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ABSTRACT The universality check of Büchi automata is a foundational problem in automata-based
formal verification, closely related to the complementation problem, and is known to be PSPACE-complete.
This article introduces a novel approach for creating labelled datasets of Büchi automata concerning
their universality. We start with small automata, where the universality check can still be algorithmically
performed within a reasonable timeframe, and then apply transformations that provably preserve (non-
)universality while increasing their size. This approach enables the generation of large datasets of labelled
Büchi automata without the need for an explicit and computationally intensive universality check.
We subsequently employ these generated datasets to train Graph Neural Networks (GNNs) for the purpose
of classifying automata with respect to their (non-)universality. The classification results indicate that such
a network can learn patterns related to the behaviour of Büchi automata that facilitate the recognition of
universality. Additionally, our results on randomly generated automata, which were not constructed using the
transformation techniques, demonstrate the network’s potential in classifying Büchi automata with respect
to universality, extending its applicability beyond cases generated using a specific technique.

INDEX TERMS Automata, Computational complexity, Formal verification, Graph neural networks, Ma-
chine Learning

I. INTRODUCTION

IN 1962, J.R. Büchi introduced automata on infinitely long
words [1] and showed the equivalence between the lan-

guages accepted by these so-called Büchi automata and ω-
regular languages. In order to verify properties on systems,
Büchi automata are used to model these systems, as the prop-
erties of infinitely long inputs nicely represent the indefinitely
long running time of concurrent systems.

One of the main problems and algorithmic bottlenecks in
automaton-based formal verification of systems is the com-
plementation of Büchi automata [2], which is shown to be
PSPACE-complete, with the complemetation algorithm that
requires the state growth of at least O((0.76n)n) w.r.t. the
number of nodes1. With a different approach to automaton-
theoretic verification focussing on language containment [3],
one can, instead of complementing an automaton, focus on
universality checking [4] of Büchi automata.

The goal of this article will be to show the progress made
in our current research work, with the overarching goal of
analysing if Graph Neural Networks (GNNs) are able to de-

1with n being the number of nodes of the automaton to be complemented.

rive properties (beyond strictly structural graph-related prop-
erties like e.g. node reachability) from Büchi automata which
are encoded as directed labelled graphs with additional state
labels. The classification property in question will be the
aforementioned (non-)universality of the input automaton, a
property directly linked to the languages that are accepted by
the automaton. This research extends our previous work [5],
which showed that GNN are able to derive structural patterns
from automaton structures for classification of structurally
and computationally trivial properties.

In the next section, we will present an overview of the
required concepts and their respective definitions and how
they will be used in this article. The third section will lay
the formal foundations of our proposed transformation con-
structions allowing to generate labelled data with respect to
universality. The fourth section will focus on the challenges
of encoding Büchi automata as data elements for GNNs and
on the creation of the different datasets used in the experi-
mentation. In the fifth section, we will give details about the
various experimental setups, both on a GNN level and on a
dataset choice level and present experimental results. We will
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finish by discussing the results and propose future work in a
concluding final section.

II. PRELIMINARIES
A. BÜCHI AUTOMATA
The literature defines multiple types of automata on infinite
structures [6], but this article will focus on non-deterministic
Büchi automata (NBWs):

Definition 1. Let NBW A be defined as a tuple A =
(Q,Σ, δ, q0,F), where

• Q represents a finite set of states,
• Σ represents a finite set of symbols (called an alphabet),
• δ : Q× Σ −→ 2Q represents the transition function2,
• q0 ∈ Q represents the initial state and
• F ⊆ Q represents the set of accepting states.

We will define the behaviour of this automaton over in-
finitely long sequences of symbols from the alphabetΣ called
ω-words. Such a word will produce one or more so-called
runs over a given automaton. Before we continue, let us
formally define ω-words, runs over NBWs, and the concept
of infinitely many occurrences in an infinite sequence:

Definition 2. Given a NBWA = (Q,Σ, δ, q0,F), an ω-word
w is defined as

w = w(0)w(1)w(2)... , where w(i) ∈ Σ,∀i ∈ N.

Next, a run r over w on A is defined as an infinite sequence
of states

r = r(0)r(1)r(2)... , where r(0) = q0 and

∀i ∈ N : r(i) ∈ Q and r(i+ 1) ∈ δ(r(i),w(i)).

Let the set of infinitely often visited states in a run, i.e. in an
infinite sequence of states, be defined as

inf (r) = {q ∈ Q|∃∞i ∈ N : r(i) = q},

where ∃∞i denotes the existence of infinitely many i.

Before we can illustrate how the behaviour of a NBW can
be expressed as a set of ω-words, we will need to define the
concept of acceptance of a run:

Definition 3. Let A = (Q,Σ, δ, q0,F) be a NBW and let r
be a run on A. Then r is called accepting if and only if

inf (r) ∩ F 6= ∅.

An ω-word is accepted by A if there exists an accepting run
r of A on w.

Büchi automata can be represented graphically as state
machines, with states illustrated by circles, accepting states
by double-lined circles, the initial state with an unlabelled
arrow pointing to it and transitions by labelled arrows. We

2where 2Q denotes the powerset of the set of states Q

q0 q1
a,b

a,b b

FIGURE 1. Example automaton Aex1, with Σ = {a, b}.

can now look at the example automatonAex1 from Fig. 1 and
its behaviour on two example ω-words:

w1 = abababab... = (ab)ω,

w2 = bbbbbbbb... = bω.

We can see that over w1 there is only one possible run on
Aex1, which is the run rw1

= q0q0q0q0..., the one staying in
q0 forever. Thus, from inf (rw1

) = {q0} and F = {q1}, we
can conclude that rw1 is non-accepting, and since it is the only
run over w1, by consequence w1 is not accepted by Aex1.
Over w2 there are infinitely many runs on Aex1, depending
on the non-deterministic jump from q0 to q1. Even though a
non-accepting run is possible (staying in q0 forever) this time
we can also find accepting runs, e.g. rw2

= q0q0q1q1q1...,
concluding that w2 is accepted by Aex1.

Definition 4. Given a NBW A = (Q,Σ, δ, q0,F), we define
the language Lω(A) accepted by the automaton A as

Lω(A) = {w ∈ Σω|w accepted by A}.

Following from [1], given any NBW A, the language Lω(A)
is ω-regular.

Looking back at the example from Fig. 1, we can now rea-
son about all the words that are accepted by this automaton,
i.e. we can see that these words form the language

Lω(Aex1) = {w ∈ Σω|w contains finitely many a}
= (a|b)∗bω.

This article will focus on the universality property of Büchi
automata, an important property in automaton-based verifica-
tion [4], defined as follows:

Definition 5. Given a NBWA = (Q,Σ, δ, q0,F), we say that
A is called universal if and only if

Lω(A) = Σω.

Contrarily, A is called empty if and only if

Lω(A) = ∅.

