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Abstract On-line handwritten character segmentation is often associ-
ated with handwriting recognition and even though recognition models
include mechanisms to locate relevant positions during the recognition
process, it is typically insufficient to produce a precise segmentation. De-
coupling the segmentation from the recognition unlocks the potential to
further utilize the result of the recognition. We specifically focus on the
scenario where the transcription is known beforehand, in which case the
character segmentation becomes an assignment problem between sam-
pling points of the stylus trajectory and characters in the text. Inspired
by the k-means clustering algorithm, we view it from the perspective of
cluster assignment and present a Transformer-based architecture where
each cluster is formed based on a learned character query in the Trans-
former decoder block. In order to assess the quality of our approach,
we create character segmentation ground truths for two popular on-line
handwriting datasets, IAM-OnDB and HANDS-VNOnDB, and evaluate
multiple methods on them, demonstrating that our approach achieves
the overall best results.

Keywords: On-Line Handwriting · Digital Ink · Character Segmenta-
tion · Transformer

1 Introduction

Relevance. A significant advantage of using a stylus over a keyboard is its flex-
ibility. As with pen and paper, users can draw, write, link objects and make
gestures like circling or underlining with ease – all with a handful of strokes. For
digital ink to have a compelling value proposition however, many features asso-
ciated with all the use cases, that users have become accustomed to in an online
environment, become relevant. They go beyond the initial act of writing
and cover layout and ink generative models like autocompletion and spelling
correction.
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Usefulness. On-line handwriting character segmentation has as a goal the
understanding of which parts of the handwriting belong to which character. It
complements handwriting recognition and enables functionalities like generative
modeling, particularly spellchecking and correction [1], as well as ink-to-text
conversion and layout handling[2, 3]. What all these seemingly different tasks
have in common is a need for character-level information.

Character-level knowledge opens up the possibility for layout-preserving pro-
cessing. For instance, when converting the handwritten text into printed text,
knowing the positions of the individual characters allow to generate printed text
that is precisely superimposed on top of the printed text, retaining the feeling
of agency over the document (e.g. in devices like Jamboard [2] and note-taking
apps like FreeForm [3]). Moreover, for education and entertainment applications,
knowing the positions of characters can unlock the capabilities such as animating
individual characters (e.g. in the Living Jiagu project the symbols of the Oracle
Bone Script were animated as the animals they represent [4]).

Individual character information is also important in handwriting generation
models [1, 5, 6]. Examples include spellchecking and spelling correction. For
spellchecking, knowledge of word-level segmentation helps to inform the user
about the word that was misspelled, e.g. marking the word with a red under-
line, and the word-level segmentation is a natural byproduct of character-level
segmentation. For spelling correction, users could strike out a particular char-
acter or add a new one, and the remaining characters could be edited such that
the change is incorporated seamlessly, for example via handwriting generation
models [1].

Difficulty. While the problem of character segmentation is fairly simple in
case of printed text OCR, it is far from being solved for handwriting – both
on-line and off-line. The problem is more difficult in settings like highly cur-
sive scripts (e.g. Indic) or simply cursive writing in scripts like Latin. Difficult
cases further include characters in Arabic script with ligatures, which vary in
appearance depending on the surrounding of the character and position in which
they appear, and characters differing only by diacritics [7].

In the academic on-line handwriting community, the progress on character
segmentation is limited by the absence of the datasets with character
segmentation. Two notable exceptions are Deepwriting [5] and BRUSH[8]. The
authors of Deepwriting used a private tool to obtain a monotonic segmentation
for the dataset. This is limited, as it cannot accommodate cursive writing. In the
BRUSH dataset an image segmentation model was used to obtain the character
segmentation.

For this reason, most of the works in the on-line handwriting community
rely on synthetic datasets. These are created with either (1) segment-and-
decode HMM-based approaches where character segmentation is a byproduct of
recognition [9], or (2) hand-engineered script-specific features used in deep learn-
ing solutions, e.g. for Indic and Arabic script [10, 11], as well as mathematical
expressions [12].
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For off-line handwriting, character segmentation is usually based on the po-
sition of skip-token class spikes in the Connectionist Temporal Classification
(CTC) [13] logits – which works well for images as the segmentation is typically
monotonic and separation of image by the spikes results in a reasonable segmen-
tation (unlike on-line handwriting, where due to cursive writing the segmentation
is not monotonic).

