
A Gossip Learning Approach to Urban Trajectory
Nowcasting for Anticipatory RAN Management

Mina Aghaei Dinani,
Adrian Holzer

University of Neuchatel,
Switzerland

name.surname@unine.ch

Hung Nguyen
The University of Adelaide,

Australia
hung.nguyen@adelaide.edu.au

Marco Ajmone Marsan
Institute IMDEA Networks,

Spain
ajmone@polito.it

Gianluca Rizzo
HES-SO Valais, Switzerland, and

University of Foggia, Italy
gianluca.rizzo@hevs.ch

Abstract—In future radio access networks, machine learning
(ML) based strategies for short-term forecasting of vehicular
trajectories will be key for anticipatory resource allocation and
management at the mobile edge. However, training ML models
in a centralized fashion, over data collected from a massive
heterogeneous and dynamic set of devices, poses significant
scalability, reliability, and efficiency challenges, which are still
open to date.
In this paper, we look at the specific issue of scalable and resource-
efficient training of ML models in a vehicular environment. To
address such a challenge, we propose a new Gossip Learning
scheme, i.e., a fully distributed, collaborative training approach
based on direct, opportunistic model exchanges via wireless
device-to-device (D2D) communications with no centralized sup-
port. Our approach is based on constantly improving each node’s
own model instance through knowledge transfer among nodes,
and on different strategies for estimating the potential contri-
bution of neighboring nodes to the training process at a node.
Extensive numerical assessments on a variety of measurement-
based dynamic urban scenarios suggest that our schemes are able
to converge rapidly and provide sufficiently accurate forecasts of
vehicle position for time horizons which are typical of future
5G/6G dynamic resource allocation algorithms.

I. INTRODUCTION

Machine learning based techniques for vehicle trajectory
nowcasting, i.e., short-term trajectory forecasting [1], play a
central role in future 5G/6G radio access networks (RAN)
as a key enabler of road safety algorithms for autonomous
vehicles [2] or of anticipatory RAN resource management
strategies [3], to mention a few.
Machine learning (ML) based techniques for vehicle trajectory
nowcasting, i.e., short-term trajectory forecasting [1], play a
central role in future 5G/6G vehicular networks as a key
enabler of anticipatory radio access network (RAN) resource
management strategies [3], as well as road safety algorithms
for autonomous vehicles [2]. Several challenges, however,
stand in the way of designing a scalable and efficient strategy
for training an ML prediction model for vehicular trajectory
nowcasting. The most prominent one is how to take advan-
tage of the availability of large amounts of privacy-sensitive
data distributed among users without exposing it to breaches.
Indeed, training a prediction model in a centralized fashion
would not only put a high privacy risk on the central server,

but it would also be difficult to scale to large numbers of
vehicles, and it would be inefficient from the viewpoint of
RAN bandwidth utilization.
To overcome these shortcomings of centralized approaches,
several distributed ML schemes have recently emerged [4]–
[6]. Among these, Federated Learning (FL) [6] offers po-
tentially better privacy protection than traditional approaches
by substituting data sharing with model sharing. However,
it relies on a central coordinating node that dispatches and
aggregates models trained locally on each node. As such, it still
bears all the main shortcomings of centralized architectures in
terms of bandwidth utilization, scalability, and single point of
failure. To address these drawbacks, several fully decentralized
approaches have been proposed [7]–[10]. Among these, a
promising technique is Gossip Learning (GL) [7]. It is a fully
decentralized version of FL, where individual nodes train,
exchange, and merge models with neighbors without the need
for a central coordinator. However, most of these existing
solutions for decentralized model training mainly assume no
node mobility and no churn, making them unsuitable for
dynamical settings such as vehicular scenarios.
In this paper, we tackle the above-mentioned open issues for
the specific problem of training an ML model for trajectory
nowcasting in an urban setting. We propose a novel GL
approach that allows new nodes in the area to build over,
and benefit from, models elaborated by other nodes. Our
approach does not require support from the infrastructure, nor
a connected interconnection graph, and it allows continuously
improving the model and keeping it up to date with changes
in the context. Moreover, it does not require maintaining a
global state (such as in [11]), thus enabling better scalability.
Our collaborative approach enables high-performing nodes to
support those nodes whose model performs less well (e.g.
because they do not encounter enough neighbors, or because
they do not possess the data required to train a high-performing
model by themselves).
Specifically, the main contributions of this paper are as follows:

• We propose a novel and fully distributed GL approach for
highly dynamic settings, based on node cooperation and
asynchronous communications, and on the combination of
local model training with merging of models received via

opportunistic exchanges.
• We present three practical model aggregation strategies,

based on iterative weighted model averaging and on different
estimators of the impact of each contribution on the accuracy
of the model resulting from the aggregation.
• We characterize analytically its convergence properties,

showing that our GL scheme converges to an optimal set
of parameters under mild assumptions on the connectivity
and regularization of the data.
• We assess the effectiveness of our GL strategies over

measurement-based mobility traces against a set of relevant
baselines, as functions of different urban settings and traffic
configurations. Results suggest that our approach is effective
and able to converge and adapt even in the presence of large
variations in vehicle density and traffic patterns. They also
suggest that the performance of our schemes is comparable
(if not better, in some cases) to Federated Learning schemes.

The rest of this paper is organized as follows. Section II
presents the system model, and in Section III our GL algo-
rithms are described in detail. Section IV presents the main
results related to the convergence of our algorithms, and
Section V is dedicated to their numerical assessment. Section
VI discusses the state of the art. Finally, conclusions and future
directions of investigation are summarized in Section VII.

II. SYSTEM MODEL

We consider nodes moving on a road grid according to an
arbitrary mobility model. We assume that each node knows its
position at any time, and that nodes communicate in a peer-
to-peer fashion using wireless technology (e.g., WiFi, BLE,
or cellular D2D). When two nodes are in range of each other
(and thus able to exchange information directly), we say that
they are in contact.
Without loss of generality, we assume time to be divided into
equal-sized slots, and let t ∈ N be the slots’ label. We focus
on a specific region of the road grid within which, at any slot
t, each node tries to predict its own location h slots in the
future. h is thus the forecast horizon, assumed to be equal for
all nodes. Let i ∈ N denote the unique identifier of a node.
We assume that each node entering the region possesses a
local dataset Si, generally different in size and composition
for each node, and composed by time series pertaining to its
past trajectories in the region. Specifically, if with (xt, yt)
we denote the node position at the beginning of the t-th
slot, the s-th element of the local dataset is a time series
{(xt, yt)}t=ts,...,ts+ls of size ls by 2, representing a trajectory,
i.e. a sequence of positions over the plane over ls consecutive
time slots, starting at slot ts.

III. A DISTRIBUTED GOSSIP LEARNING ARCHITECTURE

A. Model architecture
We assume that each node, in order to predict its own

trajectory, employs a Long Short Term Memory (LSTM)
neural network, a special kind of Recurrent Neural Network
(RNN), widely used for vehicle trajectory prediction [12].
More generally, in the case of time series forecasting, when a
sequence of input and output multi-variant data is available,

Symbol Description

i Node label
t Time slot label
j Round label
wi

j Array of coefficients of the local model instance of node
i at the beginning of round j

ξij Performance estimator of the model from node i at the
beginning of round j

Ki
j Set of nodes whose models have been received by node i

during phase 1 of round j
β Cutoff value
li loss of the model received from node i
A Total number of cells in the region
a Cell label
Si Local data set of node i
α Number of input steps of the LSTM model
h Forecast horizon (in n. of slots)

TABLE I: Main notation used in the paper.

encoder-decoder LSTM models have shown to outperform
other approaches for trajectory prediction, such as Kalman
filtering [13] or support vector machines [14]–[16].
Specifically, the architecture of the LSTM model at each node
is given by the concatenation of two LSTM layers (encoder
and decoder respectively). At each time t, the encoder layer
takes as input a trajectory over the last α time slots. The output
of the encoder layer is a fixed-length vector that captures
the trajectories’ temporal structure. The decoder layer maps
such a vector representation back to a variable-length target
sequence of h coordinate labels that describe the forecasted
node position from time slot t+ 1 up to t+ h.
The training process of such LSTM model takes place over
a sequence of iterations (denoted as epochs). At each epoch,
the parameters of the model are updated. We adopt a mini-
batch gradient descent approach, in which the training data
during one epoch is partitioned into two or more batches. This
allows avoiding storing all training data in memory [17]. We
employ the Adam optimizer [18] because of its computational
efficiency and simplicity, as it requires little memory. It is well
suited for problems with many parameters, and appropriate
to cope with non-stationary objectives [18]. Nonetheless, our
approach extends immediately to other optimizers and, more
generally, to other ML architectures.

B. Gossip Learning algorithm
In what follows, we describe the training algorithm run

by each node within the considered region of the road grid.
Its goal is to generate more accurate models than those
resulting from training exclusively on the local dataset of each
node, without relying on any parameter server or centralized
coordination function, and exploiting only opportunistic com-
munications during ephemeral contacts between nodes.
We assume that, in addition to a local dataset, each node
entering the region is endowed with an instance of the encoder-
decoder LSTM model. Such an instance is initialized ran-
domly, and trained over the node’s local dataset. In addition, it
may incorporate a priori information on patterns of vehicular
trajectories in the region. The composition of the local dataset
at ingress time, and the coefficients of the LSTM model can
be tuned to model settings with various degrees of availability
of a priori knowledge about patterns of mobility in the region.