As mentioned in the introduction, the automata-theoretic
approach to verification reduces the property satisfaction
problem to language containment [3], where complementing
a NBW becomes the computational bottleneck. There are
many approaches to complementing NBW [7], [8].

The complementation problem requires two automata as
input, and then checks whether one is the complement of the
other. In order to avoid having two automata as input, we are
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considering in this article the closely related problem of uni-
versality, that is computationally equally hard, i.e. PSPACE-
complete [9]. In the universality problem, one checks whether
or not a Büchi automaton given as input is universal. The
relation to complementation stems from the relation: A is
universal if and only if its complement Büchi-accepts the
empty ω-language.

B. GRAPH NEURAL NETWORKS
In the past decade, the advent of deep neural networks has
led to performance breakthroughs for numerous applications
of machine learning and pattern recognition, including image
classification [10], speech recognition [11], translation [12],
and bioinformatics [13], to name just a few. Depending on the
type of data representation, different network architectures
have been proposed, notably convolutional neural networks
(CNN) [14] for images, recurrent neural networks (RNN)
[15] and transformers [16] for sequences, and graph neural
networks (GNN) [17] for graphs. The latter are a natural
choice for analyzing and classifying Büchi automata, since
the automata can be represented in a straight-forward man-
ner by means of labelled graphs (see Section IV-A). More
specifically, in this article we focus on Relational Graph Con-
volutional Networks (RGCN) [18], which are ideally suited
for graphs with a discrete set of edge labels (in our case: the
symbols in Σ). The layers of an RGCN are described in more
detail in the following section.

1) Relational Graph Convolutional Layers
The following notation will be used for the RGCN input data.
Let a graph G = (V ,E ,R) be represented by a set of edge
relations R, a set of nodes V ( with n = |V | the number of
nodes) and a set of edges E (with m = |E | the number of
edges). Let (vi, r , vj) ∈ E , for vi, vj ∈ V and r ∈ R, be a
directed edge pointing from vi to vj belonging to relation r .
We define the neighbourhood of a node v ∈ V for an edge
label r ∈ R as follows:

Nr(v) = {u ∈ V |(v, r , u) ∈ E}.

Let Xl ∈ Rn×d(l) be the node feature matrix, with d(l)

denoting the number of node features at layer l.
An RGCN layer updates each node’s feature representation

by aggregating information from its neighbours in the graph.
Let h(l)

v ∈ Rd(l) be the feature vector of node v at layer l. The
RGCN layer computes a new feature vector h(l+1)

v ∈ Rd(l+1)

for node v at layer l + 1 as follows:

h(l+1)
v = σ

∑
r∈R

1

cr,v

∑
u∈Nr(v)

W(l)
r h(l)

u

+ W
(l)
0 h(l)

v

 ,

(1)
where σ is an activation function, W(l)

r ∈ Rd(l+1)×d(l)

is the weight matrix for relation type r at layer l, W(l)
0 ∈

Rd(l+1)×d l is a self-loop weight matrix of a special relation
type accounting for the node’s own feature representation,
and cr,v is a normalization constant.

2) Graph level classification
With G = (V ,E ,R) being our graph, let h(L)

v be the final
feature vector of node v after L layers of the RGCN. The
global pooling operation computes a graph-level representa-
tion hG ∈ Rd(L) by applying an aggregation function g to the
node representations:

hG = g
(
h(L)
v |v ∈ V

)
(2)

This feature vector may be further processed using a final
linear transformation to obtain a vector of probabilities for
each class. Specifically, we use a linear layer to map the
graph-level feature vector hG to a vector z ∈ Rs:

z = WfhG + b, (3)

whereWf ∈ Rs×dL is the final weight matrix, b ∈ Rs is a
bias vector and s is the number of classes in the dataset. The
output vector z can be interpreted as the confidence of the
graph belonging to each class, with a normalizing softmax
function yielding the probability distribution vector ŷ ∈ Rs

as follows:

ŷ =

[
ez1∑s
j=1 e

zj
,

ez2∑s
j=1 e

zj
, . . . ,

ezs∑s
j=1 e

zj

]
(4)

3) Network training
The goal of the training of an RGCNmodel is to optimize the
trainable parameters (W(l)

r ,W(l)
0 ,Wf and b, ∀r ∈ R and l ∈

N : 0 ≤ l ≤ L) of the RGCN layers by minimizing the
difference between the predicted graph-level output ŷ and the
ground-truth label y.

To do this, we define the cross-entropy loss function L
(where, for an i ∈ N, yi denotes the ith element of vector y) as
follows:

L = −
s∑

c=1

yc log ŷc, (5)

which captures the discrepancy between the predicted label
and the true label. To reduce this difference between predicted
and true label of the training graph, we will compute the
gradient of the loss function for each parameter as follows:

∂L

∂W
(l)
r

= −
s∑

c=1

yc
ŷc

∂ŷc

∂W
(l)
r

. (6)

The gradients for the other learnable parametersW(l)
0 ,Wf

and b are computed similarly and are omitted here. Finally, an
optimization algorithm using e.g. stochastic gradient descent
is applied to update the parameters using the following rule
(again only for W(l)

r ):

W(l+1)
r = W(l)

r − η
∂L

∂W
(l)
r

, (7)

where η represent the learning rate, a parameter defining
the step size of the learning, i.e. the ratio of parameter update
with respect to its gradient.
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III. NBW TRANSFORMATIONS
This section will introduce the concepts of preserving trans-
formations on Büchi automata that do not violate universality
(resp. non-universality), i.e. if such a transformation is ap-
plied on an universal automaton A, then the universality of
the automaton will be preserved after that transformation. We
define these transformations as follows:

Definition 6. Let BA be the set of all Büchi automata and P
be the set of all transformation parameters. Then in general,
a preserving transformation

T : BA× 2P → BA

is a function that performs a transformation with the given
parameters on the given Büchi automaton and outputs the
transformed automaton (output automaton will be universal
if and only if the input automaton was universal).

There also exist transformations that only preserve uni-
versality or non-universality, which leads to the following
definitions: For transformations preserving universality, we
get

Tu : BA× 2P → BA.

Similarly, the transformations preserving non-universality
can be defined as follows:

Tn : BA× 2P → BA.

The following subsections introduce preserving transfor-
mations and prove that they preserve (non-)universality. Here
is an overview of all the transformations:
• Transformations preserving universality:

-- Add state: A new non-accepting state is added to
the given automaton.

-- Add transition: A new transition is added to the
given automaton.

-- Make state accepting: A non-accepting state is
being made accepting.

• Transformations preserving non-universality3:
-- Remove transition: An existing transition is re-

moved from the given automaton.
-- Remove acceptance from state: An accepting

state is being made non-accepting.
• Preserving transformations:

-- Split self-loop: A self-loop transition loops
through a newly introduced state and back.

-- Expand self-loop: New states are added to the au-
tomaton and a self-loop is replaced by connecting
its state to the added states.

