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Abstract. Operating hydro turbines in off-design conditions increases the risk of cavitation 
occurrence, which in turn, leads to numerous problems such as performance degradations, 
structural vibrations, and most importantly, mechanical damage due to erosion. It is therefore 
crucial to develop a monitoring system that detects the occurrence and severity of cavitation in 
real time. For this purpose, a cavitation detection methodology has been developed that is based 
on the analysis of acoustic emissions of a turbine with machine learning algorithms. In this 
method, a conventional microphone is used to record the airborne noise emitted from a turbine 
under different working conditions, and then, a supervised learning algorithm is trained to 
classify the recorded noise signals into cavitating and non-cavitating categories. The detection 
system was developed based on laboratory tests and was validated in Ernen hydropower plant 
located in Canton of Wallis in southeast of Switzerland. This power plant consists of two 
identical double-flux Francis turbines each having a maximum power of 16 MW and a net head 
of 270 mWC. The preliminary results obtained from a two-day experimental campaign in the 
Ernen powerplant are very promising in terms of cavitation detection with a classification 
accuracy of more than 90 %. The system could be implemented either for real-time monitoring 
of cavitation occurrence allowing the operators to avoid such a condition or as a post processing 
tool to evaluate the number of hours a turbine has worked under severe conditions. Work is still 
ongoing to deploy more complex learning algorithms for this task to minimize expert 
intervention and/or interpretation during the setup process. 

Keywords: Hydro turbine, Cavitation, Machine learning, Acoustic emissions, Classification, 
Monitoring.  
 

1 Introduction 
With the massive integration of intermittent renewable energy sources such as wind and solar, higher 
flexibility in production is required from the hydropower sector [1]. This is translated into more frequent 
starts and stops, faster transition regimes, and more time spent in off-design conditions. Operating 
turbines far from their Best Efficiency Point (BEP) is accompanied with several concerns including 
hydrodynamic instabilities, fatigue and premature wear, and cavitation [2]. It is known that the 
occurrence of cavitation in a hydro turbine leads to numerous problems such as performance 
degradations, structural vibrations, and most importantly, mechanical damage due to erosion [3,4]. 
Mitigation of cavitation and its side effects has been a traditionally significant issue in the literature and 
many authors have contributed to this topic [5–8]. However, as the old saying goes, prevention is better 
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than cure. It is, therefore, of utmost importance to develop a monitoring system that detects the 
occurrence and severity of cavitation in hydro turbines in real time. Being able to detect cavitation in a 
hydraulic machine opens the door to predictive instead of preventive maintenance.  

Cavitation detection in pumps and turbines has been the topic of several works [9,10]. Most of the 
available techniques are based on classical signal processing methods applied to vibration, pressure, and 
acoustic signals measured at different locations close to the pump impeller or the turbine runner [11–
15]. For instance, Bajic [16] implements 20 high-frequency vibro-acoustical sensors on the shaft of the 
guide vanes of a double-runner Francis turbine with a sampling frequency as high as 1 MHz to detect 
different types of cavitation occurring in the machine. In a similar study, Valentín et al. [17] deploy a 
total of 67 sensors, including pressure sensors, accelerometers, strain gauges, and several other sensors 
to detect cavitation in a large Francis turbine prototype with a rated power of 444 MW. Regarding 
cavitation detection methods in hydro turbines, Escaler et al. [10] present a comprehensive list of 
cavitation types and detection techniques. A few recent works have initiated the implementation of 
machine learning algorithms in cavitation detection tasks in different applications [18–20].  

With the abundant amount of data that has become available in recent years, machine learning (ML) and 
deep learning (DL) methods could possibly be the new tool applied to detection of cavitation in hydraulic 
machines. In this regard, the present paper introduces a novel methodology for cavitation detection that 
has been developed based on the analysis of acoustic emissions with machine learning classification 
algorithms. The method has been developed through laboratory tests and been validated for the real case 
of a hydropower plant equipped with Francis turbines. The paper is organized as follows: Section 2 
describes the adopted methodology as well as the experimental setups used in the project, the main 
results of the study are presented in Section 3, which is followed by a short conclusion in section 4.  

