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ABSTRACT

Providing reliable and trustworthy predictions as the outcome of deep learning
models is a major challenge, particularly in supervised settings that include mis-
leading training annotations. Concept-based explanations clarify the relevance
of high-level concepts to the model predictions, although this may be biased by
the user’s expectations of the concepts. Here we propose a post-hoc unsupervised
method that automatically discovers high-level concepts learned by intermediate
layers of vision models. By the singular value decomposition of the latent space
of a layer, we discover concept vectors that correspond to orthogonal directions
of high variance and are relevant to the model prediction. Most of the identified
concepts are human-understandable, coherent and relevant to the task. Moreover,
by using the discovered concepts we identify training samples with confounding
factors that emerge as outliers. Our method is straightforward to implement, and it
can be easily adapted to interpret multiple architectures and identify anomalies in
the data collection.

1 INTRODUCTION

The supervised pre-training of a model’s parameters on large scale datasets such as ImageNet (Rus-
sakovsky et al., 2015) is a de-facto standard in multiple applications. Little attention has been
given, however, to labeling mistakes that occur in the training dataset, and to long-tail errors that are
counter-intuitive even to domain-experts Vasudevan et al. (2022). It is no secret that labelling errors
and noise would impact the quality and evaluation of the model, at times introducing undesired and
harmful biases. Unfortunately, the larger the dataset sizes, the harder it becomes to properly assess
the quality of the supervised labels. Deep learning models were shown to be overconfident Guo
et al. (2017), unreliable Nguyen et al. (2015), and biased towards simple first order statistics features
such as texture Geirhos et al. (2018). In this work, we show how matrix factorization can be used
to analyze the patterns learned by a deep learning model. Our framework, based on Singular Value
Decomposition (SVD) automatically identifies vectors at intermediate representations that can be
associated with high-level, human-understandable concepts. These directions are then used to explore
the training dataset and identify inputs presenting artefacts, confounding factors, or wrong labels.

Empirical evidence has already demonstrated that high-level concepts such as objects, shapes and
texture detectors are learned by intermediate model representations Bau et al. (2017); Kim et al.
(2018); Graziani et al. (2018); Raghu et al. (2017). The work on Concept Activation Vectors (CAVs),
in particular, identified unit vectors in the latent space that discriminate the learned representations
from those presenting a high-level concepts from those without. Yet, the existing work on concept
discovery is limited, with only a few methods that automatically analyze a layer’s activations without
requiring user-defined directives and questions Ghorbani et al. (2019); McGrath et al. (2022); Raghu
et al. (2017); McGrath et al. (2022). Different from the work on CAVs, discovery methods do
not require user-defined queries and are, as such, unbiased towards the user’s knowledge and
expectations Rosenthal & Fode (1963). These methods may force us to pay attention to some
concepts, or patterns that were neglected in the model analysis. The work in Ghorbani et al. (2019),
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for example, identifies image segments that cluster in the latent space, and uses CAVs to determine if
the direction of a cluster is a relevant concept for the model. Black and white striped textures emerge
as the main concept for recognizing zebras, and vehicle parts emerge as the main concept to detect
police vans as in Ghorbani et al. (2019). On a separate line, factorization approaches are based on the
interpretation of neurons as the basis vectors of a space, that is the latent space of a layer. McGrath
et al. (2022), for example, propose non-negative matrix factorization to decompose the activations in
AlphaZero and identify principal vectors that describe the model’s playing mechanics in chess. The
vectors identified with this method, however, were not directly associable with high-level concepts
and no analysis was performed on more intuitive tasks such as natural image classification.

We propose a general framework for concept discovery that can be applied to multiple architectures,
tasks and data types. Our method is a novel approach to automatically discover concept vectors
through the decomposition of a layer’s latent space into matrices consisting of singular values and
vectors. We identify concepts that are human-understandable and consistent with the results of
previous research, even if being computed only on 1% of the original training dataset. Similarly
to Bau et al. (2017); Ghorbani et al. (2019), our concept vectors point at precise concepts, such as
textures and object parts. Our user evaluation studies demonstrate that the discovered concepts are
easy to understand, allowing the user to inspect a model’s decision process. Extending our work
in Graziani et al. (Under Review.), here we offer a novel analysis of how the discovered concept
vectors can be used to retrieve outlier images from the dataset with incorrect or confounding labels.

2 CONCEPT DISCOVERY IN LATENT SPACES

Based on the observations of Kim et al. (2018), we assume that directions in the latent space of a
layer can identify the concepts used by a model for inference. However, while Kim et al. (2018)
rely on user-defined concept examples to find the concept vectors, here we aim to reverse-engineer
the problem. Our objective is to identify concept vectors that directly emerge as relevant directions
impacting the model decision function. We further assume, as suggested by Chen et al. (2020), that
concept vectors should be orthogonal to each other to maximize the separability of the concepts. the
objective of our method is to identify the set of orthonormal vectors in the latent space that carry
most of the information, i.e. that most impact the model’s prediction.