Another difficulty that is associated with character segmentation is the an-
notation. Individually annotating characters is hard and also time consuming.
The most widely used handwriting datasets do not contain ground truth infor-
mation on individual characters. We can, however, infer a high quality synthetic
ground truth using a time consuming method that iteratively singles out the
first character from the ink, based on temporal, spatial and stroke boundary
information.

Methods. We compare multiple methods for character boundary predic-
tion, with both a Long Short-Term Memory (LSTM) [14] and Transformer [15]
backbone and further comparing them with a simple k-means baseline. A first
classifier architecture, that accepts both an LSTM and a Transformer encoder,
combines the individual point offsets with the CTC spikes to determine which
points represent character boundaries. This initial approach has a clear limitation
in that it is monotonic and cannot handle delayed strokes. We thus extend the
Transformer classifier by including the character information, where each char-
acter in the text becomes a query in the Transformer decoder block. To show
its efficacy we focus on the following approaches in an experimental evaluation
on the publicly available IAM-OnDB and HANDS-VNOnDB datasets: k-means,
LSTM, Transformer for character boundary prediction and Transformer with
character queries.

The main contributions of this work can be summarized as follows:

– We obtain character segmentation ground truths for the publicly available
datasets IAM-OnDB and HANDS-VNOnDB from a high-quality approxi-
mation.

– We present a Transformer-based approach to the on-line handwritten char-
acter segmentation, where each expected output character is represented as
a learned query in the Transformer decoder block, which is responsible for
forming a cluster of points that belong to said character.

– We compare our approach to other methods on the IAM-OnDB and HANDS-
VNOnDB datasets thanks to the newly obtained ground truth and demon-
strate that it achieves the overall best results.

The newly created ground truths and the source code of our methods are publicly
available at https://github.com/jungomi/character-queries.

2 Datasets

2.1 IAM On-Line Handwriting Database

IAM-OnDB [16] is a database of on-line handwritten English text, which has
been acquired on a whiteboard. It contains unconstrained handwriting, meaning

https://github.com/jungomi/character-queries
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that it includes examples written in block letters as well as cursive writing, and
any mixture of the two, because it is not uncommon that they are combined in
a way that is most natural to the writer. With 221 different writers having con-
tributed samples of their handwriting, the dataset contains a variety of different
writing styles.

2.2 HANDS-VNOnDB

The HANDS-VNOnDB [17], or VNOnDB in short, is a database of Vietnamese
handwritten words. A characteristic of Vietnamese writing, that is not found
in English, is the use of diacritical marks, which can be placed above or below
various characters and even stacked. This poses an additional challenge, as the
diacritics are often written with delayed strokes, i.e. written after one or more
characters have been written before finishing the initial character containing the
diacritics. Most notably in cursive and hasty writing, it is very common that the
diacritics are spatially displaced, for example hanging over the next character,
which makes them disconnected in time as well as space and therefore much
more difficult to assign to the correct character.

2.3 Ground Truth

Since both of the publicly available datasets we are using do not have the ground
truth character segmentation, we resorted to obtaining a high-quality approxi-
mation of it (similar approach was applied, for example, by [18] where an image-
based approach was used for obtaining the ground truth approximation). To
obtain it, we repeatedly separated the first character from the rest of the ink,
by performing an exhaustive search for the character boundary with potential
cuts based on temporal information, spatial information, and stroke boundaries,
and with the best candidate selected based on the likelihood that the first char-
acter indeed represents the first character of the label, and the rest matches the
rest of the label, with likelihood provided by a state-of-the-art recognizer model
[anonymized for review]. Such an approach is clearly not feasible in a practical
setting due to the high computational cost, but allowed us to produce a high
quality ground truth approximation, from which any of the models described be-
low could be trained. Figure 1 illustrates some ground truth examples from the
IAM-OnDB and the HANDS-VNOnDB. Despite the high quality of the ground
truth it remains an approximation and therefore some small imperfections are
present, as evidenced by some of the examples.