-- Duplicate strongly connected component:Copies
an existing SCC and its behaviour and adds an
interim accepting state.

-- Duplicate transition behaviour: Copies destina-
tion state of an existing transition and copies the
destination state’s outgoing transition behaviour.

3We do not consider removing a state as we are interested in transforma-
tions that at least preserve the number of states.

A. TRANSFORMATIONS PRESERVING UNIVERSALITY
To start off, we will introduce transformations that are guar-
anteed to preserve universality. The goal here is simple, add
elements to the automaton without changing the states and
transitions that are already present. This guarantees that all
words that are accepted by the original automaton will also be
accepted by the transformed one, i.e. preserving universality.

Definition 7. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton
• Let q+ 6∈ Q be a newly introduced state. The TPU
"adding a state" Tu

s is defined as follows:

Tu
s (A, {q+}) = (Q ∪ {q+},Σ, δ, qo,F)

• Let qsrc, qdest ∈ Q be states of A and c ∈ Σ. Then the
TPU "adding a transition" Tu

t is defined as follows:

Tu
t (A, [qsrc, qdest , c]4) = (Q,Σ, δ+, q0,F),

where

δ+(q, a) =

{
δ(q, a) ∪ {qdest} if q = qsrc, a = c
δ(q, a) otherwise

• Let qa ∈ Q be a state of A. Then the TPU "make
accepting" Tu

a is defined as follows:

Tu
a(A, {qa}) = (Q,Σ, δ, qo,F ∪ {qa})

All 3 transformations that strictly preserve universality are
relatively straightforward, and the proofs that all of them
indeed preserve universality are trivial5, so the following
lemma will be given without proof:

Lemma 1. Let A = (Q,Σ, δ, q0,F) be a universal Büchi
automaton. Then
• Tu

s (A, {q+}) is universal, for q+ 6∈ Q.
• Tu

t (A, [qsrc, qdest , c]) is universal, ∀qsrc, qdest ∈ Q, ∀c ∈
Σ.

• Tu
a(A, {qa}) is universal, ∀qa ∈ Q.

B. TRANSFORMATIONS PRESERVING NON-UNIVERSALITY
The transformations in this subsection will guarantee that a
non-universal input automaton cannot be made universal after
applying these transformations, so as long as it is impossible
that new words are added to the language accepted by the
input automaton, these transformations are guaranteed to be
preserving.

Definition 8. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton
• Let qsrc, qdest ∈ Q be states of A and c ∈ Σ. Then the
TPN "removing a transition" Tn

t is defined as follows:

Tn
t (A, [qsrc, qdest , c]) = (Q,Σ, δ−, q0,F),

where

δ−(q, a) =

{
δ(q, a) \ {qdest} if q = qsrc, a = c
δ(q, a) otherwise

4Here, [...] denotes an ordered set of elements.
5Every single run on any word that is present in the original automaton is

also present in the transformed automaton.
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• Let qa ∈ Q be a state of A. Then the TPN "remove
accepting" Tn

a is defined as follows:

Tn
a(A, {qa}) = (Q,Σ, δ, qo,F \ {qa})

Similarly to the case of the universal automata, both
these transformations can easily be shown to preserve non-
universality, proving the following lemma:

Lemma 2. LetA = (Q,Σ, δ, q0,F) be a non-universal Büchi
automaton. Then
• Tn

t (A, [qsrc, qdest , c]) is non-universal, ∀qsrc, qdest ∈ Q,
∀c ∈ Σ

• Tn
a(A, {qa}) is non-universal, ∀qa ∈ Q

C. PRESERVING TRANSFORMATIONS
Wewill now introduce transformations that are even language
preserving, i.e. the language accepted by the transformed
automaton is identical to the language accepted by the input
automaton. From this follows that these transformations are
preserving both universality and non-universality. The goal
here is to change components or add components to the
automata, while assuring that all runs that are added resp.
changed do not change the behaviour of the automaton. To
start, we will have a transformation that splits self-loops over
states:

Definition 9. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton,
let qsp ∈ Q be a state of A and let q+ 6∈ Q be a newly
introduced state. Then the TP "split loop" Tl is defined as
follows:

Tl(A, {qsp}) = (Q ∪ {q+},Σ, δsp, q0,Fsp),

where

Fsp =

{
F if qsp 6∈ F
(F \ {qsp}) ∪ {q+} if qsp ∈ F

and, for all q ∈ Q ∪ {q+} and a ∈ Σ:

δsp(q, a) =


δ(q, a) ∪ {q+} if q 6= qsp ∧ qsp ∈ δ(q, a)
(δ(q, a) \ {qsp}) ∪ {q+} if q = qsp ∧ qsp ∈ δ(q, a)
δ(qsp, a) if q = q+
δ(q, a) else

The effects of this transformation can be seen in Fig. 2.
Let us now prove that this transformation is indeed preserv-

ing. The following Theorem will show language equality of
the original automaton and the transformed one (by corollary
also proving its preserving nature).

Theorem 1. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton.
For a qsp ∈ Q, let Al = Tl(A, {qsp})

Then
Lω(A) = Lω(Al)

Proof: To show ω-language equality, we will show both
Lω(A) ⊆ Lω(Al) and Lω(A) ⊇ Lω(Al):

q0 q1 q2

a

b

a,b

a

a,b

q0

q1

q2

q+

a
b

b
a,b

a

a,b

a,b
a

FIGURE 2. With Σ = {a, b}, A on the top and Al = Tl (A, {q1}) on the
bottom.

• Lω(A) ⊆ Lω(Al)

Let w = w0w1w2... ∈ Lω(A) and let rw =
rw(0)rw(1)rw(2)rw(3)... be an accepting run ofA overw.
We will show that from rw we can construct an accepting
run r ′w of Al over w.
Let r ′w be the run such that r ′w(i) = rw(i), ∀i ∈ N, such
that rw(i) 6= qsp. For handling the occurrences of qsp in
rw, we will separate two cases, maximal subruns of only
qsp in a run and a maximal suffix of only qsp. For all the
occurrences of either of these two cases in rw:
1) let i ∈ N such that ∀k ≥ i: rw(k) = qsp Then by

construction, let

∀k ≥ i : r ′w(k) =

{
q+ if k − i is even
qsp if k − i is odd

2) let i, j ∈ N such that ∀k ∈ [i, j]: rw(k) = qsp Then
by construction, let

∀k ∈ [i, j] : r ′w(k) =

{
q+ if k − i is even
qsp if k − i is odd

The resulting run r ′w is, by construction, a run ofAl over
w. Furthermore, from

q ∈ inf (r ′w)⇔ q ∈ inf (rw),∀q ∈ Q \ {qsp}

and
q+ ∈ inf (r ′w)⇔ qsp ∈ inf (rw)

follows that Fsp ∩ inf (r ′w) 6= ∅, since if an accepting
state other than qsp is visited infinitely often by rw, it will
so too by r ′w and if only qsp is accepting and is visited
infinitely often by rw, the accepting state q+ will also be
visited infinitely often by r ′w.