2 Methodology  
The current study is based on experimental measurements, which include two distinct phases: the 
laboratory phase with controlled experiments in terms of flow conditions and background noise, and the 
powerplant phase where the real working conditions of a Francis turbine are tested. The laboratory tests 
were performed in the cavitation tunnel of the University of Applied Sciences and Arts Western 
Switzerland Valais (HES-SO), which has a test section of 40 × 80 × 500 mm. The maximum velocity at 
the narrow test section can reach 12 m/s and the facility bears a relative pressure range between -1 and 
5 bars [21,22]. The model test is a NACA 0015 hydrofoil geometry with a chord length of 60 mm and 
a maximum thickness of 15 % of its chord length. A schematic of the cavitation tunnel highlighting its 
test section, downstream pressure tank, and the circulating pumps is illustrated in Figure 1 (left). A side-
view image of the hydrofoil within the test section is shown in Figure 1 (right).  

  
Figure 1: (left) schematic of the HES-SO Valais/Wallis cavitation tunnel, (right) cross section of the 

tested NACA 0015 stainless steel hydrofoil.  
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Thanks to previous measurements, the cavitation map of the described hydrofoil, which delimits the 
regions of different cavitation types for given values of incidence angle (𝛼𝛼) and cavitation number (𝜎𝜎), 
was already in hand. This helped to prepare a comprehensive planning by targeting the zones of interests 
for the experimental campaigns. The laboratory experiments included static and dynamic regimes. For 
the static cases, the flow conditions including freestream velocity, incidence angle, and cavitation 
number were kept fixed and acoustic samples were acquired for one-second intervals. The airborne noise 
was recorded by means of a GRAS 46 AE microphone at a sampling frequency of 40 kHz. A summary 
of the tested flow conditions is available in Table 1. 

Table 1: Summary of the tested flow conditions 

Absolute pressure [bar] Inlet velocity [m/s] Reynolds [-] 𝝈𝝈 [-] 𝜶𝜶 [°] 
0.1 – 4 0 – 10 0 – 600,000 0.2 – 10 0 – 15 

To make the classification task more challenging, dynamic cases were introduced. In the latter, the flow 
velocity and angle of attack were fixed. The test rig pressure was initially set high enough to avoid any 
form of cavitation. Over a 150-second interval, the pressure was gradually decreased to induce cavitation 
on the hydrofoil and then pushed back to its initial value. The recorded signals were subsequently 
divided into samples of 1 second for further analysis.   

The second phase of experiments was executed in Ernen powerplant located in Wallis, Switzerland. The 
main goal is to verify whether the developed methodology in the laboratory would be also practical in 
the case of a real hydropower plant with all the added background noise or not. A picture of one of the 
Francis turbines installed in this plant is shown in Figure 2. The Ernen run-of-river powerplant is built 
on the Rhône River and consists of two identical groups, each of which is equipped with a double-runner 
Francis turbine with BEP power of 13 MW, nominal head of 270 mWC and flow rate of 7 m3/s. During 
the measurements, one of the two groups was mainly instrumented, and the second one only summary. 
In addition to the microphone used as the principal signal in the analysis, a wide range of mainly non-
intrusive sensors (e.g., accelerometers, high- and low-frequency acoustic emission probes, etc.) as well 
as upstream and downstream static pressure probes were installed at various locations on the turbine 
casing. These signals were recorded as additional monitoring indices and may be used for further 
improvement of the analysis at later stages.  

 
Figure 2: The double-runner Francis turbine at Ernen hydropower plant in Wallis, Switzerland.  

The test schedule was organized in a way to cover most of the possible operating conditions. This was 
done by sweeping the power of the instrumented turbine incrementally from zero to its maximum while 
the other group is either off or is running at its maximum capacity (or instantaneously lower if not 
enough flow is available in the river) as well as performing a number of start and stop sequences. Being 
a determining factor in cavitation, these operations were repeated at various downstream levels. Special 
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maneuvers such as activating the overhead crane or using a jackhammer close to the turbine casing were 
performed during the measurements to simulate background noise. More than 70 points were covered 
during the campaign. For each point, 180 seconds of measurements were recorded at 40 kHz, which 
were subsequently divided into subsamples of one second each. For further analysis, the acquired points 
were divided into two categories. About 30 % of the data were used as guidance points. These data were 
selected and labeled based on a hydraulic analysis of the powerplant. For these points, expert knowledge 
was used to determine the existence and severity of cavitation in the machine with a relatively high 
confidence. The remainder of the points were used as the test dataset to evaluate the functionality of the 
classification algorithm.  