3 Methods

3.1 K-Means

For the initial baseline system, we chose to use a k-means [19] based approach.
To segment the handwriting, the points are clustered into k different clusters,
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rabbit looks at a stoat.

industry will not be

(a) IAM-OnDB Examples

kiểm chính chuyển

buồn diễn nói

(b) HANDS-VNOnDB Examples

Figure 1: Examples of the ground truth character segmentations that were ob-
tained by iteratively separating the first character through an exhaustive search
in regards to the character boundary. Each color represents a different character.
Some imperfections are to be expected as it remains an approximation.

where k is equal to the number of characters present in the already known
text. Two methods have been implemented for the initialization of the centroids,
the standard random implementation, and a second implementation which uses
the points where the CTC spikes occurred as the initial centroids. Clustering is
mainly based on the geometric locations of the points but the stroke information
was also included, as it still adds value for points that are not clearly separable
purely based on their position. Since the horizontal position is much more in-
dicative of the character it might belong to, the x coordinate was weighted much
stronger than the y coordinate. This heavily relies on the horizontal alignment
of the writing and causes an inherent limitation for cases where the alignment
deviates from the ideal representation, e.g. for strongly slanted handwriting.
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3.2 Character Boundary Prediction with LSTM / Transformer

The input of the model for the character boundary prediction is a sequence
of sampling points and the output is a classification of whether a point is a
character boundary or not. Intuitively, an LSTM [14] can be employed for this,
as it is particularly well suited to work with a sequence based representation.
Given that the output remains a sequence but is not required to recognize which
character it is, it is sufficient to have the tokens <start>, <char> and <none>,
which signify the start of the character (boundary), being part of the current
character and not belonging to a character at all, respectively. An important
note about the <none> token is, that there is no point in the available ground
truth that does not belong to any character, simply because of the exhaustive
nature of the ground truth creation, as a consequence it is repurposed to indicate
that the point does not belong to the current character, which primarily refers
to delayed strokes. Due to the lack of back references in this approach, it will
just be considered as not part of any character.

∆x or x
∆y or y
indexpoint

indexstroke

indexglobal

CTC Spike
(Character)

Embedding

Linear

+
LSTM
or

Transformer
Classifier <start> <char> . . .

Figure 2: Architecture of the boundary prediction model. A feature vec-
tor is created from the x, y-coordinates (∆x,∆y for the LSTM and absolute
coordinates for the Transformer) and the stroke information, where the pair of
indexstroke and indexpoint indicate which stroke the point belongs to and which
point it is within the stroke, as well as the global position with indexglobal.
For points where a CTC spike occurred, an embedding vector of the identified
character is added to the existing feature vector. The resulting feature vector
is processed either by bidirectional LSTMs or a Transformer and followed by a
linear classifier to produce the boundary prediction.

Figure 2 outlines the architecture of the boundary prediction model. A se-
quence of points is given as the input, where each point contains the x and y
coordinates, as well as information at which part of the sequence it occurred.
Handwriting is almost always performed in multiple strokes, which can be a
helpful indicator of where a character might begin, therefore it is conveyed to
the model with the pair of indexstroke and indexpoint to identify the stroke it be-
longs to and which point it is within the stroke, while indexglobal is also provided
in order facilitate locating the point globally. All this information is transformed
by a linear layer to create a higher dimensionality feature vector that is more
appropriate for the LSTM. Additionally, for each point where a CTC spike oc-



Character Queries: Transformer-based Character Segmentation 7

curs, an embedding vector is created from the character it corresponds to, and
added to the existing feature vector. Afterwards, the feature vector is processed
by multiple bidirectional LSTMs followed by a linear classifier to produce the
boundary predictions.

Transformers [15] are also widely used in sequence based task and are gen-
erally highly successful in many situations where LSTMs perform well, hence
the same architecture can be used with a Transformer instead of an LSTM.
Some minor changes to the input are required compared to the LSTM. The x, y-
coordinates were given as deltas (∆x,∆y) in regards to the previous point due
to the recurrent nature of the LSTM, which turned out to work slightly better
than the absolute coordinates. Since Transformers do not have any recurrence,
there is no reference point for the deltas, therefore the absolute coordinates are
the only viable option. Even though indexglobal might be considered to be more
important for Transformers, it is not used because the same effect is achieved
by the positional encoding that is added to the Transformer to explicitly handle
the positional information.

Post-Processing In order to assign the points to the respective characters, the
sequence of tokens needs to be processed such that the point with the <start>
token and all points marked as <char> up to the next <start> token are assigned
to the expected output characters from left to right. Technically, the model is
not limited to produce exactly number of expected characters, but is supposed
to learn it. Unfortunately, it does occur that too many characters are predicted,
hence we additionally restrict the output to the desired number of characters by
removing the segments with the smallest number of points, as we are specifically
interested in assigning the points to the expected characters. This is a limitation
of this particular design for the character boundary.

