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Abstract. One of the main challenges of automatically transcribing
large collections of handwritten letters is to cope with the high variabil-
ity of writing styles present in the collection. In particular, the writing
styles of non-frequent writers, who have contributed only few letters, are
often missing in the annotated learning samples used for training hand-
writing recognition systems. In this paper, we introduce the Bullinger
dataset for writer adaptation, which is based on the Heinrich Bullinger
letter collection from the 16th century, using a subset of 3,622 annotated
letters (about 1.2 million words) from 306 writers. We provide baseline
results for handwriting recognition with modern recognizers, before and
after the application of standard techniques for supervised adaptation of
frequent writers and self-supervised adaptation of non-frequent writers.

Keywords: Handwriting Recognition · Writer Adaptation · Historical
Documents · Handwritten Letters

1 Introduction

Handwriting recognition remains a mostly unsolved problem and a very active
field of research, because it challenges pattern recognition and machine learning
techniques in various ways: Even when considering samples written in the same
language and time period, there is a high variability in character shapes and char-
acter connections to model, especially in the case of cursive handwriting. When
changing the language, there is a distribution shift regarding language models,
even when the same set of characters are used. For historical documents [4],
additional difficulties include the absence of timing information, which is only
available for modern on-line handwriting with an electronic pen, degraded paper
or parchment due to old age, which leads to artifacts on the scanned page images,
and a large number of different languages, scripts, and time periods to consider.
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Therefore, handwritten text recognition (HTR) usually targets a very specific
type of handwriting, e.g. a historical manuscript written by only a few different
hands, with similar imaging conditions across the scans, the same language, etc.
and is trained with a large amount of annotated learning samples from the same
type of handwriting.

In this paper, we introduce a novel challenge for HTR in the context of a
comprehensive digitization project [2] in Switzerland that aims to create a digi-
tal edition of a large collection of historical letters, namely the Bullinger letters,
which include about 12,000 letters written or received by Heinrich Bullinger
(1504-1575), an important Swiss Reformer. He was in contact with over 1,000
persons, which introduces a high variability of writing styles, as well as differ-
ences in writing support and writing instruments. Furthermore, the letters are
not only written in Latin but also in a premodern form of German, and some-
times the two languages are mixed, while the language might change either from
paragraph to paragraph or even mid-sentence (i.e., code-switching). Over the
past years, transcription and transcription alignment efforts have been focused
on the most frequent writers, i.e. Bullinger himself and persons who have written
a considerable number of letters to him. However, there are thousands of letters
from non-frequent writers, whose writing styles are not present in the annotated
training material. Therefore, one of the most intriguing problems is that of writer
adaptation: “Is it possible to adapt a generic HTR system to the specific writ-
ing style of a non-frequent writer, who is not represented in the training data,
such that the HTR performance is improved?” The same question, although less
challenging, can also be asked for frequent writers, who are represented in the
training set and may also profit from an adaptation to their particular style of
writing.

1.1 Related Work

There is a rich body of literature on the topic of writer adaptation for HTR. To
name just a few, early examples include [17], where the adaptation is performed
based on writer-specific allographs that are used to re-evaluate the output of an
HTR system, and [3], where unsupervised clustering is used to estimate Gaus-
sian mixture models that are specific to a writing style. In [6], a self-training
approach is pursued to improve the performance of an HTR system by adapting
it to the recognition output of unlabeled samples. The work presented in [7]
employs a keyword spotting strategy to adapt an HTR system trained for mod-
ern handwriting to historical handwriting. More recent attempts to perform
transfer learning are reported in [8,10]. A competition organized on the READ
dataset specifically included the problem of writer adaptation with respect to
22 different hands, 5 of which are used both in the training and the test set
to investigate supervised adaptation [21]. The best results are obtained when
adapting both the optical and the language models, and when including data
augmentation [19]. Targeting the more difficult case of unsupervised adaptation,
a style adaptation at multiple abstraction layers of a deep convolutional model
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is proposed in [22]. Another recent unsupervised adaptation scheme is based on
fully synthetic training data [11].