2

At every time slot, each node in the region feeds its local
instance of the LSTM model with the last α samples of the
time series representing the node’s own trajectory over the last
α slots, and it uses its local instance to issue a prediction about
its position in the next h slots. In addition, it keeps expanding
its local dataset by adding new data about its trajectory in the
region as it unfolds over time.
Starting from ingress time, the training algorithm run by each
node develops into a sequence of rounds. We assume that all
rounds have the same duration, and are equal for all nodes,
but they are not synchronized across nodes.
Each round is composed of three phases. During the first one,
each node sends the coefficients of its local model instance to
all nodes with which it comes in contact, and it receives the
coefficients of their local model instance. As local instances
change over time due to the training process, the version of
the local instance received from each node is relative to the
time at which the exchange occurs.
In the second phase, similarly to traditional FL, each node
combines the model instances received during the first phase
to produce an updated version of the local model instance
(denoted as meta-model). Finally, in the third phase, each
node trains the meta-model on its own local dataset to include
data about the most recent part of the node trajectory, thus
producing a new version of its local model instance. This third
phase may occur every m ≥ 1 rounds, where m depends on
the rate at which the local dataset is enriched with new data
points. Thus, the duration of each phase within a round and
the frequency of the training of the meta-model over the local
dataset can be tuned and adapted to the specific setup. The
total number of epochs for each local training step is chosen
in such a way as to balance between minimizing the risk of
overfitting, and maximizing model accuracy.
As a consequence of mobility, nodes enter and exit the given
region. Thus, the population of nodes participating in a GL
scheme is subject to churn. Indeed, as we assume that the
trained model is of use only for nodes in the region, all nodes
exiting the region discard the trained model and thus stop
contributing to the GL scheme.
As evident in such a training strategy, each node never shares
its data with others. Instead, nodes share their model instances,
thus providing support for the protection of data confidentiality.
No support from servers or from infrastructure-based com-
munication technologies is required, and stable connectivity
among nodes is not needed.
A key aspect of GL is the model merging strategy, which
determines the coefficients of the meta-model as a combination
of the corresponding coefficients of the models to be merged.
The strategy for choosing the weights associated with every
model to be merged is a key factor influencing the performance
of the meta-models and thus of the whole training scheme.
When GL is applied to dynamic settings, each node’s context,
and thus its neighbours (and the models received from them)
constantly vary over time. In these conditions, many factors
may impact the utility of the received models, in terms of
their potential for generating a meta-model which improves

over the existing local instance. Therefore, there are many
possible ways in which these factors can be accounted for
in choosing which model instances to combine, and thus in
defining a specific merging algorithm.
In this work, we propose three different approaches to meta-
model computation: Decentralized Averaging (DA), Decentral-
ized Powerloss (DP), and Location-Based Averaging (LBA).
Each corresponds to a different way to account, in the merging
process, for the specificities of the environment in which
the distributed model training occurs. They are all based on
associating a performance estimator (which we denote with
ξ) with each model instance which has to be merged, i.e.,
an estimate of the potential of the model to improve the
performance of the merged model with respect to the existing
local model instance. The performance estimator is used to
compute the weight attributed to each model in the derivation
of the merged model. These merging strategies differ in how
the estimator is derived and updated.
Moreover, as such an estimate is absolute and not relative
to the specific set of models to be merged, a cutoff value
0 ≤ β ≤ 1 is introduced, so that only a fraction β of the largest
contributions (in terms of weight used in the computation of
the merged model) is used in the derivation of the merged
model. By tuning the cutoff value, it is thus possible to prevent
poorly performing model instances from negatively affecting
the accuracy of the merged model. An example is given by
those settings in which nodes with high-performing models
are relatively rare and sparsely distributed over the region,
so that the vast majority of models to be merged are likely
to perform poorly on the prediction task of the node. In
settings where models not used in the merging process are
not exchanged, tuning the cutoff value can also be beneficial
to implement different tradeoff points between communication
efficiency, rate of convergence of the training process, and
model accuracy.
Decentralized Averaging (DA). The key idea behind this
merging strategy is to attribute a weight to model instances
based on the number of samples they incorporate, either
directly (i.e. by training on the local dataset), or indirectly
(i.e. by merging). Thus, in this strategy, weights are computed
based only on the properties of the models to be merged, not on
the data or the context of the node which performs the merge
operation. That is, nodes in different parts of the scenario,
with different local data sets, but with the same set of model
instances to be merged produce the same merged model. Such
a property, in an abstract scenario with full connectivity among
all nodes, would bring the GL training process towards solving
a single consensus problem, thus producing a single trained
model with the same coefficients for all nodes. However,
in realistic scenarios, spatial heterogeneity in the data being
collected by nodes and fed to the training process, together
with lack of full connectivity among nodes, typically result
into a spatial heterogeneity in the models resulting from the GL
training process, and thus into a form of local specialization
of models. In the numerical section, we will assess the impact
of these aspects on the performance of models trained via the

3

DA strategy.
The details of the DA strategy are outlined in Algorithm 1. For
every node i present in the region during round j, with wi

j we
denote the array of coefficients of the local model instance of
node i at the beginning of round j, with estimator ξij . wi,out

j

is instead the array of coefficients of the local model instance
of node i at the end of the second phase of round j, with
estimator ξi,outj . Finally, Ki

j is the set of those nodes whose
models have been received by node i during the first phase of
round j, and Ki

j(β) ⊆ Ki
j is the subset composed by those

nodes in Ki
j whose models’ estimator at round j, normalized,

is above a cutoff value β. That is,

Ki
j(β) =

{
k|k ∈ Ki

j ,
ξkj∑

h∈Ki
j

ξhj
≥ β

}
(1)

At the beginning of the first round, when the local model
instance is trained on the local dataset, the performance
estimator of the local model is set as the number of data
points in the local dataset. After that, whenever a set of
model instances is merged, the meta-model is computed as
a weighted sum over all merged model instances. In this sum,
the contribution of the k− th merged instance is weighted by
its associated performance estimator, normalized over the sum
of all such parameters from all merged instances. As shown in
Algorithm 1, if a cutoff β is applied, only those instances
whose normalized weight is larger than β are included in
the merging process. The performance estimator of the meta-
model resulting from the merging operation is computed as a
(normalized) weighted sum of the estimators of all the merged
model instances, with the same weights as those used for the
derivation of the meta-model itself. Whenever a model instance
is trained again over the local dataset (i.e., during the third
phase of a round), the performance estimator of the local model
instance after the local training is the sum of its value before
the local training, and the number of data points which have
been added to the local dataset during round j.
Hence, in DA the performance estimator of a model instance
is a loose estimate of the number of data points included in the
model by training or merging, over the course of the training
process. Such a choice is based on the intuition that models
including larger amounts of data points are potentially more
accurate. In reality model accuracy depends also in a complex
manner on several other factors, such as the distribution of the
data included in a model (which in our GL training algorithm
is a function of the patterns of contacts and model exchanges
among nodes, and thus of the features of mobility patterns
themselves). In Section V, we explore such interdependency
by assessing the algorithm on various scenarios and mobility
patterns.
Location-Based Averaging (LBA). The intuition behind the

LBA strategy is that, in models used for nowcasting, affinity
among models is related to affinity in prediction tasks, possibly
because they are relative to the same area. Thus, the goal of
GL with LBA is to train a set of models, each capturing the
features of mobility of a specific, predefined area within the
region. Unlike DA (in which it is rather an emerging property),

Algorithm 1 Decentralized Averaging at node i in round j

function MERGEMODELSDA({(wk
j , ξ

k
j)}k∈Ki

j
, β)

compute Ki
j(β) (eq. 1)

wi,out
j ←

∑
k∈Ki

j(β)

ξkj∑
h∈Ki

j
(β)

ξhj
wk

j

ξi,outj ←
∑

k∈Ki
j(β)

(ξkj)
2∑

h∈Ki
j
(β)

ξhj

end function

in LBA model specialization is thus explicitly accounted for
in the training process. Specifically, in LBA the given region
is partitioned into A cells. For each cell, each node (inde-
pendently of whether it is located in that cell or not) trains a
model which is meant to be used for trajectory predictions only
when a node is in that cell. Thus, every node trains A models
at the same time, maintaining for each a specific performance
estimator. Similarly to DA, this estimator is related to how
many data points of a specific cell have been included (by
training and merging) in the model associated with that cell.
In scenarios with enough heterogeneity in mobility patterns,
this approach to distributed training of personalized (or, more
specifically, location-specific) models should potentially enable
higher accuracy levels, as it avoids combining models with
little affinity among them.
The LBA merging strategy is outlined in Algorithm 2. With
a = 1, ..., A, we denote the label of the a-th cell in the
region. wi

j = (wi
j,1, ..., w

i
j,a, ..., w

i
j,A) denotes the array of

the coefficients of the A local model instances of node i at
the beginning of round j, one for each cell. Similarly, with
ξij we denote the array of estimators associated with them.
Ki

j(β, a) ⊆ Ki
j is the subset composed by those nodes whose

contribution to the merged model for cell a is above the cutoff
β:

Ki
j(β, a) =

k|k ∈ Ki
j ,

P k
j,aS

k
j∑

h∈Ki
j

Ph
j,aS

h
j

≥ β

 (2)

where

P k
j,a =

ξkj,a∑
a′∈1,...,A

ξkj,a′

and

Sk
j =

∑
a′∈1,...,A

ξkj,a′∑
h∈Ki

j

∑
a′∈1,...,A

ξhj,a′

For each cell, the performance estimator ξi,outj,a of node i’s
meta-model for cell a in round j is computed as the weighted
sum of the estimators of the models to be merged. For any
model to be merged from node k and cell a, the weight is the
normalized product of two components. Similarly to DA, the
first component P k

j,a is directly proportional to the estimator of
node k’s model, and thus to the relative number of data points