3.3 Transformer with Character Queries

Given that the design of the character boundary prediction in Section 3.2 re-
volves around sequences of points, it is impossible to handle delayed strokes
appropriately. Furthermore, the expected output characters are not integrated
into the model, even though they are at least represented in the input features by
the CTC spikes. This not only necessitates some post-processing, due to possible
oversegmentation, but also eliminates any potential for the model to adapt to a
specific character. To address these shortcomings, we design a Transformer-based
architecture that integrates the expected output characters into the Transformer
decoder block by using them as queries.

Related Work In recent years, Transformers have been applied to many dif-
ferent tasks in various domains. With the necessity to adapt to domains not
initially suited for Transformers, due to the inherently different structures com-
pared to the familiar sequence based tasks, new Transformer-based approaches
have been developed. In particular, in the domain of Computer Vision (CV), a
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lot of creative designs have emerged [20, 21]. One of these novel approaches was
pioneered by the DEtection TRansformer (DETR) [22], called object queries,
where each learned query of the Transformer decoder block represents one ob-
ject that has to be detected. Later on the query based approach has found its
way to image segmentation tasks [23, 24, 25].

Only recently, the k-means Mask Transformer [26] introduced a Transformer-
based approach that was inspired by the k-means clustering algorithm, where
the authors discovered that updating the object queries in the cross-attention of
the Transformer decoder block was strikingly similar to the k-means clustering
procedure. While their approach was made for image based segmentation, it
can easily be adapted to our task of on-line handwritten segmentation, which
happens to remove a lot of the complexity that is only needed for images, mostly
due to downsampling of the image and upsampling of the segmentation masks.
Inspired by their findings and the fact that our baseline algorithm has been k-
means, we design a Transformer-based architecture where the queries represent
the characters that should be segmented.

Overview For each character that needs to be segmented, a query in the Trans-
former decoder block is initialized with the embedding of that particular char-
acter and a positional encoding, which is necessary to distinguish two or more
instances of the same character. In that regard, the character embedding provides
the information to the model as to which particular patterns to pay attention
to, while the positional encoding is primarily used to ensure that the order of
the characters is respected. Having the available characters tightly integrated
into the model, eliminates the post-processing completely, which is due to the
fact that the characters were created from a sequence in the boundary prediction
models, whereas now the points are simply assigned to the respective characters,
reminiscent of clustering algorithms such as k-means. Additionally, it opens up
the possibility to handle delayed strokes correctly without any modification as
long as they are represented adequately in the training data.

Architecture This model will subsequently be referred to as the Character
Query Transformer and its architecture is outlined in Figure 3. The input fea-
tures remain the same as for the boundary prediction model, where the feature
vector is created from the x, y-coordinates, the stroke information through the
pair of indexstroke and indexpoint, and the CTC spikes with an embedding of
the identified character. A Transformer encoder is applied to the feature vector
to create a new encoded vector, E ∈ Rp×dh , that captures more pertinent infor-
mation by virtue of the self-attention which incorporates the relation between
the points. Afterwards, a Transformer decoder block takes the encoded vector
in combination with the character queries, which are created from the expected
output characters by applying a learned character embedding and positional
embedding based on their position within the text.

The output of the decoder, D ∈ Rc×dh , cannot be used directly to create a
classification for each point, as it is merely a latent representation of the clusters,
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x
y

indexpoint

indexstroke

CTC Spike
(Character)

Embedding

Linear

+
Transformer
Encoder

Transformer
Decoder

×N ×M

Linear Linear

×

Embedding
Character + Position

t o d o

Dimensions
p = Number of points
c = Number of characters/clusters
dh = Size of hidden dimension
df = Size of final hidden dimension

p× 4

p

p× dh

p× dh

p× dh

p× dh

c

c× dh

c× dh

p× df

c× df

p× c

Features

Classification

Figure 3: Architecture of the Character Query Transformer. Like the
boundary prediction models, the feature vector is created from the x, y-
coordinates, the stroke information and the CTC spikes. A Transformer en-
coder takes the feature vector and creates an encoded vector, which is given to
the Transformer decoder block in combination with an embedding of the de-
sired characters to be segmented (including their position within the text). The
classification is achieved by a matrix multiplication between the output of the
encoder and the decoder, after a linear transformation of each of the respective
outputs, in order to assign each point to one character.