1.2 Contribution

In the present work, we do not introduce a novel method for writer adaptation.
Instead, we introduce the Bullinger dataset for writer adaptation [1] and estab-
lish baseline results using state-of-the-art HTR systems with standard adapta-
tion strategies, i.e. fine-tuning a generic HTR system on the training data of the
frequent writers, and fine-tuning the models on confidently transcribed text lines
of non-frequent writers, following a self-training methodology [6]. The dataset is
publicly and freely available for developing and comparing novel approaches to
writer adaptation.

When comparing the Bullinger dataset with other datasets used for writer
adaptation research, we can highlight the difficulty of the handwriting itself (cf.
Figure 1), which is also difficult to read for human experts, and the large number
of over one million words, which is suitable for experiments with deep learning
models from the current state of the art. Table 1 provides a comparison with
other related research datasets. Note that only about a quarter of all letters
are currently included in the Bullinger dataset, representing the progress of the
digitalization project. The total number of writers is over 1,000 for the entire
letter collection.

Dataset Number of words Number of writers

Georges Washinghton [13] 4,860 2

Parzival [5] 23,478 3

Rimes [9] 66,978 1,300

READ [21] 98,239 22

CVL [12] 99,902 310

IAM Handwriting [15] 115,320 657

Bullinger 1,241,714 306

Table 1. Related research datasets for writer adaptation research.

In the remainder, we describe the handwriting present in the Bullinger letters
and how it has been transcribed so far, introduce the HTR systems and writer
adaptation techniques considered for the experiments, present the baseline re-
sults, and draw some conclusions.



4 A. Scius-Bertrand et al.

2 Dataset

The Bullinger Digital project [2] aims to bring together all available resources
about the comprehensive letter correspondence of Heinrich Bullinger (1504-
1575), a Swiss Reformer, in a single database. For this purpose, all available
meta-information, e.g. about the writers of the letters, but also scanned page
images and existing transcriptions are brought together. Furthermore, the goal
is to automatically align existing transcriptions with the page images and to use
HTR to perform an automatic transcription for the remaining letters. Heinrich
Bullinger was a key actor during the Reformation in Switzerland and Europe.
His letter correspondence includes about 2,000 letters written by himself and
about 10,000 letters that he has received from over 1,000 persons.

Certain writers, including Bullinger, exhibit writing styles that are very diffi-
cult to read, even for human experts. Figure 1 provides an example of Bullinger’s
handwriting. We can observe a mix of Latin and a premodern form of German
phrases, abbreviations, and words that are very difficult to decipher without inti-
mate knowledge of the handwriting, or access to a transcription. At the beginning
of the third line, we can also observe a missing word in the transcription. It is
due to an error of the automatic transcription alignment, which was performed
using the Text2Image module of the Transkribus platform [16]. In general, the
quality of the alignment is high, and thus the quality of the ground truth for
handwriting recognition, but especially at the beginning and at the end of the
text lines errors may arise due to word breaks. Furthermore, the transcription
is not necessarily character-accurate, e.g. abbreviations are often written out in
full. This noise in the automatically generated ground truth is an additional
difficulty for training HTR systems.

Fig. 1. Text lines written by Bullinger with automatically aligned transcriptions.

Figure 2 illustrates the high variability of writing styles present in the Bullinger
dataset. The first line shows three examples of how Bullinger writes his own
name. They exhibit a considerable intra-writer variability. The remaining words
are written by other persons, demonstrating changes in the writing style, writing
support, and writing instrument.
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Fig. 2. Different writing styles and different forms of the word “Bullinger”. The writer
IDs are indicated in the bottom-left corner of each automatically segmented word. All
words of the first line are written by the same writer, Bullinger himself.

Note that the sample word images were automatically cut out from text
lines that have been processed by an HTR system and may contain segmenta-
tion errors. The text lines themselves were cut out from the scanned page images
according to polygonal boundaries provided by Transkribus’ layout analysis sys-
tem. The special background pattern around the text lines is added artificially
instead of white background, to make the background more homogeneous for
HTR.