• Lω(A) ⊇ Lω(Al)

Let w = w0w1w2... ∈ Lω(Al) and let be rw =
rw(0)rw(1)rw(2)... be an accepting run of Al over w.
By definition, ∃r ′w run of A over w s.t. ∀i ∈ N:

r ′w(i) =

{
rw(i) if rw(i) 6= q+
qsp if rw(i) = q+
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From q+ ∈ Fsp ⇒ qsp ∈ F follows that r ′w is guaranteed
to visit an accepting state infinitely often and thus w ∈
Lω(A).

Let us now continue with a transformation that replaces a
chosen state qc with a self-loop by a number of states that
will have the same ingoing and outgoing transitions as qc but
that will create a SCC with the self-loop transitions in order
to grow the size of the automaton but without changing the
behaviour. Formally:

Definition 10. Let A = (Q,Σ, δ, q0,F) be a Büchi automa-
ton, let qc ∈ Q be an state of A. Let x ∈ N be the number of
states to be added and

Q+ = {qc} ∪ {qi+|1 ≤ i ≤ x}

be the set consisting of the chosen qc and of newly added
states, i.e. Q+ ∩ Q = {qc}. Let Σsl the symbols that create a
self-loop on qc, i.e.

Σsl = {a ∈ Σ|qc ∈ δ(qc, a)}.

Now, let
δ+ : Q+ × Σsl −→ Q+

be a given complete and deterministic transition function for
the states in Q+ on Σsl .
Then the TP "expand self-loop" Tx is defined as follows:

Tx(A, {qc, x, δ+}) = (Qx ,Σ, δx , q0,Fx),

where
Qx = Q ∪ Q+,

Fx =

{
F if qc 6∈ F
F ∪ Q+ if qc ∈ F

and δx(q, a) =
δ(q, a) ∪ Q+ if qc ∈ δ(q, a) and q 6∈ Q+

δ+(q, a) ∪ (δ(qc, a) \ {qc}) if q ∈ Q+ and a ∈ Σsl

δ(qc, a) \ {qc} if q ∈ Q+ and a 6∈ Σsl

δ(q, a) else

In Fig. 3 6 (where the double resp. wavy edges represent
a same set of in- resp. outgoing edges), we can see a snippet
from an arbitrary automaton to see how this transformation
works. This transformation allows the runs that would stay
in qc (either finitely long or until infinity) to jump around
between qc and all the newly introduced states, who all share
the same outgoing transitions, so the runs do not change the
runs that are visiting qc. Let us now formally prove that this
transformation guarantees language equivalence:

Theorem 2. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton.
For a qc ∈ Q and a transition function between these states

6where q+(qc, a) = q1+, q+(qc, b) = q2+, q+(q1+, a) = qc,
q+(q1+, b) = q2+, q+(q2+, a) = q1+, q+(q2+, b) = q2+

qc

a,b

qc

q1+ q2+

a
b

ba

a

b

FIGURE 3. With Σ = {a, b}, A on the left and Ax = Tx (A, {qc , 2, δ+}) on
the right

δ+, let Ax = Tx(A, {qc, x, δ+}) = (Qx ,Σ, δx , q0,Fx)

Then
Lω(A) = Lω(Ax)

Proof: To show ω-language equality, we will show both
Lω(A) ⊆ Lω(Ax) and Lω(A) ⊇ Lω(Ax):
• Lω(A) ⊆ Lω(Ax)

Let w = w0w1w2... ∈ Lω(A) and let rw =
rw(0)rw(1)rw(2)... be an accepting run of A over w. We
will show that from rw we can construct an accepting run
r ′w of Ax over w.
For all i ∈ N, we can construct a r ′w such that we have
that

r ′w(i) =

{
rw(i) if rw(i) 6= qc
q+, where q+ ∈ Q+ if rw(i) = qc

Proof of the second case of this case separation:
There are two possibilities for the predecessor of rw(i):
-- rw(i − 1) 6= qc. Then rw(i − 1) 6∈ Q+ and since

rw(i) = qc, by transition rule (1), we have that

Q+ ∩ δx(rw(i− 1),w(i− 1)) 6= ∅.

-- rw(i− 1) = qc. From this, from w(i− 1) ∈ Σsl and
from δ+ being complete and deterministic follows
from transition rule (2) that

Q+ ∩ δx(rw(i− 1),w(i− 1)) 6= ∅.

To show that r ′w is accepting, it suffices to see that if an
accepting state other than qc is visited infinitely often by
rw over A, it also will be by r ′w over Ax .

• Lω(A) ⊇ Lω(Ax)

Let w = w0w1w2... ∈ Lω(Ax) and let be rw =
rw(0)rw(1)rw(2)... be an accepting run of Ax over w.
By definition, ∃r ′w run of A over w s.t. ∀i ∈ N:

r ′w(i) =

{
rw(i) if rw(i) 6∈ q+
qc if rw(i) ∈ Q+

From, ∀q+ ∈ Q+, q+ ∈ Fx ⇒ qc ∈ F follows that r ′w
is guaranteed to visit an accepting state infinitely often
and thus w ∈ Lω(A).
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The next transformation will generate an exact copy of a
strongly connected component of the automaton and a newly
introduced accepting interim state that will be able to be
visited only once, thus not changing the language of the au-
tomaton. An example will follow after the formal definition:

Definition 11. Let A = (Q,Σ, δ, q0,F) be a Büchi automa-
ton, let C ⊆ Q be an SCC ofA, let qc ∈ C be a state in C, let
ac ∈ Σ be a symbol with an outgoing transition from qc, i.e.
δ(qc, ac) 6= ∅. We introduce a copy Ĉ7 of the given SCC and
an accepting interim state q+ (with q+ and none of the states
from Ĉ in Q). Then the TP "duplicate SCC" Td is defined as
follows:

Td(A, {C , qc, ac}) = (Qd ,Σ, δd , q0,Fd),

where
Qd = Q ∪ Ĉ ∪ {q+},

Fd = F ∪ {q̂|q ∈ C ∩ F} ∪ {q+}

and

δd(q, a) =


{p̂|p ∈ δ(q, a)} if q ∈ Ĉ
δ(q, a) ∪ {q+} if q = qc and a = ac
Qc ∪ Qc if q = q+
δ(q, a) else

with

Qc = {q̂|q ∈
⋃

qs∈δ(qc,ac)

δ(qs, a) ∩ C}

Qc = {q|q ∈
⋃

qs∈δ(qc,ac)

δ(qs, a) ∩ (Q \ C)}

Before we have a look at the preserving properties of
this construction, let us illustrate the transformation with an
example in Fig. 4.