hence it has the dimensions c× dh, where c is the number of characters and dh
the size of the hidden dimension. While the points have been assimilated into D
through the cross-attention in the decoder, the exact association between points
and characters must be done with an additional step. This can be achieved with
EDT ∈ Rp×c, a matrix multiplication between E and D, the outputs of the
encoder and decoder respectively. Normally, a classifier would be applied after-
wards, but because the dimensions of p × c are dynamic, since both p (number
of points) and c (number of characters) vary depending on the input, that is not
possible. As an alternative, a linear transformation is applied separately to E
and D before the matrix multiplication.

Positional Encoding of the Character Queries Transformers do not in-
herently have any sense of position of the inputs, as they do not contain any
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recurrence or convolutions, which implicitly take the order into account. To alle-
viate this issue, a separate positional encoding is added to the input to explicitly
encode the positional information into the input. It is most commonly achieved
with a sinusoidal positional encoding, where the sine and cosine functions are
used with different frequencies:

PE(pos,2i) = sin(
pos

100002i/d
)

PE(pos,2i+1) = cos(
pos

100002i/d
)

(1)

Due to the characteristics of the sinusoidal functions the transition between
the positions remains predictable and smooth, therefore the input features are
not disrupted but rather slightly enhanced. Generally, this is a desirable property,
but in the case of the character queries, a more recognizable distinction between
the position is needed, because multiple instances of the same character need
to be treated as completely separate. For this purpose, a learned positional
encoding is used instead. Figure 4 depicts the normalized mean values of the
vector at each position in the positional encoding for the sinusoidal (blue) and
learned encodings (red) respectively. In the learned encoding it is clearly visible
that there are a lot more large differences between two positions, indicating
that a clear distinction between them does benefit the model and its capabilities
to distinguish between multiple instances of the same character. On the other
hand, the sinusoidal encoding keeps a smooth transition between the positions
and therefore lacks the clear distinguishing aspect, and in our experience it was
simply not enough to separate multiple instances of the same character.

4 Experiments

In this section we evaluate the four methods, namely the k-means, LSTM, Trans-
former (character boundary prediction) and Character Query Transformer on the
IAM-OnDB and the HANDS-VNOnDB, as well as combining the two dataset
to see whether more data with slightly different characteristics are beneficial to
the overall results. And finally, an ablation study on the usefulness of the CTC
spikes is conducted. All results are evaluated based on the mean Intersection
over Union (mIoU) between the points in the segmented characters.

4.1 Setup

The experiments for the k-means are performed with Scikit-Learn [27] whereas
all other methods are implemented in PyTorch [28]. For the k-means the weights
of the input features are set to 1 for the x-coordinate, 0.04 for the y-coordinate
and 224 for the stroke information. All PyTorch models use a dimension of 256
for all layers, i.e. embedding dimension, hidden dimension of LSTM/Transformer
and the final hidden dimension, as well as a dropout probability of 0.2. The
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Figure 4: Positional Encoding for Character Queries. For each position the
normalized mean values of the vector in the positional encoding are displayed.
The sinusoidal encoding (blue) follows a smooth trend with small variations be-
tween the positions, whereas the learned encoding (red) exhibits much larger
differences between positions, which makes the distinction between multiple in-
stances of the same character much more apparent to the model.

LSTM consist of 3 bidirectional layers with the Rectified Linear Unit (ReLU) [29]
as an activation function, whereas the Transformer uses 3 layers per encoder and
decoder with 8 attention heads and Gaussian Error Linear Unit (GELU) [30]
instead of ReLU. Label smoothing with ϵ = 0.1 [31] is employed in the cross-
entropy loss function. AdamW [32] is used as an optimizer with a weight decay
of 10−4, β1 = 0.9 and β2 = 0.98. The learning rate is warmed up over 4 000
steps by increasing it linearly to reach a peak learning rate of 3 · 10−3 for the
LSTM and 10−3 for the Transformer. Thereafter, it is decayed by the inverse
square root of the number of steps, following the learning rate schedule proposed
in [15]. Additionally, Exponential Moving Average (EMA) [33] is applied during
the training to obtain the final weights of the model.