4

Algorithm 2 Location-Based Averaging at node i in round j

function MERGEMODELSLBA({(wk
j , ξ

k
j)}k∈Ki

j
, β)

for every node k ∈ Ki
j do

Sk
j ←

∑
a′∈1,...,A

ξk
j,a′∑

h∈Ki
j

∑
a′∈1,...,A

ξh
j,a′

end for
for every cell a do

for every node k ∈ Ki
j do

P k
j,a ←

ξkj,a∑
a′∈1,...,A

ξk
j,a′

end for
compute Ki

j(β, a) (eq. 2)

wi,out
j,a ←

∑
k∈Ki

j
(β,a)

Pk
j,aS

k
j w

k
j,a∑

h∈Ki
j
(β,a)

Ph
j,aS

h
j

ξi,outj,a ←

∑
k∈Ki

j
(β,a)

Pk
j,aS

k
j ξ

k
j,a∑

h∈Ki
j
(β,a)

Ph
j,aS

h
j

end for
end function

incorporated in that model for cell a. The second component
Sk
j is proportional to the total amount of data points included in

all models of node k. The product P k
j,aS

k
j is thus an indicator

of how well a model is estimated to perform in cell a with
respect to the other cells. Indeed, the fact that, for a given
node, a model for a given cell is not as good as that for
the others might signal that the node has not been able to
include enough information about trajectories in that cell. Note
that at the beginning of the first round, for every cell a, the
performance estimator equals the number of data points in the
local dataset relative to that cell.
Decentralized Powerloss (DP). In this strategy, the weights

associated with each model to be merged are derived from
a measure of the model’s performance over the most recent
trajectory of the merging node. The intuition behind this is
that such a measure is likely to be correlated to the model’s
performance in the near future along the merging node’s
trajectory. As a consequence, in DP nodes exchange models
but not their performance estimators, as they are computed
by the node which receives those models, based on its own
recent trajectory. Therefore, performance evaluators have a
very narrow validity (i.e., limited to the merging node and
to a specific time) and they are recomputed whenever they are
needed, i.e. just before the merging operation.
The DP merging strategy is detailed in Algorithm 3. In round
j at node i, the performance measure of a model to be merged
received from node k ∈ Ki

j consists of its loss, denoted as lij,k.
Such loss is computed over the merging node’s validation set,
composed by the last V samples of its trajectory. The weight
associated with each model to be merged is then computed as
a (normalized) logarithmic function of the loss, as this choice
increases the weight of those models with small losses. Thus,

Algorithm 3 Decentralized Powerloss at node i in round j

function MERGEMODELSDP({wk
j }k∈Ki

j
, β)

compute Ki
j(β) (eq. 3)

for every node k ∈ Ki
j(β) do

Compute lij,k
end for

wi,out
j ←

∑
k∈Ki

j
(β)

|log10 lij,k|w
k
j∑

h∈Ki
j
(β)

|log10 lij,h|

end function

the expression of Ki
j(β) ⊆ Ki

j for the DP strategy, when a
cutoff value is applied to merging weights, is:

Ki
j(β) =

{
k|k ∈ Ki

j ,
|log10 lij,k|∑

h∈Ki
j

|log10 lij,h|
≥ β

}
(3)

In general, the choice of the size of the validation set is a
compromise between getting an estimation which, on the one
side, has low noise, and on the other side, is representative
of the actual performance of the model on the merging node
trajectory in the near future. As a loss function, in the present
work, we have adopted the mean squared error (where the error
is the distance between the actual position of the merging node
and its predicted position). However, the DP strategy is very
general, and it applies to any other type of loss function.
Being based on performance metrics which are specific to each
merging node, our GL scheme with the DP merging strategy
implements model personalization. Indeed, it produces a model
which is generally different at each node, being tightly related
to the context (the road segment in which the car is located at
a given point in time) and the specific prediction task of each
node.

IV. CONVERGENCE PROPERTIES

In this section, we show that under some mild assump-
tions on the system, loss function and network topology, our
GL training scheme converges. We first formally define the
optimization objectives and key assumptions, which the con-
vergence analysis will follow. For the derivations, we refer to
the DA merging strategy, though the results can be extended to
the other merging strategies with some marginal modifications.
The key idea underlying the derivation of the proof is based on
defining an objective function for the training process, which is
a function of the local loss function as well as of the difference,
at each node, between the local model and the models received
from neighbors. Indeed, a decrease over time of these two
components indicates, on one side, that the training process
is progressing, and on the other, that nodes are successful
in sharing the learned knowledge with their neighbors. then
we show that, when the aforementioned mild assumptions
are satisfied, the objective function decreases as the iterations
progress.

A. Notation and assumptions
As already stated, the goal of collaborative model training

schemes such as GL is to let nodes jointly improve their

5

models by leveraging both their local datasets and similar
data available in the neighbourhood, where a time-varying
connectivity graph defines neighbourhoods. Let us consider
a time interval [1, J] of duration equal to J rounds, and let
us assume for simplicity the starting time of each round to
be the same for all nodes. Let N denote the set of nodes (of
cardinality N) which are present in the region in at least one
of the slots of the given time interval. Each node i ∈ N has a
local data distribution µi over the space of possible trajectories
within the region. It has a local data set Si composed of
trajectories drawn randomly from µi. Each trajectory has a
probability pd (same for all trajectories) of being included in
the local dataset. ∀i, we assume µi not to change over time,
and β = 1.
In general, at every round, as the training process evolves,
the coefficients of the models associated with every node in
the region change. Let (wi

j)
J
j=1 be the sequence of iterations

generated by the GL algorithms running for J rounds from
an initial point wi

0 ∈ Rp. The goal of node i is to learn a
model instance whose coefficients wi

J minimize the expected
loss Ez∼µi

[l(wi
J ; z)] after J iterations, where l(wi

J ; z) denotes
the mean loss of wi

J evaluated over every point of the trajectory
z, for any choice of the loss function.
Given that the local model instance of a node is trained over
its local dataset by using LSTM and Adam optimizer, the goal
of the local training phase is to select those model parameters
which minimize loss through Stochastic Gradient Descent [19].
Specifically, if we denote with wi,loc

j such a model instance,
we have

wi,loc
j = argmin

w∈Rp

Li(w;Si)

Li(w;Si) is the local loss function for the i-th node:

Li(w;Si) =
1

si

∑
z∈Si

l(w; z) + λi∥w∥2 (4)

where λi ≥ 0 is a regularization parameter, and si is the
cardinality of Si. In our gossip learning scheme, nodes use
information from neighbours to supplement their data through
several iterative rounds. We formalize the time-varying model
by denoting Gj = (N , E,Xj) as a weighted connected graph
over the set of nodes, where E = N×N the set of all potential
edges between the nodes and Xj ∈ Rn×n is the non-negative
weight matrix at round j, where the specific merging strategy
is determined the weights. In this model, only the weights Xj

change with time, where Xj
ik > 0 if and only if k ∈ Ki

j .
At round j the two nodes i, k are connected, and their local
models and data are used in each other updates. There are two
factors influencing how the values of Xj

ik change from one
round to the other:

• Dynamic changes in the topology. They are due to node
mobility, and they are out of the control of the learning
algorithms.
• Changes that are caused by the way each node merges

the models received from its neighbours. Weights Xj
ik are

specific to the merging strategy, and they may depend on wi
j .

Note that the three averaging algorithms differ in computing
Xj

ik.

Let wj = (w1
j ; . . . w

i
j ; . . . w

N
j) ∈ RN×p. The overall goal of

our gossip learning schemes is to find an array wJ of models,
one for each of those nodes who spend in the region at least one
round in the interval [1, J], which minimizes a given system
objective function QJ(wJ).
The expression of the overall objective function Qj(wj) at
round j ∈ [1, J] can be written as

Qj(wj) =
∑
i∈N

Qi,j(wj)

=
∑
i∈N

[
Qi,j

p2 (wj) + νQi,j
p3

(∑
k∈N

Xj
ikw

k
j

)]
,(5)

ν > 0 is a trade-off parameter that is used to balance
between the minimization of the local loss function and that of
differences in model coefficients among nodes. The functions
Qi,j

p2 and Qi,j
p3 are defined below.

Model merging (phase 2): The objective function for node i
at the second phase of round j is

Qi,j
p2 (wj) = H

(
wi

j −
∑
k∈N

Xj
ikw

k
j

)
(6)

In this phase, each node aims at minimizing the difference
between the coefficients of its local model and those of a
weighted average of the model from neighbouring nodes (i.e.,
those of the merged model). For any vector x, H(x) denotes
the sum of the absolute value of the elements of x.

Local training (phase 3): Let wi
j,p2 =

∑
k∈N Xj

ikw
k
j . In the

third phase of a round, at each node i the model is trained
over the local dataset in a way which aims at minimizing the
objective function

Qi,j
p3 (w

i
j,p2) = L(wi

j,p2;Si). (7)

Thus, from (6) and (7), the expression of the objective function
for every node i is

Qi,j(wj) = H

(
wi

j −
∑
k∈N

Xj
ikw

k
j

)
+ νLi

(∑
k∈N

Xj
ikw

k
j ;Si

)
(8)

This sum has two distinct components, given by the local
losses and the differences between local models. The objective
in each round is thus to minimize the weighted sum of these
two components.
We prove in the rest of this section that our DA algorithm
converges by showing that the objective function gets closer
to the optimal value after every round.
We make the following assumptions on the loss function,
which are standard in the analysis of coordinated learning
methods in [20], [21].
Assumption 1. For any w ∈ Rp, the local loss function
Li(w;Si) is convex in all rounds and ∀i.

6

Proposition 1: When Assumption 1 holds, in any round j,
Qj(wj) is convex.