3 Methods

3.1 Handwriting Recognition

We consider two state-of-the-art models for handwriting recognition, namely
PyLaia [18] and HTR-Flor [20]. They both consider deep convolutional layers
to extract features from text line images, followed by bidirectional recurrent
layers with connectionist temporal classification (CTC) loss to analyze the fea-
tures from left-to-right as well as right-to-left to recognize character sequences.
They differ in the composition of the layers as illustrated in Figure 3. To re-
duce the number of trainable parameters, HTR-Flor uses gated convolution and
bidirectional gated recurrent units (BGRU) instead of standard convolution and
bidirectional long short-term memory cells (BLSTM). In effect, HTR-Flor only
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has around 820 thousand parameters, which is significantly less than the 9.6
million parameters of PyLaia. Nevertheless, both models achieve similar results
on several benchmark datasets [20].

Fig. 3. Architectures of the two HTR systems used: PyLaia [18] and HTR-Flor [20].
Both figures are taken from [20].

3.2 Writer Adaptation

We consider two standard writer adaptation methods to study their impact on
the HTR performance. The first method is used for frequent writers, for which
some of the letters were transcribed and are part of the training set. In this case,
we train a generic HTR system on all letters and then fine-tune it on the training
letters of the frequent writer in order to adapt the model to the specific writing
style.

The second method is used for non-frequent writers, for which none of the
letters have been transcribed and therefore no training material is available. In
this case, we follow the self-training approach proposed in [6]. We start again
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with a generic HTR system trained on all letters and apply it to the letters of
the non-frequent writer. Afterwards, we compute a confidence measure C(s) for
the predicted characters sequences s = c0, . . . , cN ,

C(s) =

N∏
i=0

p(ci) , (1)

where p(ci) is the softmax probability of the character ci according to the CTC
decoding. Afterwards, we sort the character sequences of all text lines according
to their confidence and use the most confident P percent of the text lines as a
new training set for fine-tuning the generic HTR system.

4 Experimental Evaluation

4.1 Database Setup

To study the impact of writer adaptation, we consider text line images from a
subset of 3,622 letters by 306 writers with automatically aligned transcriptions,
which are used as ground truth for the HTR experiments.

As illustrated in Figure 4, the database is split as follows for the Bullinger
writer adaptation challenge: First, we sort the writers according to their number
of letters, observing a Zipf distribution with only few frequent writers and a
large number of non-frequent writers. Then, using a threshold of 5 letters, we
distinguish two groups of writers:

– Frequent writers: Writers with at least 5 letters.

– Non-frequent writers: Writers with less than 5 letters.

There are 106 frequent writers in total. We use the first 80% of their letters
for training, the next 10% for validation (optimization of hyper-parameters),
and the final 10% for testing. For the non-frequent writers, we select the next
200 writers in the sorted list of writers to compose a second test set of similar
size. In this experimental setup, the test set for frequent writers estimates how
well HTR performs for known writers, where several of their letters have been
transcribed for training, and the test set for non-frequent writers estimates how
well HTR performs for unknown writers, whose writing styles are not present
during training. This scenario reflects the real situation in the Bullinger Digital
project [2], where the transcription efforts are directed towards the most im-
portant (most frequent) writers. Table 2 shows the exact repartition of writers,
letters, pages, text lines, and words across the different sets. The training set has
a considerable size of 109,627 text lines with 876,003 words. After removing some
very rare characters, we retain a total of 78 distinct characters in the database
including the space character.
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Fig. 4. Database setup. The graph shows the number of letters per writer. Frequent
writers (Freq.) have five or more letters and non-frequent writers (Non-Freq.) have less
than five letters.

Training Validation Test Freq. Test Non-Freq. Total

# of writers 106 106 106 200 306

# of letters 2,581 337 337 367 3,622

# of pages 5,927 806 787 873 8,393

# of lines 109,627 14,516 15,368 15,735 155,246

# of words 876,003 122,211 115,289 128,211 1,241,714

Table 2. Database setup: Distribution of writers, letters, pages, text lines and words
for frequent writers (Freq.) and non-frequent writers (Non-Freq.).