This transformation is also a language preserving transfor-
mation, which we are going to prove now:

Theorem 3. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton.
For a strongly connected component C ⊆ Q, qc ∈ C and
ac ∈ Σ, let Td(A, {C , qc, ac}) = (Qd ,Σ, δd , q0,Fd)

Then

Lω(A) = Lω(Ad)

Proof: To show ω-language equality, we will show both
Lω(A) ⊆ Lω(Ax) and Lω(A) ⊇ Lω(Ax):

• Lω(A) ⊆ Lω(Ad)
Let w = w0w1w2... ∈ Lω(A) and let rw =
rw(0)rw(1)rw(2)... be an accepting run of A over
w. Then, by construction, there exists a run r ′w =
r ′w(0)r ′w(1)r ′w(2)... of A′ over w such that

r ′w(i) = rw(i) , ∀i ∈ N.

7with, for S any set of states: Ŝ = {q̂|q ∈ S}

qc q1 q2

q+

qc+ q1+

a

b

b(ac)

a

a

a,b

a

a

a

b

a

a

FIGURE 4. With Σ = {a, b}, Ad = Td (A, {C = {qc , q1}, qc , b}) is shown
(with A composed by Q = {qc , q1, q2} and dashes mark added states and

transitions).

From this follows that inf (rw) = inf (r ′w) and with
inf (rw) ∩ F 6= ∅ and Fd ⊃ F (by construction) follows
that inf (r ′w) ∩ Fd 6= ∅.

• Lω(A) ⊇ Lω(Ad)

Let w = w0w1w2... ∈ Lω(Ad) and rw an accepting run
on Ad over w. First off, we can state that if rw does not
visit q+, by construction ∃ run r ′w on A over w that will
be identical to rw, from which follows that w ∈ Lω(A).
Furthermore, by construction, for every accepting run
visiting q+, there also exists an accepting run that does
not visit q+ (this follows from transition rule 2 of δd ),
i.e. we can derive the previous conclusion that there will
be an accepting run on A over w, i.e. w ∈ Lω(A).

The next transformation duplicates the behaviour of a tran-
sition by introducing a new state that can only be reached
by passing the duplicating transition, meaning that the lan-
guage accepted by the transformation remains unchanged.
Formally:

Definition 12. Let A = (Q,Σ, δ, q0,F) be a Büchi au-
tomaton, let qsrc, qdest ∈ Q be states of A and let ac ∈ Σ
be a symbol with a transition going from qsrc to qdest , i.e.
qdest ∈ δ(qsrc, ac). Let q+ 6∈ Q be a newly introduced state.
Then the TP "duplicate transition behaviour Tt is defined as
follows:

Tt(A, [qsrc, qdest , ac]) = (Qt ,Σ, δt , q0,Ft),

where

Qt = Q ∪ {q+},

Ft =

{
F if qdest 6∈ F
F ∪ {q+} if qdest ∈ F
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and

δt(q, a) =


δ(q, a) ∪ {q+} if q = qsrc and a = ac

{q|q ∈
⋃

qs∈δ(qsrc,ac)

δ(qs, a)} if q = q+

δ(q, a) else

Before proving preserving properties of this construction,
let us again illustrate the transformation with the example
from Fig. 5:

qsrc qdest q2

a

b(ac)

a

a

a,b

qsrc qdest q2

q+

a

b

b

a
a

a

a

a,b

FIGURE 5. With Σ = {a, b}, A on top and At = Tt (A, [qsrc , qdest , ac ]) on
the bottom.

Being very similar to the duplicating SCC transformation,
as for every possible accepted word, it is possible to find
at least one accepting run that will exist both in A and At

(one not passing through q+), we will omit the proof of the
following language equivalence theorem:

Theorem 4. LetA = (Q,Σ, δ, q0,F) be a Büchi automaton.
For two states qsrc, qdest ∈ Q and ac ∈ Σ, let
Tt(A, [qsrc, qdest , ac])

Then

Lω(A) = Lω(At)

IV. BÜCHI AUTOMATA DATASETS
After gaining familiarity with the different transformations
used to modify NBW while preserving their universality
property, the automaton structures will now need to be en-
coded as input for GNN and populate a range of datasets.
This section describes the encoding process for GNN, the
construction of transformation datasets and the generation of
randomly generated labelled automata.

A. NBW AS RGCN INPUT DATA
This section will detail the process of encoding Büchi au-
tomata as RGCN input data (as described in Section II-B).
Let A = (Q,Σ, δ, q0,F) be a Büchi automaton. The RGCN
input graph G = (V ,E ,R) is then defined as follows:

• set of nodes V is equal to the set of states of the automa-
ton, i.e. V = Q.

• set of relationsR will be the set of symbols Σ, i.e.R =
Σ.

• set of edges E will be constructed as follows. Let
(vi, r , vj) ∈ E , for vi, vj ∈ V and r ∈ R if and only
if

vj ∈ δ(qi, r).

The initial node feature matrix X0 (i.e. for layer l = 0)
will, ∀v ∈ V , consist of the feature vector h(0)

v defined as
follows: [

vinit

vacc

]
,

where
• vinit = 1⇔ v = q0 encodes if v is the initial state,
• vacc = 1⇔ v ∈ F encodes if v is an accepting state.

B. TRANSFORMATION DATASETS
This section will give details about the process of generating
labelled datasets using preserving transformations and the
used functions, a process which can be consulted in Algo-
rithm 1.

Algorithm 1 Transformed NBW Dataset Generation
1: function GenDataset(d , nmin, nmax,Au,Anu,T,WT)
2: dataset← {}
3: while size(dataset) < d do
4: n← random_integer(nmin, nmax)
5: if size(dataset) ≤ d/2 then
6: Abase ← random_choice(Au)
7: else
8: Abase ← random_choice(Anu)
9: end if
10: automaton← Abase

11: while size(automaton) < n do
12: T ← random_weighted_choice(T,WT)
13: automaton← apply_T (automaton)
14: end while
15: automaton← prune(automaton)
16: dataset← dataset ∪ {automaton}
17: end while
18: return dataset
19: end function

Given a number of automata d ∈ N, a minimum and max-
imum size nmin, nmax ∈ N, a set of labelled universal base au-
tomata Au, a set of labelled non-universal base automata Anu

and a set of transformations T with an accompanying set of
weights WT ⊆ N, the dataset generation procedure generates
d-many different automata with a random generating bound
between nmin and nmax by randomly choosing a universal base
automaton Abase ∈ Au for the first d

2 automata and choosing
a non-universal base automaton Abase ∈ Anu for the second
half, then applying a randomly chosen transformation T from
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the transformation setT using the weightsWT until the bound
of desired nodes is surpassed. To make all the states in the
automaton relevant regarding its language acceptance, i.e. to
remove structural noise for the GNN that doesn’t change the
behaviour of the automaton structure, the resulting automaton
is pruned before being added to the dataset. These various
functions from Algorithm 1 are defined as follows:

• The function ’random_integer(nmin, nmax)’ returns, for
nmin, nmax ∈ N, a random integer from [nmin, nmax ] with
a uniform distribution.