The proof proceeds in the same way as in [21].
Assumption 2. ∀i, for any w ∈ Rp, the local loss function
Li(w;Si) has Lloc

i -Lipschitz continuous gradient in all rounds.
Assumption 3. ∀i, for any w ∈ Rp, there exists a σi > 0 such
that the local loss function Li(w;Si) is σi-strongly convex.
Assumption 3 implies that Qj(wj) is σ-strongly convex with
σ ≥ νσi > 0. That is, for any w,w′ ∈ RN×p,

Qj(w′) ≥ Qj(w) +▽Qj(w)(w′ −w) +
σ

2
∥w′ −w∥2, (9)

∀i, let Lj
i = (1 + νLloc

i), αi = 1/Lj
i , and

Lmax = max
i∈N ,j∈[1,J]

Lt
i.

A desirable property of a GL training strategy is that the
objective function decreases as the iterations progress. The
following result, which is the main result of GL convergence,
states that when assumptions 1 to 3 hold, our GL scheme with
DA merging strategy converges.

Theorem 1: Let Assumptions 1 to 3 hold. For J > 0, let
(wj)

J
j=1 be the sequence of iterates generated by the GL train-

ing algorithm with DA merging, running for J iterations from
an initial point w0 ∈ RN×p. Then ∀i there exist a j′ ∈ [1, J]

such that, if we set wi,j′

∗ = argminw∈RN×p Qi,j′(w), we
have:

E[Qi,J(wJ)−Qi,j′(wi,j′

∗)] ≤(
1− σ

nLmax

)J−j′

E[Qi,j′(w0)−Qi,j′(wi,j′

∗)] (10)

For the proof, please refer to Appendix -A.

V. NUMERICAL ASSESSMENT

To assess the performance of our GL approach numerically,
we considered different measurement-based mobility datasets
relative to different cities, different areas within a city, and
various time intervals during the day. Specifically, a first setup
is based on the LuST dataset [22], consisting of measurement-
based vehicular traces from Luxembourg City, covering a
time interval of 24 hours. The second scenario is based on
the TAPAS Cologne dataset [23], again a measurement-based
set of vehicular traces covering the greater urban area of
Cologne for a whole day. Fig. 1 shows the position and size of
the regions in Cologne and Luxembourg, respectively, within
which our framework was assessed. In both scenarios, the
region is a square of side 1 km, covering a large fraction of
the city center. We used Keras [24] to implement our GL algo-
rithms, SUMO [25] for vehicular mobility simulation, and the
Omnet++ framework [26] for opportunistic communications
among vehicles. Unless otherwise specified, we considered a
slot duration of one second (typical of the sampling frequency
of many present-day car fleet management applications) and
a round duration of 15 s, equal for all nodes. Since in
both scenarios, the average vehicle speed is 11 m/s (39.6
km/h), the chosen slot duration ensures that, on average,

the sets of a given node’s neighbors in consecutive rounds
differ significantly. At the same time, such a round duration is
short enough to allow the node to capture in its local model
changes in the context due to mobility. Within each round, we
assumed the second and third phases of our GL schemes to
take an amount of time that is negligible with respect to that
required by the first phase. These assumptions are based on
the fact that the time required by local training is negligible,
given the small size of the model (almost 70 KB in our case)
and of the local dataset. Moreover, model merging is not a
computationally intensive task, consisting of a weighted sum
of the model parameters. We considered a forecast horizon of
5 s, compatible with such applications as predictive collision
avoidance systems, MEC processor reservation strategies, and
5G beam steering and resource allocation strategies [27].
The input of the LSTM model is composed of 12 steps, with
a gap of 5 s between two consecutive steps. Thus, our LSTM
model requires at least the last minute of the trajectory of a
car to issue a trajectory prediction.
For local training, we adopted a mini-batch Gradient Descent
approach, with batches of size 32 (as indicated in e.g., [17]),
and a 10−3 learning rate, as suggested in [28]. Unless oth-
erwise specified, we assume that nodes merge all received
model instances during a round. The values of such model
hyperparameters as the number of neurons (50), the batch size,
and the number of input time steps have been tuned based on
an extensive set of simulations.
To determine the local dataset of each vehicle when entering
the region, for each scenario (and for each time interval), we
have built a scenario database, consisting of past trajectories
within the given region, except those taking place in the same
time interval considered in our experiments. Indeed, as both
datasets are relative to a single 24 h period, this choice mini-
mizes the probability for users to have in their local dataset the
same trajectory they are taking in the considered time interval.
To each vehicle entering the region of interest during the given
time interval, we have assigned a local dataset, different for
each node, and obtained by sampling uniformly at random the
scenario database. As a result, on average, in both scenarios,
each vehicle’s local dataset contains data corresponding to
about 5 minutes of trajectories. These choices have been made,
on one side, to avoid the case of nodes having no local
dataset at their ingress in the region of interest. Indeed, such
a ”clean slate” scenario would not represent realistic settings
where all nodes possess at least some relevant data. On the
other side, collaborative training schemes like GL make sense
when nodes are not able to achieve by themselves (i.e. with
only local training) a satisfactory level of accuracy because
their local dataset is not large enough. For the LBA strategy,
deciding on how to partition the region has a strong impact
on its performance. After an extensive empirical evaluation,
in both of the considered scenarios we defined for the LBA
strategy a partition consisting of 9 square cells of side 333.3
m. This choice has been a compromise between, on the one
side, having trajectories that are as homogeneous as possible
within the same cell, and the fact that (for the same size of the

7

(a) Cologne (Innenstadt) (b) Luxembourg City

Fig. 1: Map and road grid of the considered scenarios, with the region of interest in red.

Name City Time
Mean
sojourn
time

Tx radius

Lux rush hour Luxembourg 7:00-7:30 14 min 8 s 150 m

Lux off-peak Luxembourg 16:00-19:00 11 min 12 s 150 m

Cologne off-peak Cologne 14:00-17:00 4 min 4 s 450 m

TABLE II: Scenarios considered in our experiments.

local dataset) a finer partition would reduce the portions of the
local data set associated with each cell. As we have verified
experimentally, the latter has a negative impact on the quality
of the model trained by a node as it enters the region, and thus
on the speed of convergence of the training process.

In addition to our schemes, we have considered the following
baseline approaches:
• Centralized Federated Learning (FL) (in the version de-

scribed in [6]), applied to the same two stages LSTM
model trained by our schemes. In FL, a parameter server
orchestrates the various algorithmic stages and coordinates
all the participating nodes. For a fair comparison with our
schemes, we have assumed that at any time slot t, the dataset
available to the FL server coincides with the union of the
local datasets of all the nodes which have spent at least
one time slot in the given region, from the beginning of
the GL scheme up to time slot t. Namely, for nodes that
have exited the region by time t, we consider the local
dataset at exit time. For all the others, we consider the
local dataset at time slot t. All the model meta-parameters
have been set to coincide with those of our GL scheme. We
assumed the rounds of the FL scheme to be the same as
those of our GL scheme. Again, for fairness of comparison,
at every round, we assumed random client subsampling, with
an average number of selected clients coinciding with the
average number of nodes that each node comes in contact
with during a round.
• Local training, in which each node trains the two-stage

LSTM model only on its local dataset, with no exchange
of data or models with neighboring nodes or a server. Such
training is performed at the node ingress in the given region.
In addition, at regular intervals (whose duration is equal to
that of a round), the local model is re-trained over the local
dataset, which keeps increasing as the node moves in the

given region.
• DFed Pow [29]. It is a fully distributed learning scheme that

inherits several features from FL schemes. Specifically, in
each time slot, each node with its neighbors constitutes a
federation (in the same sense as in classical FL schemes)
aimed at training the given node’s model. Thus, the given
node plays the role of the parameter server, whereas its
neighbors (who generally change from one slot to the next)
play the role of clients. At every time slot, each node sends
its model to all neighbors, who train it on their local dataset
and send it back, to be merged with those sent by all
other neighbors. Thus, in this scheme, there are as many
federations as nodes.
• Dead Reckoning (DR), in which each node forecasts its

trajectory by extrapolating over its current position, velocity,
and direction.

For our experiments, we have considered three different set-
tings. As shown in Table II, they differ in terms of the
city within which the given region is located (Luxembourg,
Cologne), the start time and the duration of the considered
time interval. The first scenario (denoted as Lux rush hour)
is relative to the time interval 7:00 AM - 7:30 AM in the
Luxembourg City region. This corresponds to a rush hour, with
a high density of vehicles (for an average of about 300 vehicles
in the given region). The second scenario (Lux off-peak) is
relative to the time interval 4:00 PM - 7:00 PM in Luxembourg
City, and it is characterized by much lower traffic intensity. In
both these scenarios, the transmission radius has been set to
150 m (e.g. typical of DSRC in urban environments [30]). The
third scenario (Col off-peak) is relative to the 2:00 PM - 5:00
PM time interval in Cologne city. It is characterized by a much
lower density of vehicles and a shorter mean sojourn time
with respect to Luxembourg. To enable effective opportunistic
model exchanges in such a low-density scenario, we have
assumed a transmission range of 450 m, e.g., compatible with
BLE version 5 [31].
A. Performance from entrance time

One of the main performance metrics of our algorithms is
the mean error at the t-th time slot, defined as the distance
between the forecasted and the actual position, averaged across
all vehicles present in the scenario during that slot. In the first

8

(a) Mean error versus time from entrance (b) Empirical CDF of the error for the DA, DP and LBA algorithms. Each
data point is relative to a single vehicle in the scenario and averaged in the

time interval between rounds 50 and 60 from the entrance. Thin lines
delimit 95% confidence intervals for the CDF.

Fig. 2: Lux rush hour scenario.

(a) Mean error versus time from entrance (b) Empirical CDF of error for the DA, DP, and LBA algorithms. Each data
point is relative to a single vehicle in the scenario and averaged in the time

interval between rounds 30 and 40 from the entrance. Thin lines delimit
95% confidence intervals for the CDF.

