The interface of the Ofeye 1.0 AI tool showing the steps from loading DICOM images to 
calculating and identifying OVFs on the lateral chest radiographs. In this case, there is a likelihood 
of an 80% risk of having a fracture. 

2.3. Image Assessment by Human Observers 
A consultant radiologist with more than 20 years of experience in interpreting chest 

radiographs and thoracic CT images analysed the included images and identified the 
presence of OVFs with results documented as either the presence or absence of a fracture. 
The consultant radiologist also used the RadiAnt DICOM viewer (2023.1, 64-bit) to read 
all the images and determine whether there is the presence or absence of OVFs on the 
lateral chest radiographs. 

A fracture was deemed present if it met either of the following criteria [22]: 
1. A reduction of at least 20% in the anterior or middle vertebral height compared with 

the posterior height. 
2. A reduction of at least 20% in any of the anterior, middle, or posterior vertebral 

heights, relative to the vertebra immediately above or below it. 
In evaluating the chest radiographs, consideration was given to the normal physio-

logic wedging that typically occurs at the thoracolumbar junction, which is considered 
within the normal range of up to 10 degrees [23]. 

The consultant radiologist was blinded to the findings of the AI software and to the 
reports, which were similarly recorded as fracture detected or not. The consultant radiol-
ogist’s observations served as the gold standard against which the performance of both 
the AI system and the original radiologist reports were evaluated. 

2.4. Statistical Analysis 
Data were entered into MS Excel for analysis. The total number of true positive (TP), 

true negative (TN), false positive (FP), and false negative (FN) of the original radiologist 

Figure 2. The interface of the Ofeye 1.0 AI tool showing the steps from loading DICOM images to
calculating and identifying OVFs on the lateral chest radiographs. In this case, there is a likelihood of
an 80% risk of having a fracture.

2.3. Image Assessment by Human Observers

A consultant radiologist with more than 20 years of experience in interpreting chest
radiographs and thoracic CT images analysed the included images and identified the
presence of OVFs with results documented as either the presence or absence of a fracture.
The consultant radiologist also used the RadiAnt DICOM viewer (2023.1, 64-bit) to read all
the images and determine whether there is the presence or absence of OVFs on the lateral
chest radiographs.

A fracture was deemed present if it met either of the following criteria [22]:

1. A reduction of at least 20% in the anterior or middle vertebral height compared with
the posterior height.

2. A reduction of at least 20% in any of the anterior, middle, or posterior vertebral
heights, relative to the vertebra immediately above or below it.



J. Clin. Med. 2023, 12, 7730 5 of 13

In evaluating the chest radiographs, consideration was given to the normal physiologic
wedging that typically occurs at the thoracolumbar junction, which is considered within
the normal range of up to 10 degrees [23].

The consultant radiologist was blinded to the findings of the AI software and to
the reports, which were similarly recorded as fracture detected or not. The consultant
radiologist’s observations served as the gold standard against which the performance of
both the AI system and the original radiologist reports were evaluated.

2.4. Statistical Analysis

Data were entered into MS Excel for analysis. The total number of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) of the original radiologist
reports and AI relative to the gold standard were calculated. The sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) of the original reports
and the AI tool at the 95% confidence interval were then calculated using the statistical
software MedCalc (® v20.305, Ostend, Belgium). The percentage of all OVFs present that
were detected by AI but missed by the original radiologist reports was also calculated.

3. Results

The performance of Ofeye 1.0 at detecting OVFs from three clinical sites compared
with the consultant radiologist presented high specificity at individual sites and overall
sites with more than 92% achieved. This shows the reliability of Ofeye 1.0 in confirming
a diagnosis and a negative result indicated by the AI meaning that there is no fracture
(Table 1). In contrast, the sensitivity was relatively low, between 33.3% and 58% among the
three clinical sites. Despite being low with only 49% sensitivity for the AI tool, it shows
improved performance compared with the original radiologist report, which is only 20.8%.