• The functions ’random_choice(Au)’ and ’random_choice
(Anu)’ return a random automaton from the sets contain-
ing automata Au resp. Anu with a uniform distribution.

• The function ’random_weighted_choice(T,WT)’ chooses
a transformation from the set of transformations T =
{T1, T2, . . . , Tn} with the probability

P(Ti) =
wi∑n
j=1 wj

,∀1 ≤ i ≤ n,

whereWT = {w1,w2, . . . ,wn} is the set of non-negative
integer weights.

• The function ’apply_T (automaton)’ applies the trans-
formation T to the given automaton. Depending on T ,
the corresponding transformation parameters are also
passed to the function, in accordance with the definitions
from Section III.

• The function ’prune(automaton)’ prunes the given au-
tomaton by removing all nodes which are not reachable
from the initial state or which have no path to a self-
reaching state8. An example of this procedure can be
seen in Fig. 6.

q0 q1 q2

q3q4q5

a

b
a

a

b

a

a,b

a,b

FIGURE 6. Pruning procedure of the given NBW A. To be removed states
and transitions are highlighted in red.

C. ERDÖS-RENYI DATASETS
Although the universality check for Büchi automata is com-
putationally complex, it is still feasible for small automata.
This allows us to generate correctly labelled datasets with ran-
domly generated small automata, providing us with ground
truth data that can be used as base automata for our transfor-
mation datasets, as testing and validation datasets for compar-
ative analysis and to improve network performance through

8A self-reaching state in a NBW is a state that has a path back to itself.

inclusion in training. In this section, we will first highlight
how these small automata are randomly generated and then
show the computational limits of the universality check with
respect to the automaton size.

1) Random generation of NBW
The random automata generation is based on the Erdős-
Rényi graph model [19], where a graph G(n, p) is defined
as a graph with n nodes and all possible edges are included
with probability p. We extended this approach to NBW, by
counting all possible edges of the graph structure once for
each symbol in Σ. In addition, a second probability pacc is
defined to determine for each state if they belong to F , i.e.
are accepting.
Furthermore, we allow for more variety in the generation

by letting the input be an upper and lower bound for node
sizes, edge probabilities and acceptance probabilities (with n,
p and pacc being randomly chosen in between these bounds)
and reduce the automaton structure to only include states
that are self-reachable and reachable from the initial state by
applying the same pruning procedure seen before.

2) Algorithmically checking universality
As it was already discussed in Section II, the complexity bot-
tleneck of the universality check is the complementation con-
struction of NBW, as it yields a node growth of O(0.76nn).
For our implementation, we used a simplified version of the
optimal construction from [20], which is slightly slower in
the worst case. The emptiness check of the complement can
subsequently be done in linear time to determine universality
of the original automaton.

TABLE 1. Randomly Generated NBW Complementation Statistics.

Num. nodes: 6 8 10
sec # sec # sec #

Highest 385.69 4447 309.44 3491 9924.1 17004
Average 0.692 64 1.32 107 14.99 200
Median 0.035 33 0.098 54 0.102 54
Computation times and complement automaton sizes for 1000 construc-
tions of non-deterministic Büchi automata with 6, 8, and 10 nodes.

Table 1 shows the computation times and complement
automaton sizes for 1000 constructions of complement NBW
with 6, 8, and 10 nodes. The slowest construction for each
size of the starting NBW took a significant amount of time,
with the slowest construction for an NBW with 10 nodes
taking over 2 and a half hours to complete. The average
computation times for each size of the starting NBW were
0.692 seconds, 1.32 seconds, and 14.99 seconds for NBW
with 6, 8, and 10 nodes, respectively, which is consistent with
the complexity of the algorithm. It is also noteworthy that the
random generation of the input NBW influenced the worst
case computation times, with the slowest computation time
for NBWwith 6 nodes being slower than the slowest time for
NBWwith 8 nodes, due to the random nature of the generated
NBW.
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FIGURE 7. Distribution charts of automaton sizes (per class: blue are non-universal, red are universal) for the 3 transformed datasets containing 2500
small, medium or large automata.

V. EXPERIMENTAL RESULTS
We have conducted several experiments to investigate the
potential of using GNN for predicting universality of Büchi
automata. In the following, Section A describes the datasets
of automata used, Section B presents the hyper-parameter
optimization for the GNN, and Section C discusses the clas-
sification results obtained.

All the experiments regarding the construction and gener-
ation of datasets were conducted on a laptop with a Intel(R)
Core i7 CPU processor with 16GB RAM. All RGCN models
described in this section were trained on up to 8 NVIDIA
V100 GPU cores with 32GB RAM each.

A. DATASETS
This section will start by presenting the datasets used in
the experiments and establish consistent naming conventions
throughout this section.

Let us start by defining the transformed TRF datasets,
which were constructed using the transformation procedure
outlined in Section IV-B. These datasets are primarily differ-
entiated by the number of data elements they contain and by
the size of the automata, determined by the parameters nmin
and nmax for the dataset generation (given in parenthesis) and
denoted by a S, M, L or A at the end of the dataset name
abbreviation:
• small (7, 7) dataset name TRFS,
• medium (30, 40) dataset name TRFM,
• large (70, 80) dataset name TRFL,
• all (10, 80) dataset name TRFA.

Fig. 7 presents distribution charts depicting the sizes of au-
tomata and their class membership per automaton size for
the datasets comprising 2500 automata (utilized as test sets

throughout the experiments) across the three automaton sizes.
It is interesting to note that the automata from the transfor-
mations procedure, due to the pruning of the transformed au-
tomata and the nature of the transformations, that are smaller
are more frequently non-universal.
These datasets use only the preserving transformations9

fromSection III-C to expand both universal and non-universal
base automata. This minimizes the bias towards transfor-
mation patterns that the transformations preserving (non)-
universality would introduce into the structure of the au-
tomata. The generation parameters and dataset statistics of the
transformed datasets can be examined in Table 2.

TABLE 2. Automaton size statistics for transformed (TRF) training
datasets.

Dataset Statistics
Name Size Average Min Max

TRFS

1k 9.1 2 15
5k 9.1 4 15
10k 9.1 2 15

TRFM

1k 36.7 5 56
5k 36.7 4 67
10k 36.6 4 71

TRFL

1k 69.0 3 101
5k 68.4 3 115
10k 69.0 3 108

TRFA 300k 43.0 1 155

The Erdös-Renyi ER datasets containing randomly gener-
ated and labelled automata are mainly differentiated by the
amount of data in the datasets (as Section IV-C showed, these
datasets can only contain small automata due to computation

9In all experiments in this article, the weights for the random transforma-
tion choice will all be equal.
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complexity restraints during their generation). Table 3 pro-
vides the dataset statistics.

TABLE 3. Automaton size separation statistics for Erdös-Renyi (ER)
datasets.