4.2 HTR Setup

The hyper-parameters of the HTR systems were optimized on the validation set
during preliminary experiments. They have been fixed to the same values for
HTR-Flor and PyLaia. The text line images are resized to a height of 128 pixels,
keeping the aspect ratio, and in addition to the three RGB channels we add a
fourth channel with a binary version of the image obtained by means of a global
Otsu threshold. We consider 256 hidden units for the LSTMs/GRUs, a dropout
of 0.3 in the recurrent layers, and a mini-batch size of 64. The learning rate
is optimized with AdamW [14] using a weight decay of 0.0001, β1 = 0.9, and
β2 = 0.98. The peak learning rate is 0.00055. The HTR systems are trained for
100 epochs until convergence and the best model epoch is chosen with respect
to the character error rate on the validation set. We do not observe a significant
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overfitting effect. Training one epoch with two NVIDIA TITAN RTX cards took
around 23 minutes for HTR-Flor and around 30 minutes for PyLaia.

For the CTC, we use 78 character tokens, decode greedily by considering the
character with maximum probability at each time step, and remove repeated
consecutive characters. Note that we do not use a lexicon for text recognition,
because of the presence of both Latin and German texts, spelling variants, and
abbreviations. Instead, the text is transcribed character by character. In the
present baseline experiments, we only focus on the optical model and the implicit
language model learned by the recurrent layers on the training set. No explicit
character language model is used.

4.3 Writer Adaptation Setup

For writer adaptation, we first train a generic system on the entire training set.
Afterwards, the system is adapted as follows:

– Frequent writers: The training letters of the writer are used to further fine-
tune the generic system. Either the training is continued with the same,
small learning rate or the training is restarted with the initial, high learning
rate. Either 10 or 20 epochs of training are pursued and the best number of
epochs is determined on the validation letters of the writer.

– Non-frequent writers: Self-training is performed by recognizing the test
letters of the writer with the generic system. Afterwards, the automatic
transcriptions are sorted by recognition confidence (see Section 3.2) and
the top 50%, 75%, or 100% of the text lines are used as learning samples
to further fine-tune the generic system. Training is continued for either 10
or 20 epochs (since the non-frequent writers have no annotated validation
letters, it is not possible to determine the best epoch prior to 10 or 20).

4.4 Evaluation Measures

We use the standard measures of character error rate (CER) and word error rate
(WER) to evaluate the HTR performance. They are calculated by computing
the string edit distance between the recognition output and the ground truth, to
obtain the number of substitution, deletion, and insertion errors. By dividing the
number of character errors with the number of characters in the ground truth,
we obtain the CER, and similarly the WER.

For measuring the impact of writer adaptation, we report absolute improve-
ments, e.g. CERg −CERa, as well as relative improvements in percentage, e.g.

100 · CERg − CERa

CERg
, (2)

with CERg the error rate of the generic system and CERa the (typically lower)
error rate of the adapted system.
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Frequent writers Non-Frequent writers

HTR-Flor PyLaia HTR-Flor PyLaia

CER 9.56 8.36 10.67 9.85

WER 33.72 29.64 37.56 34.39

Table 3. HTR performance. The best results are highlighted in bold.

Frequent Writers

Configuration HTR-Flor PyLaia

C-10 9.08 3.70

C-20 9.76 3.39

R-10 4.30 -0.05

R-20 6.80 1.56

Table 4. Frequent writer adaptation. Relative improvement of the CER in percentage
for continuing training during 10 or 20 epochs (C-10 and C-20) and for restarting
training during 10 or 20 epochs (R-10 and R-20). The best results of each HTR system
are highlighted in bold.

4.5 Results

HTR performance. Table 3 shows the CER of the generic (non-adapted) HTR
systems for frequent and non-frequent writers, respectively. The best results are
obtained with PyLaia, which achieves 8.36% CER for frequent writers and 9.85%
CER for non-frequent writers. HTR-Flor performs about one percent CER worse,
which may be due to the reduced number of model parameters when compared
with PyLaia, taking into account the large size of the training set. For both
systems, the error rate for non-frequent writers is significantly higher, which is
expected because the writing styles of the non-frequent writers are not present in
the training set. When comparing the overall HTR performance with the results
for HTR-Flor on the IAM database reported in [20], namely 3.98% CER, the
increased difficulty of the Bullinger database becomes evident.