In this project, the cavitation detection task was defined as a classification problem with supervised 
learning approach, meaning that the dataset should be labeled beforehand. To this end, each sample is 
labeled as ‘cavitating’ or ‘non-cavitating’ manually at the first place. In the laboratory, this task is 
achieved via listening to the recorded signals and watching the corresponding high-speed videos. In the 
powerplant, live observation and expert knowledge were used to define the regions associated with high 
risk of severe or moderate cavitation. The acoustic signal recorded close to the cavitating element 
(hydrofoil or turbine) is first pre-processed and then fed to the ML process. Each sample is transformed 
into the frequency domain via FFT and further processed to create the input features of the ML structure. 
At this step, a k-Nearest Neighbors (k-NN) classification algorithm is trained with 30 % of the laboratory 
recorded data as the training set. The same methodology is applied to the case of the powerplant, with 
the only difference that the classifier is a Gaussian Mixture Model (GMM).  

3 Results and Discussion 
Being isolated from other phenomena, it is relatively easy to detect cavitation for the laboratory static 
cases. These cases are, thus, more of an exploratory nature and serve as a guidance for a better pre-
processing of the signals and a wiser selection of the input features of the ML. In the time domain, the 
cavitation signature is visible through the augmented noise amplitude. In the frequency domain, the 
presence of cavitation is highlighted by an increase in the power of the higher frequencies. Therefore, 
the frequency content in the audible range is fed to the k-NN algorithm in this case as the input feature. 
Given the simplicity of the task and the correctness of the labels, the trained ML structure reached a 
100% classification accuracy. This was no surprise as human ear could also easily distinguish the 
cavitating samples from non-cavitating ones.  

 
Figure 3: Acoustic signal of a dynamic test illustrated in time (up) and frequency (down) domains. 

The results of a dynamic test performed at the laboratory for 𝛼𝛼 = 8° are shown in Figure 3. The upper 
plot is the signal amplitude presented in the time domain, while the lower plot depicts the signal in the 
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time-frequency domain. Over 150 s, pressure is reduced to trigger cavitation and subsequently increased 
to make it disappear. It is clear in Figure 3 that this action is accompanied by a richer signal in the time 
domain with higher amplitudes mainly in the second half of the interval. The changes are more obvious 
in the frequency domain, and a clear increase is observed in the higher frequencies as cavitation appears 
and develops in the test section.  

Shown in Figure 4 are the processed frequency content of all the cavitating (red) and non-cavitating 
(blue) cases of the static tests. The black curves correspond to 1-second cuts from the above presented 
dynamic test. Those depicted at left correspond to the interval of 10 to 20 s and are non-cavitating. The 
ones at right are taken from the 75 to 85 s interval and represent a cavitating flow. As it is clear, in this 
specific case, the non-cavitating flow falls right on the boundary, and thus, the predictions might be 
erroneous. This shows that the trained algorithm based on the static cases could not be directly used for 
the case of dynamic tests. Therefore, a new k-NN classifier is trained for the dynamic tests. This 
algorithm has a very good performance on the test dataset and achieves an accuracy of more than 95 % 
in cavitation detection. It should be noted that labeling the samples was more challenging for the 
dynamic tests. For some samples, it was very difficult to determine the state of cavitation by listening 
to the audio file. Therefore, there might also be some errors introduced due to mislabeling.  

 
Figure 4: Distribution of the ML feature values of cavitating (red) and non-cavitating (blue) flows 
obtained from the static tests at 𝛼𝛼 = 8°. The black curve at left corresponds to non-cavitating state 

during a dynamic test at the same incidence angle, while the one at right represents cavitating 
conditions during the same test.  