Fig. 3: Lux off-peak scenario.

(a) Mean error versus time from entrance (b) Empirical CDF of error for the DA, DP, and LBA algorithms. Each data
point is relative to a single vehicle in the scenario and averaged in the time

interval between rounds 12 and 16 from the entrance. Thin lines delimit
95% confidence intervals for the CDF.

Fig. 4: Cologne off-peak scenario.

set of experiments, we have characterized the evolution of the
mean accuracy achieved by the model instance of each node

as a function of the time spent by the node in the region.
Indeed, this measures how quickly our GL schemes improve

9

the performance of a model instance over that achievable by
training it exclusively over a local dataset. Fig. 2 to 4 show the
mean error as a function of the vehicle sojourn time for the
three scenarios considered. In each setting, results have been
averaged across the whole time interval.
As the figures show, despite the short time from bootstrap, in
all scenarios, nodes are able to achieve high levels of accuracy
after spending only a few minutes in the region. In the Cologne
scenario, the mean error decays more rapidly than in the
Luxembourg scenarios, because the larger transmission radius
in the Cologne scenario brings faster exchanges of models
among nodes in the region. At the same time, the shorter mean
sojourn time brings the accuracy to stabilize to a higher value
than in the two Luxembourg scenarios, as the GL algorithms
have less time to progress further.
Note that the values of accuracy achieved by each algorithm
have been evaluated on a very conservative worst-case sce-
nario, in which each node has only a small initial dataset, and
in which our scheme has been running for at most three hours.
The good performance of our schemes in these conditions
in spite of these assumptions suggests that in settings where
our schemes have been running for longer periods, their
performance is likely to be better than predicted by the reported
experiments.
Our results show that, in general, the DP merging strategy
performs better than DA, both in terms of convergence speed
and mean error, across all experiments. Indeed, while DA’s
model quality estimate is not directly related to a model’s
performance at a given point of the region, that of DP is instead
a function of each merging model’s performance over the most
recent part of the given node’s trajectory. It is thus close to
the performance that the merging model would deliver on the
trajectory of the given node in the near future. As for the LBA
strategy, results suggest that it is superior to the other two
strategies when nodes spend a ”long enough” period of time
in each cell (as in the Luxembourg scenarios). In the Cologne
scenario, instead, as the transmission radius is larger than the
side of a cell, every user on average receives and merges model
instances from neighboring cells. This averages out models
across cells, destroying the ability of LBA to accurately model
those mobility patterns which are specific to each cell, and
thus the performance advantage of LBA over the other two
GL algorithms.
From the plots of the CDFs of prediction error in Fig. 2
to Fig. 4, it can be seen that in each scenario, and for all
merging strategies, the error distribution is heavily skewed
towards values higher than the mean. This is more evident
in Fig. 5, which shows, for each of the three scenarios and
time intervals, a scatter-box plot of error. This figure shows
how the vast majority of the outliers lie in the upper part of
the logarithmic scale. Thus, in these scenarios, the mean error
is heavily influenced by a few poor performers. Fig. 6 shows
the spatial distribution of the error for the DA, DP, and LBA
algorithms in the Lux off-peak scenario, averaged over a given
time interval. The figure shows that the error is indeed larger
at the borders of the considered region. Indeed, border areas

contain many nodes that just entered the RZ, and that did not
have the time to perform many iterations of our GL scheme.
Thus, not only their model is likely to perform worse than
average, but also their contribution to the improvement of the
model of other nodes is likely to be marginal. This slows down
the improvement of model accuracy for those nodes whose
trajectory is mostly contained within border areas, who end
up collecting few or no high-quality models from neighbors.

In another set of experiments, we investigated how our GL
algorithms evolve over time from node entrance in the region.
To this end, we have tracked the evolution over time of the
weight ratio, i.e. of the ratio between the weight used in the
merging task for the local model, and the average of those
attributed to models received from other nodes. Indeed, such
a ratio at a given slot t indicates how much the distributed
learning process weights the knowledge acquired until t versus
the knowledge that it could acquire from neighbors. From
Fig. 7(a) we can see that, as expected, as nodes spend more
time in the region, the weight ratio (i.e. the weight given to
the local model) for the DA algorithm generally increases, in
all of the three scenarios. However, this increase is slow in the
Luxembourg scenarios, and a bit faster in the Cologne scenario.
This is because in the latter, a larger transmission radius and
mean node speed account for a higher rate of contacts among
nodes and thus a faster progression of the training scheme.
As weights in DA are related to the number of data points
incorporated in each model, faster dynamics bring to merge
more models, and thus to increase more quickly the amount
of data points incorporated in the local model.
The weight ratio in the DP strategy presents slightly different
features, due to its being based on the losses of each model
to be merged, measured on the local dataset of the merging
node. In all of the three scenarios, we observe an initial
decrease in the weight ratio. Indeed, in the first rounds, the
local model incorporates mainly the data from its local dataset,
which might not be very pertinent to the prediction task that
the node needs to perform (possibly because the local dataset
contains data about other parts of the city than that in which
the node is located). Thus, the nodes need to learn more from
the environment (i.e. from nodes who spent enough time in the
region), and forget, at least in part, what they have learned on
their local dataset. After this initial phase, however, the weight
ratio again increases over time, as the local model starts to be
fit for the node context.
In order to get a better idea of the prediction performance of
the models trained with our three GL algorithms, in Fig. 8 we
have plotted a portion of a node trajectory, sampled every 15
s (points denoted as GT in the figure), as well as the forecasts
of our three algorithms. The differences in accuracy among
these algorithms emerging from Fig. 8 are in accordance with
those from Fig. 4. The figure shows that all three algorithms
are able to forecast changes in the direction and speed of
the vehicle with a good degree of accuracy. Among these
however, DP exhibits also good accuracy in predicting a sharp
slowdown of the vehicle (”halt point” in the figure) and its
duration, a trajectory feature among the most complex to

10

(a) Lux rush hour scenario (b) Lux off-peak scenario (c) Cologne off-peak scenario

Fig. 5: Scatter-box plot of error for the DA, DP, and LBA algorithms. Each point is the error of a single vehicle, averaged in the time interval
between rounds 50 and 60 (Lux rush hour scenario), between rounds 30 and 40 (Lux off-peak scenario), and between rounds 12 and 16
(Cologne off-peak scenario) from node entrance.

(a) DA (b) DP (c) LBA

Fig. 6: Spatial distribution of error for the DA, DP, and LBA algorithms, averaged across vehicles and in the time interval between rounds 30
and 40 from node entrance, in the Lux off-peak scenario.

(a) DA (b) DP

Fig. 7: Local models’ weight (coefficient) ratio versus time from the entrance for the DA and DP strategies, in the three considered scenarios.

forecast correctly, as it depends also on traffic conditions.
Note that prediction errors can be significantly reduced by sim-
ply projecting the estimated vehicle position onto the road grid.
We are not implementing this step since we prefer to report
the raw performance of the vehicle trajectory estimation rather
than an improved estimate which includes some postprocessing

algorithm (such as projection or fusion with other estimates,
possibly dead reckoning)

B. Performance from start time
In another set of experiments, we have characterized the

convergence properties of our distributed training approach.
To this end, we have focused on settings and time intervals in

11

Fig. 8: Sample trajectory predicted by the DA, DP, and LBA algo-
rithms versus the ground truth (GT) for a vehicle in the Cologne
off-peak scenario. The time interval between two consecutive points
is 15 s.

which mobility patterns do not vary significantly, to reliably
assess convergence and mean accuracy over time from the
start of the GL schemes. Specifically, we considered the Lux
rush hour scenario. On the one side, its duration (30 min) is
long enough to allow our training framework to progress. On
the other side, as we verified, it is short enough for vehicular
mobility patterns not to vary significantly.
As Fig. 9 shows, our three GL algorithms steadily improve
the average model performance over time. Note that the mean
error in these plots is computed over all nodes present in
the scenario at a given time slot, including those whose
model has only been trained locally, e.g. because they have
just arrived in the given region. As the plot shows, our GL
schemes perform significantly better than local training, thus
supporting the effectiveness of our collaborative model training
strategies. Indeed, the local training strategy only marginally
improves its performance over time (except for the first 10−20
rounds), reaching values of mean error more than one order of
magnitude larger than those achieved through our collaborative
training schemes.
Another essential aspect emerging from these results is that
the performance of our DA and DP strategies is very close to
that of the equivalent centralized FL scheme, while that of the
LBA strategy is significantly better, at least in the Lux rush
hour scenario. This further supports the notion that training a
model over a fully distributed, serverless architecture does not
necessarily come at the cost of performance.
Fig. 9 allows also to compare the performance of our schemes
with that of the distributed FL strategy denoted as ”Flow-FL”
[11]. Indeed, as shown in that paper, in the best conditions its
performance can be assimilated to that of Federated Learning.
This happens when node density and mobility are such as
to allow maintaining a global state in a gossip-based shared
memory in a reliable fashion for the whole duration of the
training algorithm. Thus, in the most favorable conditions
for Flow-FL, the considerations made for Federated Learning
performance with respect to our GL schemes hold also for
Flow-FL.
In order to assess the overall performance of our GL schemes

Algorithm
Mean error [m]

Lux rush hour Lux off-peak Col off-peak
DP 7.52 13.3 12.37
DA 7.18 11.90 31.30
LBA 7.22 10.28 20.25
DR 10.18 11.64 25.19

TABLE III: Mean error for the last two rounds from the start time of
our GL schemes (DA, DP, and LBA) as well as for Dead Reckoning
(DR), in the three considered scenarios.