4.2 Results

IAM-OnDB On the IAM-OnDB the k-means baseline already achieves very
respectable results of up to 91.05% mIoU (Table 1). Considering that it is the
simplest of the methods and does not need any training beforehand. The high
mIoUs can be attributed to the fact that in the English language most characters
do not have the potential of creating much overlap with the next one, unless the
cursive writing is slanted excessively. As k-means relies heavily on the spatial
position, it is capable of separating a majority of the cases, particularly on block
letters. The LSTM is the strongest on this dataset with an mIoU of 93.72% on
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the Test Set F, suggesting that the model is expressive enough to handle more
difficult cases. A known limitation is that it cannot handle the delayed strokes
but as only a small number of points are actually part of the delayed strokes, in
addition to delayed strokes being fairly rare in the first place, the overall impact
on the mean Intersection over Union (mIoU) is rather small. On the other hand,
the Transformer does not reach the same level of accuracy, and is even slightly
below the k-means. This is presumably due to limited amount of data, which
does not satisfy the need of the generally data intensive Transformer models.
Similarly, the Transformer with the character queries cannot establish the quality
of results that is demonstrated in other experiments. Having an mIoU that is
roughly 3% lower than the Transformer for the character boundary detection, is
most likely because of the character queries being learned, and the same data
limitation applies to it, hence it cannot reach its full potential.

Table 1: IAM-OnDB results. All models were trained using only the IAM-
OnDB training set and the best model was determined by the mIoU on the
validation set.

Model Test Set T Test Set F

K-Means 88.94 91.05
LSTM 89.55 93.72

Transformer 86.18 90.34
Character Query Transformer 83.53 87.48

mean Intersection over Union (mIoU)

HANDS-VNOnDB The results for the HANDS-VNOnDB in Table 2 paint a
very different picture from the IAM-OnDB results. The k-means does not reach
quite the same level of accuracy on the Vietnamese characters as on English
characters, which is mainly related to the additional complexity of Vietnamese
characters, such as the use of diacritics, which can very easily shift in such a
way that it might be considered as part of another character when focusing
only on the spatial as well as temporal location of the points. This is a prime
example, where additional language information is needed to accurately segment
such characters. A much bigger difference to the previous results is observed in
the LSTM, which is significantly worse than any other method with an mIoU
of just under 50%. One expected reason for the degradation is the much more
prominent use of delayed strokes. In this situation, the LSTM exhibits significant
problems to accurately predict the character boundaries. The Transformer model
performs better but only achieves a similar performance as the k-means baseline.
By far the best results are achieved by the Character Query Transformer with
a staggering 92.53% mIoU on the Test Set, which is over 13% better than the
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next best method. This demonstrates that the approach is in fact working as
the delayed strokes are no longer an inherent limitation.

Table 2: HANDS-VNOnDB results. All models were trained using only the
HANDS-VNOnDB training set and the best model was determined by the mIoU
on the validation set.

Model Test Set

K-Means 79.78
LSTM 49.45

Transformer 78.22
Character Query Transformer 92.53

mean Intersection over Union (mIoU)

Combined Finally, the models have been trained using the combined training
sets, in order to see whether they are capable of scaling to multiple languages
and improve the overall results by attaining additional information that can be
found in the other dataset. It has to be noted that because these models use
embeddings of the characters, the mutually exclusive characters are not directly
benefiting from the combination of the dataset, in the sense of having more
data points of the same character, but can still improve as the model’s gen-
eral segmentation capability improves. Even though k-means is not affected by
changing the training data, it is still listed in Table 3 alongside the others for
reference. The deterioration of the LSTM on the IAM-OnDB was foreseeable as
it was not able to properly learn from the HANDS-VNOnDB. The drop of 6.48%
(from 93.72% to 87.24%) on the Test Set F is significant but not to the point
where the model fails completely. At the same time, its results on the HANDS-
VNOnDB improved a little, from 49.45% to 53.66% on the Test Set, but less than
the IAM-OnDB degraded. When it comes to the Transformer with the charac-
ter boundary prediction, it is almost identical on the HANDS-VNOnDB as it
was without using both datasets to train, but similarly to the LSTM the result
on the IAM-OnDB Test Set F deteriorated from 90.34% to 86.18% (-4.16%),
indicating that combining the two datasets has a negative effect on the models
predicting character boundaries. The Character Query Transformer is the only
model that benefited from training on both datasets. Even though the results
on the HANDS-VNOnDB barely changed (-0.47%), the IAM-OnDb improved
by almost 8% (from 87.48% to 95.11%). This demonstrates that the character
queries are robust and that it is capable of scaling to multiple languages, espe-
cially as the additional data contributed to the large data requirements of the
Transformer, even though it was not data from the same language.
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Table 3: Combined datasets results. All models were trained using the com-
bined training sets of IAM-OnDB and HANDS-VNOnDB and the best model
was determined by the mIoU across the validation sets.