Based on the success of the proposed methodology in the laboratory tests, it was decided to test the 
technique in the real environment of a hydropower plant. Naturally, the measurements in the power plant 
are way more challenging. This is due to the huge background noise imposed by the generators and 
other machinery, as well as the limited access to the phenomenon compared to the laboratory. In 
particular, lack of visual access makes the labeling job more difficult and brings in an inevitable level 
of uncertainty. To minimize this effect, some of the points were acquired with extra care. These points 
were targeted based on the hydraulic analysis of the turbine to detect the zones with a high risk of 
cavitation and were later used as the labeled data to train the learning algorithm.  

The experience gained with the simplified cases of the laboratory, however, facilitated the analysis and 
the same technique based on the frequency content was implemented to obtain the input features. 
Employing proper statistical tools, one could illustrate the results on a 2D plot based on the first two 
dimensions. This allows one to efficiently visualize the data and the classes, and thereby, facilitates the 
evaluation of the results. A distribution of a part of the tested points is plotted accordingly in Figure 5. 
The data shown in this figure are those subject to the hydraulic analysis, and thus, comprise the training 
set. The percentage shows the power rate compared to the BEP. The classes on Figure 5 are defined 
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manually based on the expert knowledge. It is observed that the cavitating and non-cavitating flow 
conditions are effectively divided into two distinct regions on the left and right of this graph.  

 
Figure 5: Distribution of the different operating points in the training set plotted on the first two 
feature dimensions. The classes are added manually based on the hydraulic analysis and expert 
knowledge. The crosses and circles correspond to tests with low and high downstream levels. 

Considering a Gaussian distribution of data in each class presented in Figure 5, a GMM is trained based 
on the labeled points. In this technique, the classes correspond to a combination of best-fit ellipsoids 
that englobe the data holding the same label. In this case, the GMM is trained for four classes: ‘no 
cavitation’, ‘light cavitation’, ‘inter-blade vortex cavitation’, and ‘cavitation’. Based on its input 
features, each datapoint is attributed to the class with the highest probability. The results of the 
classification algorithm for all the operating points are shown in Figure 6. As is clear, the different 
operating points are well distributed amongst the four classes with quite well-defined boundaries. It 
seems that even the first selected dimension could be safely used to distinguish between the two main 
categories of ‘cavitating’ and ‘non-cavitating’. Concretely, it is observed that for values larger than 0.2, 
cavitation begins within the turbine, and for values higher than 0.5, the machine suffers from severe 
forms of cavitation. Such a condition could be directly employed as a health monitoring index. Besides, 
the three classes associated with different levels of cavitation are quite well shaped and delimited from 
the other classes. This is not, however, the case for the non-cavitating class. The data distribution in this 
class (green points) suggests that it should be comprised of some sub-classes. Notably, a cluster of 
datapoints is observable at the extreme left of the graph and two elongated less populated clusters are 
formed parallel to the main body of the data. Some of the corresponding points were looked up manually, 
and it was observed that each of these clusters corresponds to a distinct sub-category. The data 
accumulated at left reflect the tests where the instrumented turbine was not running, and the elongated 
clusters correspond to the points acquired during start and stop sequences. This observation puts in 
evidence that the acoustic signature of a turbine contains loads of useful information about its operating 
condition. It should be noted that including higher dimensions in the analysis may lead to more distinct 
separations between the classes and sub-classes.  

It is noted that due to the large volume of the tested data, it was not possible to label all the datapoints 
manually; meaning that one could not precisely evaluate the classification accuracy. However, to have 
a rough estimate of the overall performance, a considerable number of points were selected randomly 
and verified whether they were attributed to the right class or not. For the large majority of the data, the 
classifier had led to the right result. In addition, the technique was applied to the measurements 
performed during the night with the operating points being set directly by the dispatcher. The results 
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were promising; Similar patterns were observed in the distribution of the data as in Figure 6, which was 
further validated by random selection and verification of some of the datapoints.  

 
Figure 6: Distribution of the datapoints in the four classes plotted on the first two feature dimensions.  