Out of all 510 lateral chest radiographs, the AI software detected 73 fractures correctly
and 76 fractures were missed (Figure 3), resulting in a sensitivity of 49% (95% CI: 40.7,
57.3%). The specificity was 92.8% (95% CI: 89.6, 95.2%) with 335 out of the 510 radiographs
correctly labelled as fracture-free, whilst 26 normal radiographs were erroneously labelled
as having OVFs (Figure 4). The PPV and NPV were 73.7% (95% CI: 65.2, 80.8%) and
81.5% (95% CI: 79, 83.8%), respectively, giving an accurate result of 80% (95% CI: 76.3,
83.4%) of the time. Figure 5 is a flowchart summarizing the number of these cases with or
without fractures.
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Table 1. Performance presentation and comparison between original radiologist reports and Ofeye 1.0 at detecting OVFs from three clinical sites compared with the
consultant radiologist.

Site Total No.
of Cases

Original Radiologist Reports/AI Analysis Original Radiologist Reports/AI Analysis

TP FP TN FN Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95%
CI)

A 106 7/11 2/4 72/69 25/22 21.9 (9.3, 40)/
33.3 (18, 51.8)

97.3 (90.6, 99.7)/
94.5 (86.6, 98.5)

77.8 (43.5, 94.1)/
73.3(48.6, 88.9)

74.2 (70.5, 77.6)/
75.8 (71, 80.1)

74.5 (65.1, 82.5)/
75.5 (66.1, 83.3)

B 269 17/51 11/14 172/167 69/37 19.8 (12, 29.8)/
58 (47, 68.4)

94 (89.5,97)/
92.3 (87.4, 95.7)

60.7 (43.1, 75.9)/
78.5(68.1, 86.1)

71.4 (69, 73.6)/
81.9 (77.9, 85.3)

70.3 (64.4, 75.7)/
81.0 (75.8, 85.5)

C 135 6/11 4/8 105/99 20/17 23 (9, 43.6)/
39.3 (21.5, 59.4)

96.3 (90.9, 99)/
92.5 (85.8, 96.7)

60 (31.3, 83.1)/
57.9 (38, 75.6)

84 (80.9, 86.7)/
85.3 (81.4, 88.7)

82.2 (74.7, 88.3)/
81.5 (73.9, 87.6)

All sites 510 30/73 17/26 349/335 114/76 20.8 (14.5, 28.4)/
49 (40.7, 57.3)

95.4 (92.7,97.3)/
92.8 (89.6, 95.2)

63.8 (50.1, 75.6)/
73.7 (65.2, 80.8)

75.4 (73.7, 77)/
81.5 (79, 83.8)

74.3 (70.3, 78.1)/
80.3 (76.3, 83.4)

TP, true positive; FP, false positive; TN, true negative; FN, false negative; PPV, positive predictive value; and NPV, negative predictive value. Numbers in brackets represent the 95%
confidence interval.
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Figure 5. Flowchart showing the total number of cases with fractures and no fractures as analysed by
AI and confirmed by the consultant radiologist.

Forty-three fractures were detected by AI that were missed by the original radiologist
reports; thus, the AI software resulted in a 28.8% improved detection rate (Figure 6).
Of 26 FP cases, the most common reasons are vertebrae located close to the diaphragm
(Figure 7A), scapula shadow obscuring accurate assessment of the vertebrae (Figure 7B),
and mild OVFs with less than 20% vertebral height loss (Figure 7C).
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Figure 7. Example of false positive cases detected by the AI tool. (A): False positive report is due to
the location of vertebrae in the diaphragm making it difficult to detect vertebral fracture. (B): Scapula
overlapping the vertebrae causing false positive rate. (C): Mild vertebral height loss and location in
the diaphragm region leading to false positive rate.
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4. Discussion

This study aimed to assess the validity of the new Ofeye 1.0 software in detecting
OVFs on lateral chest radiographs in post-menopausal Caucasian women based on analysis
of 510 examinations from three clinical sites. The results revealed a high specificity of
92.8% (95% CI: 89.6, 95.2%), indicating the AI tool’s accuracy in identifying normal chest
radiographs when OVFs are absent. This suggests the potential of using the developed AI
as a valuable complementary tool for confirming diagnosis. However, the sensitivity was
found to be low at 49% (95% CI: 40.7, 57.3%), indicating its limitations in reliably serving
as a screening tool. Nonetheless, it is worth noting that the AI outperformed original
radiologist reports by 28.8% in OVF detection and that the sensitivity of AI at detecting
OVFs was higher compared with the original radiologist reports. As such, integrating the
findings of the AI tool into the clinical workflow of radiologists may offer advantages in
improving diagnostic outcomes.