in terms of prediction accuracy, in Table III we have compared
the mean error of our GL strategies over the last two commu-
nication rounds of the time interval of each scenario, with
that of dead reckoning (DR) strategy. Indeed DR is a natural
benchmark for trajectory nowcasting. As these results show,
in every scenario there is at least one GL-based strategy that
outperforms DR. This shows that our collaborative learning
strategies, despite being implemented over a simple LSTM
architecture, enable a satisfactory performance in terms of
prediction accuracy over a wide range of operating conditions.
It also suggests the need for tuning the choice of the specific
GL approach as a function of these conditions.
As already stated, the main competing approach to our GL
learning schemes is the DFed Pow algorithm of [29]. This
approach is applied to a discretized version of trajectory
nowcasting, consisting of forecasting in which cell of the given
region a vehicle will be at some point in the future. Thus,
in order to assess the relative performance of our schemes
with respect to it, we have considered the LBA strategy in the
Lux rush hour scenario (the best-performing strategy in that
scenario). To make performance comparison possible, we cast
the regression result of the LBA strategy (i.e. the prediction
of the specific location in which the vehicle will be 5 s in the
future) into a classification result (i.e. a prediction of the cell in
which the node will be). This is implemented by partitioning
the given region in 49 square cells of side 150 m (similarly to
what is done in [29]).
Fig. 10 shows that LBA performs significantly better than
DFed Pow in terms of mean accuracy. The low performance
of DFed Pow is due to the fact that it does not allow high-
performing models to be used by nodes other than the ones to
which they belong. For this reason, models from nodes moving
in regions with low node density (and thus unfavorable for
collaborative training), or whose local dataset is not able to
support the training of a high-performing model, consistently
experience unacceptably poor performance. Conversely, our
collaborative GL schemes enable high-performing nodes to
support poor-performing ones, by transferring their models
and thus their learned knowledge, and to keep on improving
them as new data is constantly being generated and used for
collaborative training in the given region.

C. Impact of transmission radius, and of cutoff value
One of the primary parameters affecting the performance

of our schemes is the number of models merged at each round.
Thus, in another set of experiments, we have characterized its
impact on accuracy and convergence speed.
Among the key parameters affecting the performance of our
GL schemes, transmission radius has a key role. It determines

12

Fig. 9: Mean error versus time from the start for our GL schemes, as
a function of the merging strategy, as well as for centralized FL and
the fully local training, in the Lux rush hour scenario.

Fig. 10: Mean accuracy versus time from the start for the LBA
strategy, as well as for the DFed Pow algorithm [29], in the Lux
rush hour scenario.

Fig. 11: Mean error versus time from the start (first 30 minutes),
for different values of transmission radius, for the DA, DP, and LBA
algorithms, in the Lux rush hour scenario.

not only the number of model instances merged at each round,
but also the level of heterogeneity (e.g., in terms of accuracy)
within the set of merged instances. Indeed, the trajectory pre-
diction task is highly context-specific, particularly in realistic
scenarios with nonuniformities in the spatial configuration of
the road grid. As Fig. 11 shows, in our experiments in DA and
DP algorithms, a larger transmission radius (and thus a larger
number of models merged at each round) is associated with a
decrease of the mean error at any point in time. However, our
results suggest that this is less the case for the LBA scheme. As

Fig. 12: % decrease in mean error for the DA, DP and LBA algorithms
with respect to the setup with β = 100% versus time from the start,
as a function of the cutoff value, Luxembourg scenario.

already seen, in LBA (which trains a number of cell-specific
models in parallel), a transmission radius comparable to or
larger than cell size brings to merging together models associ-
ated with neighboring cells, which are, in general, not a good
fit for the given cell. In realistic and spatially inhomogeneous
settings, this may potentially degrade the performance of LBA,
as it destroys the cell-specific features of each model.
One of the key features of model merging is that it does not
necessarily produce a more accurate model than any of the
models to be merged. This is the case, for instance, when those
models are not sufficiently affine (e.g., in our setup, in terms of
the specific city area within which a trajectory prediction has
to be produced), or when some of them do not perform well
for the specific prediction task at hand. As explained in our
algorithms, the likelihood of this effect manifesting itself is
minimized through an appropriate choice of the weights used
in the merging process (which are, as we have seen, somehow
related to a notion of the relevance of the model for the specific
task). In addition, this is also achieved by tuning the cutoff
value β, which prevents models with small values of weight
from taking part in the merging process.
Thus, in another set of experiments, we assessed the impact
of the cutoff value (expressed as the ratio of the sum of
the weights retained in the merging process over the sum
of the weights of all models to be merged) on prediction
accuracy. As Fig. 12 suggests, there exists an optimal value
of the cutoff, which in the considered settings is between
80% and 90%. Indeed, in all three algorithms, when the value
of the cutoff is to retain only 30% of the contributions, the
mean accuracy worsens with respect to no cutoff. In contrast,
higher percentages of retained models yield an improvement
in accuracy. As expected, in our experiments, the performance
improvements and the optimal cutoff value highly depend on
the specific merging algorithm and several features of the con-
sidered scenario, such as mean node density, mobility pattern,
and mean vehicle sojourn time in the region. It suggests the
need for strategies that adapt β to the specific setup.

D. Impact of nonstationarity in vehicular mobility
A clear feature arising from the numerical assessment of

our algorithms is the high impact that node density and mobil-
ity patterns have on accuracy and convergence rate. Since these

13

(a) 2:00 PM - 5:00 PM in the Cologne (b) 4:00 PM - 7:00 PM in the Luxembourg

Fig. 13: Mean error versus time for the DA, DP and LBA algorithms.

features change substantially over time in realistic scenarios,
we performed a set of experiments over time windows during
which the configuration of vehicular traffic exhibits significant
variations. Specifically, we have considered a time interval of
three hours, from 4:00 PM to 7:00 PM in the Luxembourg
scenario and from 2:00 PM to 5:00 PM in the Cologne
scenario. As Fig. 13 shows, the substantial differences in a road
grid configuration, time of the day, and mobility patterns, in
both scenarios, the mean error decreases steadily for increasing
time from the start of our schemes, despite variations of up
to one order of magnitude in the number of vehicular nodes
in the region. These features suggest that, except for minor
fluctuations in the mean error, in realistic scenarios, our GL
schemes are able not only to adapt in a timely manner to
changes in mobility patterns but also to keep on improving
the model performance over time.

VI. RELATED WORK

Recently, distributed learning architectures have received a
lot of attention from the research community [21], [32]–[38],
aiming at overcoming some of the main limitations of central-
ized approaches (such as limited scalability, communication
bottlenecks, performance under data imbalance and hetero-
geneity, under device heterogeneity and churn, to name a few)
[32]. Decentralized Federated Learning, based on peer-to-peer
communication between agents, has been proposed in [34],
[35] as a way to address some of these shortcomings. Under
this mechanism, each worker only demands communication
with its neighbours for model exchanging in synchronous or
asynchronous manners. To achieve a high training efficiency,
however, proposed synchronous schemes are based on static
topologies, such as a ring [36] or a static mesh [21], [37]. Thus
they do not apply to dynamic settings. [38] presents a scheme
with full connectivity among nodes, which adopts a hypothesis
transfer learning approach to derive merged models. This work
shows that even a straightforward GL scheme may enable
substantial gains in terms of communication efficiency while at
the same time achieving accuracy levels which are comparable
to or even better than those of centralized approaches. Overall,
the synchronisation requirement in all of these schemes implies
that they are severely hampered by heterogeneity in computing
power among nodes (particularly in training time). This wors-

ens as the number of workers increases [34], [39]. For this
reason, asynchronous solutions [8], [10] have been designed.
[8] proposes a solution in which local models are distributed
over a logically fully connected peer-to-peer network. How-
ever, the full connectivity requirement still brings scalability
and connectivity issues. [10] presents a fully serverless FL
approach in which nodes receive a combined model from their
neighbours in a static topology, and each one independently
performs training on its local dataset in an asynchronous
manner. [40], [41] explore the relationship between the (static)
connectivity graph structure and convergence rate. Again, these
results consider scenarios where each node communicates with
all other nodes and/or the connectivity graph is static. [42]
addresses the churn issue in a scenario where a set of static
nodes learn a single global model through a gossip-based
communication scheme. This work shows that, at least in
static node scenarios, gossip schemes may achieve a level of
accuracy comparable to (if not better than) FL. By considering
a static scenario, however, [42] does not account for one of
the critical elements of gossiping in a dynamic setting, i.e. the
tight link between proximity in space among nodes, context
information, correlation in the composition of local datasets,
and correlation in tasks among nodes.
[21] proposes the first version of a GL scheme for multi-task
learning on a static mesh network, proving its convergence.
Unlike our work (and the vast majority of practical cases),
such a GL scheme assumes that the relationship among tasks
of different nodes is known in advance, and it does not specify
how those weights should be derived. This is addressed in
[43], which proposes a scheme for learning, in a distributed
fashion, both the relationship among tasks and the weights to
be used in model merging. However, such a scheme assumes a
static node mesh without churn, making it unfit for applications
in dynamic scenarios, such as in vehicular/pedestrian settings.
Thus, none of these works considers scenarios with a dynamic
topology among nodes in which patterns of model exchanges
result from opportunistic contacts. This leaves open a set of
issues relative to the performance of GL schemes, in terms of
convergence and convergence speed, as well as the accuracy
of the trained models [44], which we start addressing in the
present work.