A statistical analysis of the production history of the powerplant over a seven-year period is shown in 
Figure 7. It should be noted that each turbine has not run for 20 to 25 % of the time during this period 
and the corresponding columns at zero power are removed from Figure 7 for the better visibility of the 
other bins. Apparently, each of the two turbines has run close to its maximum nominal power for most 
of the time. Given the specific geometry of these double-flux Francis turbines with transversal shafts, 
no ordinary axisymmetric vortex could form in the draft tube, and thus, the full-load condition seems to 
be relatively harmless to the turbine. However, Figure 7 clearly shows that the distribution of the 
operating points of the turbine is not optimal regarding cavitation. In particular, there exists an 
outstanding peak at around 75 % of the nominal power for turbine number 2. Further analysis of the 
results presented in Figure 6 reveals that independent of the downstream level, the operating points 
between 45 % and 80 % of the nominal power (part-load regime) are prone to cavitation. The existence 
of this peak and distribution of the data in this interval shows that the turbine has been exploited in 
unfavorable conditions, which may have led to premature wear of certain components. 

  
Figure 7: Normalized distribution of the power rate of the two identical turbines of the Ernen hydropower plant 

over a seven-year period.  

Implementing such a cavitation detection system in hydropower plants could help the owners modify 
their schedules considering the machine health, or at least, make them aware of the number of hours that 
it has worked under severe conditions. The latter could serve as a building block for developing 
predictive maintenance in hydropower plants by providing the means to plan the next round of 
interventions before a serious damage occurs to a critical component.  
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4 Conclusion 
In this paper, a novel cavitation detection technique based on the analysis of acoustic signals by means 
of machine learning algorithms was presented. The methodology is developed in the laboratory and 
further evaluated in a hydropower plant equipped with double-runner Francis turbines. The detection 
task is defined as a classification problem, requiring the input data to be labeled. Labeling the data was 
a challenging step in the study and was performed manually by expert interpretation. The acoustic 
signals are first transformed to the frequency domain via FFT, and then, fed to the ML structure as the 
input features. Depending on the cases, either a k-NN or a Gaussian mixture model is trained as the 
classifier. In order to visualize the classes more conveniently and verify the performance of the system, 
the powerplant data were reduced via proper statistical tools and were presented in two dimensions. This 
made it possible to plot the classes on a 2D plot and observe that the cavitating and non-cavitating point 
are efficiently distinguishable.  

The presented approach allows one to detect cavitation, but not yet to separate the types of cavitation. 
The model is being improved to be capable of distinguishing between different levels of cavitation and 
attributing a severity index based on erosion risk. Developing such a system will help to minimize the 
number of hours spent in these regimes, increase the lifetime of the machines, and better plan the 
inspections. Nevertheless, the main objective of detecting cavitation in a non-intrusive way is proven 
feasible opening the door to predictive maintenance. Work is still ongoing to deploy more automized 
and complex ML algorithms such as clustering (unsupervised approach) for this detection task to 
minimize expert intervention and interpretation in labeling the samples. The outcome of this work will 
be a generic ML algorithm capable of detecting cavitation in a wide range of applications. This goal will 
be achieved via the ‘Transfer of Learning’ technique; meaning that for each specific application, the 
main model will be fine-tuned through a standard calibration process. Concretely, the airborne noise of 
a given machine will be recorded over a relatively short period (a few hours) and will be used to calibrate 
the main model for this particular application.  

5 Acknowledgement  
The analysis presented in this paper was obtained in the framework of the Master thesis of D. Voide 
while the infrastructure, the instrumentation expertise and the on-site measurements have been 
developed in the framework of the research projects TurbiCav (SI/501750) and HydroLEAP 
(SI/502106) funded by the Swiss Federal Office of Energy. The authors are sincerely thankful to the 
HYDRO Exploitation SA and FMV SA teams for their kind cooperation during the project. 

6 References 
 
[1] Münch-Alligné C, Decaix J, Gaspoz A, Hasmatuchi V, Dreyer M, Nicolet C, Alimirzazadeh S, Zordan J, 

Manso P and Crettenand S 2021 Production flexibility of small run-of-river power plants: KWGO smart-
storage case study IOP Conference Series: Earth and Environmental Science vol 774 (IOP Publishing)  

[2] Pereira Jr J G, Vagnoni E, Favrel A, Landry C, Alligné S, Nicolet C and Avellan F 2022 Prediction of 
unstable full load conditions in a Francis turbine prototype Mechanical Systems and Signal Processing 169 
108666 

[3] Sreedhar B K, Albert S K and and Pandit A B 2017 Cavitation damage: Theory and measurements–A review 
Wear 372 177–96 