This study builds on the work of Xiao et al. [10] for validating their developed AI
tool, Ofeye 1.0. They used nearly 4000 spine radiographs and 2000 chest radiographs from
16 clinical sites to train the AI model. Our findings are consistent with Xiao et al.’s [10]
study in terms of relatively high specificity in detecting OVFs on lateral chest radiographs,
although at a slightly lower capability (92.8% compared with 97.3%). Comparatively, our
study demonstrated a substantially lower sensitivity (49% compared with 86%) with a
higher false negative rate of 14.9% compared with Xiao et. al’s 7%. The discrepancy
between our study and theirs may be due to several reasons. Firstly, Xiao et al. [10]
analysed this AI tool based on an Asian population, in which vertebral fractures may
present themselves differently [4,9,21]. For example, it is possible that fractures appear
more obvious compared with some subtle changes that were noted in our study sample.
This would make it easier for Xiao et al. to detect, leading to lower false negatives and
hence a higher sensitivity. Hence, variations in population characteristics underline the
necessity for further testing of AI on a wide variety of populations before it is implemented
for routine clinical use [24]. Furthermore, the current OVF assessment criteria have been
critiqued for being too subjective, especially pertaining to mild OVFs [3,4]. Hence, it is
possible that our study’s observers were more stringent compared with Xiao et al.’s [10],
leading to a large variation in our findings.

Secondly, their study relied on a single reader to act as the gold standard, and no
information was provided regarding their level of expertise in reading spinal radiographs
nor whether they were blinded to the results of Ofeye 1.0. In contrast, in our data analysis,
we compared the AI performance with original diagnostic reports to determine the rate of
missing diagnoses by original reports. Further, our images were assessed by a consultant
radiologist who was blinded to the AI and whose reading was used as the gold standard.
The high false negative rate in our study is most likely due to early or less obvious OVFs
which were ranked as normal by Ofeye 1.0. This will need to be addressed by further
studies such as an assessment of these images by a few more radiologists to allow us to
draw more robust conclusions. Further studies may wish to classify the performance of
Ofeye 1.0 according to the degree of fractures such as mild, moderate, or severe, to support
our understanding. Additionally, as the Ofeye 1.0 tool is set at a 0.6 threshold, it will
only flag a fracture when it deems there to be at least a 60% likelihood that a fracture is
present [10]. Reducing this threshold may improve sensitivity, however, at the compromise
of specificity. Further research into the modification of this parameter may optimize the
sensitivity and specificity for a Caucasian population.

Previous studies have demonstrated the validity of deep learning models to assess
OVFs on dedicated spinal X-rays, CT scans, as well as DEXA scans [25–27]. Burns et al. [27]
validated their computer-aided detection (CAD) system for automated detection of thoracic
and lumbar vertebral body compression fractures on CT images with sensitivity, specificity,
and accuracy being 98.7%, 77.3%, and 95%, respectively. Their specificity is lower than
our findings; however, their sensitivity outperforms the current study findings. These
discrepancies are expected as CT scans enable enhanced visualisation without interference
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from overlying anatomy as compared with planar radiography [28]. Chen et al. [29].
validated a deep learning algorithm for the detection of OVFs on plain frontal abdominal
radiographs, claiming moderate specificity, sensitivity, and accuracy (73% for all of them).
Likewise, Shen et al. [30]. recently validated their AI tool for the detection of OVFs on
dedicated thoracic and lumbar radiographs, revealing high specificity and sensitivity
(>97%) and 84.1% accuracy. Their software demonstrated better validity compared with
this study; however, a focused spinal radiograph generates less scatter radiation compared
with chest examinations, enabling better image quality with improved contrast resolution
and reduced noise for enhanced diagnostics [31]. Furthermore, spinal radiograph exposures
are optimised for visualisation of the vertebral bodies compared with chest radiograph
exposures, which focus on pulmonary visualisation rather than spinal anatomy [32].