Frequent writer adaptation. Table 4 shows the results of frequent writer
adaptation for different fine-tuning strategies, in terms of relative improvements
of the CER. For both HTR systems, restarting with a high learning rate is
significantly worse than continuing the fine-tuning with a low learning rate. In
the case of PyLaia, restarting 10 epochs even leads to an increase in the CER.
The largest gain is observed for HTR-Flor, where the relative reduction of the
CER is 9.76%.

Non-frequent writer adaptation. Table 5 shows the results of non-frequent
writer adaptation for different self-training and fine-tuning strategies. The gain
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Non-Frequent Writers

Configuration HTR-Flor PyLaia

C-10, S-50% 2.65 0.44

C-10, S-75% 2.68 0.51

C-10, S-100% 2.01 0.71

C-20, S-50% 2.88 -1.84

C-20, S-75% 2.54 -2.99

C-20, S-100% 0.79 -4.42

Table 5. Non-frequent writer adaptation. Relative improvement of the CER in per-
centage for continuing training during 10 or 20 epochs (C-10 and C-20) and selecting
the 50%, 75%, and 100% most confidently recognized text lines for self-training (S-50%,
S-75%, and S-100%). The best results of each HTR system are highlighted in bold.

in performance is very limited for PyLaia, which clearly overfits to the self-
labeled transcriptions when fine-tuning 20 epochs. The best results are achieved
when selecting all self-labeled transcriptions and fine-tuning 10 epochs. HTR-
Flor achieves the best result when selecting the 50% most confident text lines
and fine-tuning 20 epochs. In this scenario, the relative improvement of the CER
is 2.88%.

Detailed adaptation results. Table 6 provides a more detailed account
for both frequent and non-frequent writer adaptation using the best fine-tuning
and self-training strategies. Besides the improvements and relative improvements
in CER and WER, we also indicate for how many writers the performance was
improved. The improvements for frequent writers and the improvements of HTR-
Flor for non-frequent writers are significant (p < 0.05). The improvements of
PyLaia for non-frequent writers are not significant.

Overall, the adaptation results highlight a clear adaptation success for the
frequent writers but only a limited success for the non-frequent writers. Even
with the best fine-tuning and self-training configurations, the relative improve-
ments in CER and WER remain very modest for the non-frequent writers.

5 Conclusion

The Bullinger dataset for writer adaptation introduced in this paper is a novel
benchmark for developing and comparing writer adaptation methods. Its diffi-
cult handwriting, high variability in writing styles, and large size make it ideally
suited for investigating writer adaptation with deep learning models from the
current state of the art. The baseline results provided for the HTR-Flor and
PyLaia architectures achieve up to 9.76% relative improvement of the CER for
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Frequent writers Non-Frequent writers

HTR-Flor PyLaia HTR-Flor PyLaia

Configuration C-20 C-10 C-20, S-50% C-10, S-100%

CER before 9.56 8.36 10.67 9.85

CER after 8.62 8.05 10.36 9.78

Improvement 0.93 0.31 0.31 0.07

Relative improvement 9.76 3.70 2.88 0.71

# writers improved 97/106 84/106 133/200 93/200

% writers improved 91.51 79.25 66.50 46.50

WER before 33.72 29.64 37.56 34.39

WER after 30.96 28.72 36.75 33.99

Improvement 2.75 0.93 0.81 0.39

Relative improvement 8.17 3.12 2.16 1.15

# writers improved 96/106 82/106 129/200 95/200

% writers improved 90.57 77.36 64.50 47.50

Table 6. Detailed adaptation results for the optimal system configurations. CER,
WER, and improvements in percentage. The improvements for frequent writers and
the improvements of HTR-Flor for non-frequent writers are significant (p < 0.05). The
improvements of PyLaia for non-frequent writers are not significant.

supervised adaptation of frequent writers, but only up to 2.88% relative improve-
ment of the CER for self-supervised adaptation of non-frequent writers.

Promising lines of research to improve over these baseline results include
a conjoint adaptation of optical models and explicit language models, writing
style clustering, data augmentation, and synthetic data generation, to name just
a few.

The Bullinger project is still ongoing and we expect to be able to release
more versions of the challenge in the future, increasing the size of the database
and improving the quality of the ground truth.
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