[4] Avellan F 2004 Introduction to cavitation in hydraulic machinery (Politehnica University of Timișoara) 



31st IAHR Symposium on Hydraulic Machinery and Systems
IOP Conf. Series: Earth and Environmental Science 1079 (2022) 012015

IOP Publishing
doi:10.1088/1755-1315/1079/1/012015

9

[5] Rivetti A, Angulo M, Lucino C and Liscia S 2015 Pressurized air injection in an axial hydro-turbine model 
for the mitigation of tip leakage cavitation Journal of Physics: Conference Series vol 656 (IOP Publishing) 
p 012069 

[6] Amini A, Seo J, Rhee S H and Farhat M 2019 Mitigating tip vortex cavitation by a flexible trailing thread 
Physics of Fluids 31 127103 

[7] Amini A, Reclari M, Sano T, Iino M and Farhat M 2019 Suppressing tip vortex cavitation by winglets 
Experiments in Fluids 60 1–15 

[8] Kumar S, Cervantes M J and Gandhi B K 2021 Rotating vortex rope formation and mitigation in draft tube 
of hydro turbines–A review from experimental perspective Renewable and Sustainable Energy Reviews 136 
110354 

[9] McNulty P J and Pearsall I S 1982 Cavitation inception in pumps 

[10] Escaler X, Egusquiza E, Farhat M, Avellan F and Coussirat M 2006 Detection of cavitation in hydraulic 
turbines Mechanical systems and signal processing 20 983–1007 

[11] Farhat M, Bourdon P and Lavigne P 1996 Some hydro Quebec experiences on the vibratory approach for 
cavitation monitoring Proceedings of MTM Conference pp 151–61 

[12] Al-Obaidi A R and Towsyfyan H 2019 An experimental study on vibration signatures for detecting incipient 
cavitation in centrifugal pumps based on envelope spectrum analysis Journal of Applied Fluid Mechanics 
12 2057–67 

[13] Al-Obaidi A R 2020 Detection of cavitation phenomenon within a centrifugal pump based on vibration 
analysis technique in both time and frequency domains Experimental Techniques 44 329–47 

[14] Gruber P, Odermatt P, Etterlin M, Lerch T, Frei M and Farhat M 2014 The detection of cavitation in 
hydraulic machines by use of ultrasonic signal analysis IOP Conference Series: Earth and Environmental 
Science vol 22 (IOP Publishing) p 052005 

[15] Hasmatuchi V, Pedroni F, Biner D, Decaix J, Blommaert G and Münch-Alligné C 2019 Non-intrusive 
detection and monitoring of cavitation in hydraulic machines SCCER Annual Conference (Switzerland) p 1 

[16] Bajic B 2002 Multidimensional diagnostics of turbine cavitation J. Fluids Eng. 124 943–50 

[17] Valentín D, Presas A, Valero C, Egusquiza M and Egusquiza E 2019 Detection of hydraulic phenomena in 
francis turbines with different sensors Sensors 19 4053 

[18] Poddar S and Tandon N 2021 Classification and detection of cavitation, particle contamination and oil 
starvation in journal bearing through machine learning approach using acoustic emission signals 
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 235 
2137–43 

[19] Dutta N, Umashankar S, Shankar V A, Padmanaban S, Leonowicz Z and Wheeler P 2018 Centrifugal pump 
cavitation detection using machine learning algorithm technique 2018 IEEE International Conference on 
Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe 
(EEEIC/I&CPS Europe) (IEEE) pp 1–6 

[20] Nasiri M R, Mahjoob M J and Vahid-Alizadeh H 2011 Vibration signature analysis for detecting cavitation 
in centrifugal pumps using neural networks 2011 IEEE International Conference on Mechatronics (IEEE) 
pp 632–5 

[21] Hasmatuchi V, Botero F, Gabathuler S and Munch C 2015 Design and control of a new hydraulic test rig 
for small hydro turbines The International Journal on Hydropower & Dams 22 51–60 

[22] Hasmatuchi V, Bosioc A I, Luisier S and Münch-Alligné C 2018 A dynamic approach for faster performance 
measurements on hydraulic turbomachinery model testing Applied Sciences 8 1426 