Compared with these prior studies, this study uniquely contributes to the validation
of AI for detecting OVFs on lateral chest radiographs, which are not primarily indicated
for spinal analysis. This advantageously expands the clinical capacity for widespread,
improved detection of OVFs due to chest radiographs being a high-yield examination.
Considering spinal vertebrae are almost visualised in their entirety, lateral chest radiographs
provide a unique opportunity for early OVF detection in women not referred for spinal
disorders. Additionally, incidental OVF findings are often missed by reporting radiologists
as they tend to silo their focus to the cardio-pulmonary anatomy, which was the primary
focus of the examination [10]. In a busy clinical environment, where radiologists have less
than 15 s [33] to assess a radiograph, there is an even higher likelihood of missing OVFs on
these scans. Thus, Ofeye 1.0 may serve as a complementary tool for improved detection
of OVFs that may be overlooked. The 28.8% enhanced detection rate of OVFs shown in
our findings suggests that Ofeye 1.0 performs above that of the original radiologist reports,
demonstrating the benefit of utilising this AI tool as an aid to radiologist reading.

A limitation of our study is that we relied on a single consultant radiologist as the
gold standard. Ideally, three consultant radiologists would serve as the reference standard
in order to optimise reliability. Furthermore, the criteria used to classify minimal and mild
grade OVFs has been criticised for being subjective [34] and was based on the sole discretion
of this individual consultant and their opinion as to whether mild OVFs were present.
Additionally, we did not categorise the OVFs according to severity such as minimal, mild,
moderate, or severe. This would have enabled a more comprehensive understanding of the
Ofeye 1.0 tool’s performance in detecting different grades of fractures. It is worth noting
that Ofeye 1.0 has also been critiqued for not labelling the type of OVF, but rather providing
a probability or confidence as to whether a fracture is present [11].

Our large sample size of 510 lateral chest radiographs across multiple sites constitutes
a strength of this study. However, this presented challenges in our ability to recruit multiple
consultant radiologists to read these images due to the extensive time required for analysis.
Furthermore, there was no standardisation or oversight as to the timing allocated for
the consultant radiologist to read the images, nor the time of day or the total time per
sitting. Thus, it is possible that the consultant radiologist may have experienced fatigue if
not adequate rest time was taken between cases. Despite that, the consultant radiologist
remained blinded to the findings of Ofeye 1.0, avoiding any bias or unintentional influence
on the consultant radiologist’s decisions.

5. Conclusions

We have validated the use of Ofeye 1.0 as a tool for OVF detection in Caucasian
post-menopausal women. The procedure of automatic image analysis consists only of
“open file/directory” and “calculate all images” in just a few minutes. The AI tool exhibits
a relatively high specificity of 92.8% (95% CI: 89.6, 95.2%) with a low false positive rate of
5.1%. Therefore, this AI tool may complement radiologists by enhancing OVF detection
rates and diagnostic accuracy. However, its low sensitivity of 49% (95% CI: 40.7, 57.3%)
suggests that radiologists should not solely rely on this software for diagnostic purposes
and they must make the final decision about the diagnosis. With further improvement in its
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performance, this tool may enhance clinical workflow by reducing workload and avoiding
missing vertebral fractures. Future studies can expand on our findings by exploring the
accuracy of Ofeye 1.0 according to the degree of fracture (mild, moderate, or severe).
Further research into the adjustment of the probability threshold at which Ofeye 1.0 reports
a fracture may be explored to optimize its sensitivity. Alternatively, further training of
the model using Caucasian-specific data may be valuable in enhancing its performance in
this population.
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