14

The issue of short-term vehicular trajectory prediction has
recently received much attention, given the growing amount
of applications and use cases, both in ITS and Autonomous
driving domain, and in 5G and beyond network optimization
and dynamic management [45], [46]. The growing availability
of a large amount of car/user floating data has generated a large
body of works which apply various deep learning techniques
to the problem of predicting network-wide vehicle movement
patterns in urban scenarios [2], [45]–[47]. [48] applies a LSTM
architecture to the problem of vehicle nowcasting in urban
scenarios based on a centralized scheme.
The application of a gossip-based learning scheme for the issue
of trajectory prediction has been proposed in [11]. The scheme
aims at training a single ML model. It is based on a distributed
implementation of a central coordinated function, with a global
state maintained in a gossip-based shared memory, periodically
updated via flooding. Consequently, such a single consensus
scheme works well only when nodes form a single connected
component, which drives the evolution of the learning process.
Indeed, nodes who disconnect from such component cannot
participate in the process until they reconnect. Differently from
our scheme, this feature makes the solution in [11] ineffective
in scenarios with more than one cluster, or in sparse scenarios
where store-carry-and-forward is the main mode of content
diffusion.
In a previous work [29], we presented a distributed scheme
applied to a classification problem to derive a forecast about
the section of the considered urban region where a vehicle will
be at a given time in the future. Specifically, the given region
of the plane was partitioned into cells, and each vehicle tried
to predict in each cell it would be in h slots ahead in the
future. Each node implemented a distributed version of FL,
periodically sending its model to all neighbours, who train it
on their local database and send it back to be merged with
those sent by all other neighbours.
However, as shown in [29], this scheme implies twice the
amount of model exchanges than the GL schemes in the
present paper. In addition, it requires a very high number of
local training steps per node, making it unsuitable for resource-
constrained (computing and/or energy) devices. Moreover,
the schemes in [29] suffer from a very high disparity in
performance among nodes, with nodes in regions with low
node density consistently experiencing unacceptably poor per-
formance.
Conversely, the approach in the present paper allows high-
performing nodes to quickly disseminate their models to those
that cannot build a high-performing one. Moreover, in this way,
(good) models persist probabilistically in the region over time,
and they are constantly improved (and updated, as mobility
patterns change over time) even by those nodes which do not
possess enough neighbours or data to be able to train a high-
performing model themselves.

VII. CONCLUSIONS AND FUTURE WORK

Vehicular position nowcasting has recently received much
attention due to the growing amount of applications and use
cases in 5G/B5G networks. In this paper, we propose a set of
gossip learning algorithms for collaborative training of ML

models for nowcasting in dense urban environments where
node mobility and network churn are high.
We show that very good performance can be achieved in
realistic dynamic environments within only a few hours from
the initial installation of the position nowcasting application
and with the very small initial dataset for each node. Our
algorithms are proven to converge under very mild assumptions
on the connectivity patterns and the data. We showed that
our GL algorithms trained over a fully distributed, serverless
architecture perform at least as well as server-based approaches
such as federated learning.
Future developments of this work will include, first of all,
attempts to reduce the average and variance of the error in
the vehicle position estimation, possibly integrating the pre-
diction of the GL model with data available onboard. Another
future direction of the investigation will involve extending the
analysis of the feasibility of GL training approach to other
learning tasks, and a more fine-grained analysis of the impact
of the main system parameters on GL performance, by means
of synthetic dynamic graphs. Finally, other contributions rely
on evaluating the effects of heterogeneity in node mobility,
connectivity among nodes, and computing power available at
nodes and investigating their effect on the convergence of our
schemes and model accuracy.

REFERENCES

[1] Z. Xiao, P. Li, V. Havyarimana, G. M. Hassana, D. Wang, and K. Li,
“GOI: A Novel Design for Vehicle Positioning and Trajectory Prediction
Under Urban Environments,” IEEE Sensors Journal, vol. 18, no. 13, pp.
5586–5594, 2018.

[2] L. Lin, S. Gong, T. Li, and S. Peeta, “Deep learning-based human-driven
vehicle trajectory prediction and its application for platoon control
of connected and autonomous vehicles,” in The Autonomous Vehicles
Symposium, vol. 2018, 2018.

[3] Q. Liu, G. Chuai, J. Wang, and J. Pan, “Proactive mobility management
with trajectory prediction based on virtual cells in ultra-dense networks,”
IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8832–
8842, 2020.

[4] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” Advances in neural information processing sys-
tems, vol. 30, 2017.

[5] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and
M. I. Jordan, “MLbase: A Distributed Machine-learning System.” in
Cidr, vol. 1, 2013, pp. 2–1.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[7] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency and Computation:
Practice and Experience, vol. 25, no. 4, pp. 556–571, 2013.

[8] M. Blot, D. Picard, M. Cord, and N. Thome, “Gossip training for deep
learning,” arXiv preprint arXiv:1611.09726, 2016.

[9] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning: A
segmented gossip approach,” arXiv preprint arXiv:1908.07782, 2019.

[10] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with cooper-
ating devices: A consensus approach for massive IoT networks,” IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4641–4654, 2020.

[11] N. Majcherczyk, N. Srishankar, and C. Pinciroli, “Flow-FL: Data-
driven federated learning for spatio-temporal predictions in multi-robot
systems,” in IEEE ICRA, 2021, pp. 8836–8842.

15

[12] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in 2017 ITSC. IEEE, 2017, pp. 353–359.

[13] A. Carvalho, Y. Gao, S. Lefevre, and F. Borrelli, “Stochastic predictive
control of autonomous vehicles in uncertain environments,” in 12th
International Symposium on Advanced Vehicle Control, 2014, pp. 712–
719.

[14] B. Kim, C. M. Kang, J. Kim, S. H. Lee, C. C. Chung, and J. W. Choi,
“Probabilistic vehicle trajectory prediction over occupancy grid map
via recurrent neural network,” in 2017 IEEE ITSC. IEEE, 2017, pp.
399–404.

[15] P. Ondrúška and I. Posner, “Deep tracking: Seeing beyond seeing using
recurrent neural networks,” in Proceedings of AAAI, 2016, pp. 3361–
3367.

[16] P. Kumar, M. Perrollaz, S. Lefevre, and C. Laugier, “Learning-based
approach for online lane change intention prediction,” in 2013 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2013, pp. 797–802.

[17] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[18] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[19] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in IEEE ITSC, 2017, pp. 353–359.

[20] S. J. Wright, “Coordinate descent algorithms,” Mathematical Program-
ming, vol. 151, no. 1, pp. 3–34, 2015.

[21] A. Bellet, R. Guerraoui, M. Taziki, and M. Tommasi, “Personalized and
private peer-to-peer machine learning,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2018, pp. 473–481.

[22] L. Codeca, R. Frank, and T. Engel, “Luxembourg SUMO Traffic (LuST)
Scenario,” in IEEE VNC, Dec 2015, pp. 1–8.

[23] S. Uppoor, O. Trullols-Cruces, M. Fiore, and J. M. Barcelo-Ordinas,
“Generation and analysis of a large-scale urban vehicular mobility
dataset,” IEEE Transactions on Mobile Computing, vol. 13, no. 5, pp.
1061–1075, 2013.

[24] F. Chollet, Deep Learning with Python and Keras: The practical manual
from the developer of the Keras library. MITP-Verlags GmbH & Co.,
2018.

[25] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wiessner,
“Microscopic traffic simulation using sumo,” in IEEE ITSC, 2018, pp.
2575–2582.

[26] A. Varga, OMNeT++. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 35–59.

[27] A. Mahmood, L. Beltramelli, S. Fakhrul Abedin, S. Zeb, N. I. Mowla,
S. A. Hassan, E. Sisinni, and M. Gidlund, “Industrial iot in 5g-
and-beyond networks: Vision, architecture, and design trends,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4122–4137,
2022.

[28] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent sys-
tems. O’Reilly Media, 2019.

[29] M. A. Dinani, A. Holzer, H. Nguyen, M. A. Marsan, and G. Rizzo,
“Gossip learning of personalized models for vehicle trajectory pre-
diction,” in 2021 IEEE Wireless Communications and Networking
Conference Workshops (WCNCW). IEEE, 2021, pp. 1–7.

[30] K. Abboud, H. A. Omar, and W. Zhuang, “Interworking of dsrc and
cellular network technologies for v2x communications: A survey,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 12, pp. 9457–9470,
2016.

[31] “Things you should know about bluetooth
range,” https://blog.nordicsemi.com/getconnected/
things-you-should-know-about-bluetooth-range, (Accessed on
06/09/2022).

[32] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[33] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[34] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in International Conference on
Machine Learning. PMLR, 2018, pp. 3043–3052.

[35] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal, “Com-
munication efficient framework for decentralized machine learning,” in
2020 54th Annual Conference on Information Sciences and Systems
(CISS). IEEE, 2020, pp. 1–5.

[36] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[37] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” arXiv preprint arXiv:1905.06731, 2019.

[38] L. Valerio, A. Passarella, and M. Conti, “Hypothesis transfer learning
for efficient data computing in smart cities environments,” in 2016 IEEE
International Conference on Smart Computing (SMARTCOMP). IEEE,
2016, pp. 1–8.

[39] L. Zhao, W.-Z. Song, X. Ye, and Y. Gu, “Asynchronous broadcast-
based decentralized learning in sensor networks,” International Journal
of Parallel, Emergent and Distributed Systems, vol. 33, no. 6, pp. 589–
607, 2018.

[40] L. Giaretta and S. Girdzijauskas, “Gossip Learning: Off the Beaten
Path,” in 2019 IEEE International Conference on Big Data (Big Data),
2019, pp. 1117–1124.

[41] G. Neglia, G. Calbi, D. Towsley, and G. Vardoyan, “The role of network
topology for distributed machine learning,” in IEEE INFOCOM 2019-
IEEE Conference on Computer Communications. IEEE, 2019, pp.
2350–2358.

[42] I. Hegedűs, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of gossip learning and federated learning,”
Journal of Parallel and Distributed Computing, vol. 148, pp. 109–124,
2021.

[43] V. Zantedeschi, A. Bellet, and M. Tommasi, “Fully decentralized joint
learning of personalized models and collaboration graphs,” in Inter-
national Conference on Artificial Intelligence and Statistics. PMLR,
2020, pp. 864–874.