Dataset Statistics
Name Size Average Min Max

ER
2.5k 5.7 2 9
10k 5.8 1 9
27k 6.0 2 9

With the aim of encompassing the variability introduced
by our different data generation strategies, we combined the
NBW from the training sets from each approach (adding up to
approximately 75000 data elements). This master dataset10

gives another data configuration exploring the impact the
dataset creation strategy may have on the performance of the
trained model. Fig. 8 gives an overview of the distribution of
the number of nodes (per universality class) over the dataset.

FIGURE 8. Master dataset automaton size distribution (per class: blue are
non-universal, red are universal).

B. NEURAL NETWORK ARCHITECTURE AND PARAMETERS
In this section, we describe our choices regarding network ar-
chitecture and hyper-parameters, which were optimized with
respect to the classification accuracy on a validation dataset
of 10k ER automata.

The choices of the optimizer, Adam [21], the activation
function (ReLU ) and the normalization constant ci,r = |N r

i |
follow the experimental conventions detailed in the RGCN
paper [18]. The selection of the remaining parameters is based
on the following results:

• Number of hidden layers L and their number of node
features (i.e. d(l), for 1 ≤ l ≤ L): L = 4 and all
d(l) = 128.

To determine the number of layers L and the amount of
node features per hidden layers, for all combinations of
L ∈ {1, 4, 7} and d(l) ∈ {64, 128, 256, 512, 1024}, 3
models were trained on all transformed training datasets
(sizes 1000, 5000 and 10000) and their averaged classi-
fication accuracy (to minimize the effect of the random-

10Master set size statistics: Average: 26.6 Min: 2 Max: 112.

ization of initial learnable weights) on the validation set
was computed to determine the best performance.
For the models with 4 hidden layers, the classification
accuracy over all the different trained models was higher
than for both 1 and 7 hidden layers, averaging at 78.89%
accuracy (compared to 74.18% for one hidden layer
and 75.09% for 7 hidden layers). Thus, after fixing the
number of hidden layers to be 4, let us analyse in detail
the classification accuracies for the various numbers of
hidden node features, presented in Table 4.

TABLE 4. Average classification accuracies (in %, tested on validation set)
over 3 models with 4 layers over various TRF training sets and numbers of

node features.

Trainingset Number of hidden nodes
Name Size 64 128 256 512 1024

TRFS
1k 78.99 80.84 76.29 80.85 77.88
5k 80.11 79.1 78.71 78.58 78.66
10k 80.84 81.13 79.26 78.66 78.96

TRFM
1k 79.18 80.24 79.31 79.24 79.62
5k 79.88 79.79 77.97 78.35 77.3
10k 80.04 81.62 80.78 80.22 79.56

TRFL
1k 77.91 77.34 76.2 76 75.79
5k 77.36 77.55 74.35 77.2 74.66
10k 78.76 81.72 83.9 84.05 75.09

Average 79.23 79.93 78.53 79.24 77.5

These results show that over the various training
datasets, the highest averaged classification results were
achieved by models containing 128 node features for
each hidden layer.

• Learning rate η: 0.001.

With the fixed layer parameters, we conducted several
experiments regarding the learning rate. The results of
these comparative experiments, where 3 models were
trained for each of the transformed training sets using
the following learning rates: 0.01, 0.005, 0.001, 0.0005.
The average classification over the 3 models on the
validation set for each configuration is represented in
Fig. 9.

FIGURE 9. Averaged accuracy comparison over 3 models, each for various
learning rates.

These results show that the learning rates of 0.01 and
0.005 perform worse on the trained models, but between
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0.001 and 0.0005, the choice of the learning rate does not
lead to very significant classification accuracy changes,
so it is going to be fixed on 0.001 by having a slightly
higher average classification accuracy (79.85% opposed
to 79.63%), which incidentally is also the proposed
choice of the paper introducing the Adam optimizer.

• Number of epochs: Flexible (maximum 100)

The rolling average classification accuracy over the val-
idation set for the past 5 epochs is calculated after each
epoch. After 100 epochs, the model configuration after
the epoch with the highest rolling average is output.
During the training process, the models start overfitting
to the training set. This is illustrated by Fig. 10, where in
both cases after the initial rise in classification accuracy,
the accuracy keeps to improve on the training data, but
slowly converges on the validation set, which is why the
model at the point in time of highest average accuracy
over the validation set is output.

FIGURE 10. Example of training set and validation set classification
accuracy and loss function evolution during training over 1k TRFS or 10k

TRFL automata.

• Network Architecture: Relational GCN

With the hyperparameters for the network training fixed,
Table 5 will show the classification results when using
two different layers for training, GCNConv and RGCN
layers. For GCNConv, the only change in the automaton
encoding stems from encoding the transition labels, as
this architecture requires an edge feature vector of length
|Σ| one-hot encoding the transition symbol (whereas
RGCN edges are labelled with a relation) where the ith

bit is set to one if and only if the transitions reads the ith

symbol in Σ.
These results show that when trained on small automata,
the GCNConv layer using the one-hot encoded edge
labels perform similarly to the relational approach, but

TABLE 5. Average classification accuracies (in %, tested on validation set)
over 3 models trained on two different architectures.

Training Sets Layer architecture
Name Size RGCN GCNConv

TRFS
1k 80.84 80.07
5k 79.10 78.09
10k 81.13 80.44

TRFM
1k 80.24 78.49
5k 79.79 77.23
10k 81.62 77.79

TRFL
1k 77.34 73.04
5k 77.55 71.47
10k 81.72 71.96

fall off more visibly when training on larger automata,
where the need to infer structural reasoning is larger, as
the verification set automata are also small.

C. CLASSIFICATION EXPERIMENTS
With the parameters of the learning process fixed, we can now
present the classification results given various combinations
of training and test sets. This result analysis allows us to show
the impact the choice of training set (and the strategy used
behind creating the data) has on the capabilities of a model to
recognize patterns behind the (non-)universality of the given
input NBW.
To start, let us look at the classification results of models

being trained on all the different transformed dataset. The first
results are given for test sets containing transformed datasets
and can be consulted in Table 6.

TABLE 6. Average classification accuracies (in %,± std. dev.) of 3 models
trained and tested on various disjunct datasets.

Training sets TRF Testsets, 2500 Automata
Name Size TRFS TRFM TRFL

TRFS
1k 86.20± 1.59 82.61± 1.42 81.56± 1.57
5k 86.47± 0.88 80.31± 0.99 77.79± 0.96
10k 93.53± 3.16 87.52± 3.04 85.73± 3.06

TRFM
1k 84.03± 1.57 80.97± 2.09 80.44± 2.06
5k 84.24± 0.34 80.80± 0.49 79.20± 0.69
10k 98.09± 0.69 96.25± 0.69 95.71± 0.41

TRFL
1k 83.11± 3.43 84.36± 1.04 84.21± 0.50
5k 84.16± 3.62 84.05± 2.44 83.29± 2.34
10k 97.15± 0.61 97.16± 0.53 97.41± 0.46

TRFA 300k 99.22± 0.61 98.99± 0.35 98.38± 0.60

There are a few things to note from these results:
• Solid performance when testing on other transformed

datasets. Larger training sets lead to better classification
accuracy over most test sets.