IAM-OnDB HANDS-VNOnDB
Model Test Set T Test Set F Test Set

K-Means 88.94 91.05 79.78
LSTM 82.70 87.24 53.66

Transformer 80.93 86.18 78.25
Character Query Transformer 92.28 95.11 92.06

mean Intersection over Union (mIoU)

4.3 Ablation Study: CTC Spikes

CTC spikes can be used as additional information whenever a CTC-based rec-
ognizer has been run beforehand, as it already broadly located the characters
and therefore can serve as an initial guidance. There are other cases, where ei-
ther the text was already known without having to run a recognizer, or when
the recognizer does not utilize CTC. In this ablation study we remove the CTC
spikes to see whether they are a meaningful addition to the models. In the case
of k-means, the points where the CTC spikes occurred were used as the initial
centroids, without the CTC spikes they are randomly initialized instead, as is
common practice. All other models simply do not have the CTC spike informa-
tion in the points. The ablation was conducted on the combined datasets.

Including the CTC spikes is a significant improvement across the board.
The difference between using the CTC spikes and not, varies depending on the
model, ranging from 1.89% for the Transformer on the HANDS-VNOnDB Test
Set up to 11.88% for the character boundary predicting Transformer on the
IAM-OnDB Test Set F. Generally, the CTC spikes are less impactful on the
HANDS-VNOnDB, with the exception for the LSTM. The Character Query
Transformer is the most consistent and hovers around a difference of 4.5% on all
datasets, suggesting that it is very stable and is not tied to the CTC spikes but
simply uses them to improve the results in a meaningful way. Even though the
results without the CTC spikes are not quite as good, they can still be used in
cases where no CTC spikes are available.

5 Conclusion

In this paper, we have introduced a novel Transformer-based approach to on-line
handwritten character segmentation, which uses learned character queries in the
Transformer decoder block to assign sampling points of stylus trajectories to the
characters of a known transcription. In an experimental evaluation on two chal-
lenging datasets, IAM-OnDB and HANDS-VNOnDB, we compare the proposed
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Table 4: CTC spikes ablation study. Comparison of results when using CTC
spikes as a feature and without it. Including the CTC spikes improves the results
significantly across all models.

IAM-OnDB HANDS-VNOnDB
Model CTC Spikes Test Set T Test Set F Test Set

K-Means 80.12 83.83 76.82
K-Means ✓ 88.94 91.05 79.78

LSTM 74.60 80.59 42.24
LSTM ✓ 82.70 87.24 53.66

Transformer 70.21 74.30 76.36
Transformer ✓ 80.93 86.18 78.25

Character Query Transformer 86.03 90.78 87.58
Character Query Transformer ✓ 92.28 95.11 92.06

mean Intersection over Union (mIoU)

method with k-means, LSTM, and a standard Transformer architecture. In com-
paring the four methods, we observe that approaches which rely on spatial infor-
mation (k-means) perform reasonably well on non-monotonic handwriting but
lack learned features to extract the exact character boundaries. The approaches
that rely on temporal information (LSTM and standard Transformer) perform
well on mostly-monotonic handwriting, but fail in highly non-monotonic cases.
Using the Transformer decoder block in combination with character queries al-
lows us to outperform all other approaches because it uses the strengths of the
learned solutions, but does not have a strong inductive bias towards monotonic
handwriting.

We provide a character segmentation ground truth for the IAM-OnDB and
HANDS-VNOnDB using a high-quality approximation. Producing a perfect
ground truth for on-line handwritten character segmentation is impossible for
cursive script, since even humans will not always agree on the exact start and
end positions of the characters. Therefore, in future work, we aim to encode
this uncertainty into the ground truth and into the evaluation measures. An-
other line of future research is to use the segmented characters for creating
additional synthetic training material, which is expected to further improve the
performance of the Character Query Transformer.
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