[44] A. A. Alkathiri, L. Giaretta, S. Girdzijauskas, and M. Sahlgren, “De-
centralized word2vec using gossip learning,” in NoDaLiDa, 2021.

[45] S. Choi, H. Yeo, and J. Kim, “Network-wide vehicle trajectory pre-
diction in urban traffic networks using deep learning,” Transportation
Research Record, vol. 2672, no. 45, pp. 173–184, 2018.

[46] H. Jiang, L. Chang, Q. Li, and D. Chen, “Trajectory prediction of
vehicles based on deep learning,” in IEEE ICITE, 2019, pp. 190–195.

[47] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang,
and Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 126–12 134.

[48] U. Fattore, M. Liebsch, B. Brik, and A. Ksentini, “Automec: Lstm-based
user mobility prediction for service management in distributed mec
resources,” in Proceedings of the 23rd International ACM Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
2020, pp. 155–159.

16

https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range

Mina Aghaei Dinani
(mina.aghaeidi@hes-so.ch) is currently a
second-year PhD candidate at HES-SO
Valais and the University of Neuchatel,
Switzerland. Her doctoral work explores a

multidisciplinary approach encompassing Machine Learning,
Gossip Learning, and opportunistic communication. She
received her M.Sc. in Communications and Computer
Networks Engineering at Politecnico di Torino, Italy, in 2020.

Adrian Holzer (adrian.holzer@unine.ch) is
a Professor of Management Information Sys-
tems at the University of Neuchâtel. He holds
a PhD in Information Systems from the Uni-
versity of Lausanne. He was a research asso-
ciate at EPFL and an SNF research fellow at

Polytechnique Montréal. His area of expertise covers context-
aware distributed computing from messaging protocols to
human computer interaction. His research was published in
various renown outlets such as IEEE Transaction on Mobile
Computing, Computer Networks, Communication of the AIS,
European Journal of Information Systems, or ACM CHI.

Hung Nguyen
(hung.nguyen@adelaide.edu.au) is an associate
professor in Computer Science at the University
of Adelaide, Australia, where he has been
since 2009. He obtained his PhD in computer

networking from EPFL. His current research interest is on
models and algorithms for improving network performance,
security, and resiliency, especially for IoT and wireless
networks. He has published over 50 papers on these topics in
the last ten years.

Marco Ajmone Marsan
(marco.ajmone@polito.it) Marco Ajmone
Marsan is a part-time research professor at
the IMDEA Networks Institute in Spain.
From 1974 to 2021 he was at the Politecnico

di Torino, in the different roles of an academic career,
with an interruption from 1987 to 1990, when he was a
full professor at the Computer Science Department of the
University of Milan. He obtained degrees in EE from the
Politecnico di Torino and the University of California, Los
Angeles (UCLA). He served in the editorial board of several
international journals, and chaired the steering committee
of the ACM/IEEE Transactions on Networking. He was the
General Co-chair of Infocom 2013, and will be the General
Co-chair of ICC 2023. He is a Fellow of the IEEE, and
a member of the Academia Europaea and of the Academy
of Sciences of Torino. He is qualified as “ISI Highly Cited
researcher” in computer science. He received a honorary
degree in Telecommunication Networks from the Budapest
University of Technology and Economics. He was named
Commander of the Order of Merit of the Republic of Italy by
the President of Italy. He was the Vice-Rector for Research,
Innovation and Technology Transfer at the Politecnico di

Torino, and the Director of IEIIT-CNR. He was the Italian
delegate in the ICT and IDEAS Committees of FP7.

Gianluca Rizzo (gianluca.rizzo@hevs.ch)
is Associate Professor of Computer Science
at Università di Foggia (UNIFG), Italy, and
Senior Research Associate at HES-SO Valais,
Switzerland. Previously, he has been with Insti-
tute IMDEA Network, and Adjunct Professor at

UC3M, Madrid. He received his M.Sc. in EE from Politecnico
di Torino in 2001, and his PhD in Computer Science in 2008
from EPFL, Switzerland. His main research interests are in
performance evaluation of distributed systems.

17

APPENDIX

A. Proof of Theorem 1

Proposition 2: It is given Qj(w) with DA merging strat-
egy. Then ∀w ∈ RN×p, ∀0 ≤ j − δ ≤ j with δ ∈ N, ∀i,

E[Qi,j−δ(w)] = E[Qi,j(w)]

Proof: Let us consider the equation for the performance
estimator in DA at round t:

ξij =

∑
k∈Ki

j−1

(ξkj−1)
2

∑
h∈Ki

j−1

ξhj−1

=

∑
k∈Ki

j−1

ξkj−1∑
h∈Ki

j−1

ξhj−1

∑
k1∈Kk

j−2

(ξk1
j−2)

2

∑
h∈Kk

j−2

ξhj−2

Proceeding backwards, and substituting recursively the same
expression, we get

=

∑
k∈Ki

j−1

ξkj−1∑
h∈Ki

j−1

ξhj−1

·

·

(∑
k1∈Kk

j−2

ξk1
j−2∑

h∈Kk
j−2

ξhj−2

·

(
... ·

(∑
kδ−1∈K

kδ−2
j−δ

(ξ
kδ−1

j−δ)2

∑
h∈K

kδ−2
j−δ

ξhj−δ

)
...

))

This expression is thus the product of δ factors. As we can
see, each factor is dependent on the preceding one for the
composition of the set K. For instance, in the second factor
the set Kk

j−2 denotes the set of nodes which in round j − 2
sent their local instance to node k, which is the index of a
node considered in round j − 1 in the first factor. In our GL
scheme, the process which assigns a set K of contributors to
a given node is determined by the node’s position, speed, the
conditions of the wireless channel between two nodes in range,
among others. Given the stochastic nature of these factors, we
model their compound effect on the composition of the set
K by assuming it to be a random collection of node indices
among N . We further assume now the composition of any two
such sets to be independent, when associated to different nodes
and/or different rounds. This is clearly an approximation, as
nodes close among them will tend to have at least part of the
elements of the set K in common, and the same is true for
a same node in consecutive slots. With this assumption, every
fraction in the above expression, and relative to a given slot,
is a random variable independent from those relative to other
slots. Thus, in the computation of E[ξij], the expectation of
the product becomes the product of the expectations. We have
thus that

E

[
ξij

]
=

(
j∏

τ=j−δ+1

E

[∑
k∈Kτ

ξkτ∑
h∈Kτ

ξhτ

])
E

[∑
k∈Kj−δ

(ξkj−δ)
2

∑
h∈Kj−δ

ξhj−δ

]

= E

[∑
k∈Kj−δ

(ξkj−δ)
2

∑
h∈Kj−δ

ξhj−δ

]

Thus E[ξij] = E[ξij−1] = ... = E[ξij−δ+1]. If we assume that
the process of arrivals and departures of node is stationary, and
that the sampling function which samples randomly the set of
nodes present in the region into a set K to be the same for all
nodes, and that the ξij−δ+1 are drawn from a same distribution
∀i, then E[ξij] = E[ξjj] for any couple of nodes i, j present at
round t. In the same way, we can show that, for any node i at
rounds j and j′,

E

[∑
k

Xj
ikw

k
j

]
= E

[∑
k

Xj′

ikw
k
j′

]
.

As a corollary, it is easy to see that E[Qi,j+1(wj+1)] =
E[Qi,j(wj+1)]. We now prove Theorem 1. Using Taylor’s
expansion, and Assumption 1 and 2, and considering a step
of the stochastic gradient descent for which the variation is
only in the dimension i′, we get:

Qi,j(wj+1) = Qi,j

(
wj −

1

Lj
i

[▽Qi,j(wj)]i′ × ei′

)
using Taylor’s expansion

≤ Qi,j(wj) + [▽Qi,j(wj)]i′

(
− 1

Lj
i

[▽Qi,j(wj)]i′

)
≤ Qi,j(wj)−

1

2Lmax

[
▽Qi,j(wj)

]2
i′

Taking the expectation of both sides,

E[Qi,j+1(wj+1)] ≤ E[Qi,j(wj)]−
1

2nLmax
E
[
∥(▽Qi,j(wj))∥2

]
.

(11)
Here, we used the facts that wj does not depend on i′ and that
i′ is chosen randomly among [1, . . . , n]. Let

θij := E[Qi,j(wj)]−Qi,1(wi,1
∗)

then

θij+1 ≤ θij −
1

2nLmax
E
[
∥(▽Qi,j(wj))∥2

]
. (12)

When Qi,j is σ-strongly convex with modulus σ > 0, we
get

Qi,j(wi,1
∗) ≥ Qi,j(wj)−

1

2σ
|| ▽Qi,j(wj)||2. (13)

This implies that

|| ▽Qi,j(wj)||2 ≥ 2σ

(
Qi,j(wj)−Qi,j(wi,1

∗)

)
(14)

Using again Proposition 2 we have

|| ▽Qi,j(wj)||2 ≥ 2σ

(
Qi,j(wj)−Qi,1(wi,1

∗)

)
(15)

Combining (12) with (15) and taking the expectation, yields

θj+1 ≤ θj −
σ

nLmax
θj =

(
1− σ

nLmax

)
θj . (16)

Recursively applying this inequality J − j′ times yields Equa-
tion 10.

18

	Introduction
	System model
	A distributed Gossip Learning architecture
	Model architecture
	Gossip Learning algorithm

	Convergence Properties
	Notation and assumptions

	Numerical Assessment
	Performance from entrance time
	Performance from start time
	Impact of transmission radius, and of cutoff value
	Impact of nonstationarity in vehicular mobility

	Related work
	Conclusions and future work
	References
	Proof of Theorem 1