• Good generalization for larger transformed automata.
The models learning on small NBW are able to gener-
alize the structures needed to derive (non-)universality
well for automata containing more nodes.

Table 7 shows the classification results when tasking models
trained on various transformed automata datasets to classify-
ing Erdös-Renyi automata.
We can now add the following observations:
• Drop-off for classification accuracy on randomly gen-

erated NBW compared to the transformed automata test
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TABLE 7. Average classification accuracies (in %,± std. dev.) of 3 models
tested on 2500 disjunct ER automata.

Training sets ER Testset, 2500 Automata
Name Size

TRFS
1k 81.28± 1.50
5k 82.97± 0.73
10k 83.23± 0.69

TRFM
1k 81.17± 0.30
5k 82.55± 0.15
10k 81.79± 0.84

TRFL
1k 80.29± 1.58
5k 79.53± 0.63
10k 85.16± 0.09

TRFA 300k 84.94± 1.53

sets, especially when datasets are larger. The structurally
less "predictable" randomly generated automata seem
harder to classify, thus opening the conjecture that these
models recognize more the transformation patterns and
less the patterns connected to (non-)universality.

• Removing the segregation into datasets containing
small, medium and large automata and by vastly aug-
menting the number of data elements that the model
has access to to learn the automaton structures (i.e.
training on 300k TRFA automata), we can see that the
model strongly minimizes classification errors on the
transformed test sets, but doesn’t produce significantly
better results on the randomly generated NBW.

Another observation that is in line with the data generation
can be made by having a look at the distribution of the errors
of the classifications (i.e. the distribution ofmisclassifications
into true and false positives), which can be consulted in Table
8.

TABLE 8. Distribution (in %) of the misclassifications of various training
sets when tested on 2500 ER automata.

Training Sets Misclassification distribution
Name Size False positive % False negative %
TRFS 10k 18.1 % 81.9 %
TRFM 10k 15.2 % 84.8 %
TRFL 10k 27 % 73 %
ER 27k 40 % 60 %

Analysing these distributions show that the models that are
trained on transformed automata are producing a bias towards
non-universality when the automata are small, thus increas-
ing the percentage of false negatives when tested on ER
automata, which are exclusively smaller automata. This bias
is a logical consequence of the size distribution as seen earlier
in Fig. 7, which showed that small transformed automata are
more likely to be non-universal, due to the generation process.

To continue, we will have a look at the performance of a
model that is trained on the randomly generated NBW and
how it performs when tasked to classify the various test sets.
The results are presented in Table 9.

TABLE 9. Average classification accuracy (in %,± std. dev.) and std. dev.
of 3 models trained on 27000 ER automata.

Testsets, 2500 automata Accuracy
TRFS 85.53± 1.18
TRFM 60.09± 1.30
TRFL 52.15± 0.88
ER 94.76± 0.56

Here we see that the models trained on randomly generated
and algorithmically classified Erdös-Renyi automata get a
strong classification accuracy on the testing set containing
different randomly generated automata, with a weaker clas-
sification of the small transformed automata and a substan-
tial decline for the medium and large transformed automata,
showing a lack of generalization towards larger automata.
The final results will show the classification accuracy of the

models trained on the master dataset when tasked to classify
the various testing datasets. In Table 10, we can see that the
training set containing a variety of differently constructed
data elements leads to the best classification accuracies for the
transformed automata, and reaching very strong classification
results on the 2500 randomly generated ER automata. This
shows that the most promising way to infer (non-)universality
from a general structure of a given NBW is to train on sets
containing a large variety of automata with respect to their
generation.

TABLE 10. Average classification accuracies (in %,± std. dev.) and std.
dev. of 3 models trained on master dataset.

Testsets, 2500 automata Accuracy
TRFS 99.79± 0.12
TRFM 99.56± 0.45
TRFL 99.46± 0.32
ER 93.58± 0.64

VI. CONCLUSION
This section will recap the results that were acquired pre-
viously, give a concluding overview of the contents of this
article and present various ideas for future research work.

A. RESULTS AND CONCLUSION
Based on the achieved results, we can assert that our contri-
bution is twofold and can be summarized as follows:
• The dataset generation approach with the transforma-

tions allows to quickly generate datasets for GNN train-
ing that lead the models to a basic understanding regard-
ing the universality problem, with solid generalization
results when applied to larger automata generated using
the same methodology. The drawbacks in classification
accuracy of randomly generated automata can be miti-
gated by creating larger training datasets incorporating
a mix of transformed automata and randomly generated
(algorithmically classified) ones, significantly improv-
ing classification accuracy.

• We showed that the RGCN architecture for classifying
graphs can be applied to Büchi automata structures, a
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special case of a graph. The experimental results show
that the models, when training on variously constructed
datasets containing NBWwith the goal of learning about
(non-)universality, behave the way that is expected when
changing different parameters (both on the dataset con-
struction and on the models themselves) and reach sur-
prisingly strong classification accuracies on randomly
generated Büchi automata when trained on a training
set combining randomly generated automata with trans-
formed automata.

B. FUTURE WORK
The results that were shown in this article are mainly a show
of proof of concept by presenting GNN models that were
trained on graph structures representing Büchi automata for a
classification task that is shown to be computationally expen-
sive. With this work, to our knowledge, being the first time in
literature to classify a given Büchi automaton using GNNs
regarding their universality, there is a lot of potential for
follow-up work to improve both the data generation and the
training process. In this section, we will propose several ideas
to serve as starting points for future research endeavours.
Let us start with a few ideas in regards to data generation:

• Improve the algorithmic classification of randomly gen-
erated automata to create a bigger dataset containing
more possible NBW as a baseline testing dataset.

• Analyse the effect on classification of manipulating the
weights on the transformations, the impact of includ-
ing the transformations that exclusively preserve (non-
)universality or the removal of the pruning procedure of
the automata.

• As more classification errors occur on universal au-
tomata in the presented results, experiment on training
models on unbalanced datasets containing more univer-
sal automata in order to reach structural conclusions
regarding universality.

The process of training GNN also presents different opportu-
nities for further experimentation:

• Use easily checkable features of nodes (e.g. is contained
in a SCC, has a self-loop, ...) to add more structural
information to the base node features to facilitate the
model’s learning.

• Analyse inmore detail the node features after the readout
to learn from the information that the model is gathering
during the message passing.

• Due to the rapid development of GNN architecture re-
search, experiment with different models and compare
results, e.g. transformers using self-attention.

The procedure of classifying NBW presented in this article
could also be subject to comparative research with the results
from applications from formal verification requiring a univer-
sality check. Generally speaking, we encourage subsequent
experimentation on this topic, both in regards of the dataset
generation and in the training and testing of the models, to

enhance the performance of the datasets or the scope of the
dataset generation.
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