The method consists of three phases, namely: (i) identification of orthogonal vectors via the singular
value decomposition (SVD) of the activations of a layer; (ii) ranking of the singular vectors based on
high gradients and activation values; and (iii) selection of the top vectors in the new ranking and their
assignment to human-understandable concepts through visualization.

2.1 NOTATION

We consider the prediction function of a neural network f : Rm → Rn from an m-dimensional
input vector to an n-dimensional output vector. We assume the model was already trained using
a dataset consisting of N labeled pairs of input data points and labels {(xi, yi)}Ni=1 ⊂ Rm × Rn.
Given an arbitrary layer l, the neural network can be seen as a composition of a feature extractor
ϕl : Rm → Rd and a downstream predictor ψl : Rd → Rn, i.e. f(x) = ψl(ϕl(x)). In the following,
to simplify notation, and since we consider a single layer at a time, we drop the superscript identifying
the layer l. Furthermore, for a given input xi, we use the shorthand ϕi = ϕ(xi). We are interested in
finding M orthonormal vectors u1, .., uM ∈ Rd.

For the sake of generality, we present the method for n = 1 and for densely connected layers. The
method can be extended to n > 1, for example multi-class classification by applying the same
construction to each of the outputs. Similarly, for convolutional layers, a pooling operation is
introduced to obtain a d-dimensional representation. Details about both extensions are given in the
Appendix B.

2.2 STEP 1: SVD

Step one takes N input images from the train dataset, and it identifyies d orthonormal vectors that
best summarize the encoding of the dataset in the d-dimensional latent space of a layer l. We apply
SVD to the matrix of the entire layer’s response to the input dataset Φ ∈ Rd×N , which is obtained by
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column-stacking the latent representations ϕi, with i = 1, . . . , N . We obtain:

Φ = UΣV T (1)

Note that U ∈ Rd×d, V T ∈ RN×N , and Σ is a diagonal matrix of singular values σ1, . . . , σd. The
left singular vectors are the columns of the matrix U , and they align with the variance in Φ. The
singular values rank the directions from the largest to the lowest observed variance. In convolutional
neural networks (CNNs), the feature extraction is ϕl : Rh′×w′×c → Rh×w×d and it maps an input
image xi to d feature maps of width w and height h. We compute the SVD after the aggregation of the
spatial information by a global average pooling operation, hence Φ ∈ Rd×N , where d is the number
of channels. More precisely, by pooling, we reduce each ϕ(xi) ∈ Rh×w×d to a d-dimensional vector.

2.3 STEP 2: GRADIENT-INFORMED RANKING OF THE SINGULAR VECTORS

At this point, we are only making use of the feature extractor ϕ, and we are not considering whether
the singular vectors are actually used to solve the downstream task. This means that the vectors
found in the previous step might not be particularly relevant to the downstream predictive task. This
second step evaluates the relation of the singular vectors with respect to the output function. More
specifically, we evaluate the perturbation impact of moving the feature representation of each input
along the direction of the singular vector. As in Kim et al. (2018), this is done by considering the
directional derivative of the model output along the singular vectors. This operation is computed for
all the singular vectors in U .

We consider the gradient of the downstream predictor ψ (Section 2.1) with respect to the latent space,
which we denote ∇ϕψi for input ϕi. To compute the directional derivatives, we project the gradient
onto the singular vectors in U: ∇̃ϕψi = UT∇ϕψi.

At this point, it is important to note that an input data point may have large gradients for low-
activation features, and vice-versa, high activation values may be annihilated by close-to-zero
gradients. Therefore, we consider the joint impact of gradients and activations together. Let

ϕ̃i = UTϕi (2)

denote the projection coefficients of ϕi on the singular vectors. We consider the (element-wise)
product between the projection coefficients of the activations ϕ̃i and of the gradients ∇̃ϕψi:

g̃i = ∇̃ϕψi ⊙ ϕ̃i (3)

Finally, to compute the ranking, we consider the overall importance of a singular vector to the
prediction. This is simply given by the sample mean of the gi over all inputs i in the dataset:
g̃ = 1

N

∑
i g̃i. Note, g̃ ∈ Rd. For simplicity of the notation, we drop the tilde in the rest of the paper.

Simply put, this step replaces the conventional ranking of the singular vectors given by the values
in Σ with a new ranking based on the value of the projected gradients. In classification tasks with
n = K classes, we compute a separate gk ∈ Rd for each class k. To obtain the ranking, we further
evaluate how each gk compares to the values obtained for the other classes. For instance, we compare
gk to the distribution of the g−k obtained for all the input data points that are not of class k, hence for
all the K classes except k. Please refer to the Appendix B for additional details.

2.4 STEP 3: CANDIDATE DIRECTIONS FOR DISCOVERY

Finally, the third step uses the values of g̃ to identify the first M directions in the ranking as the
candidate vectors for discovery. As there is no guarantee that the discovered concepts will point to
human-understandable patterns or features, the candidate vectors need to be confirmed as discovered
concept vectors through human interfacing. The simplest way to obtain insights about a candidate
vector is by data analysis. We can project some input images, provided that they match the distribution
of the data used to train the model, along the direction of the vector and retrieve input samples with
increasing projection values. In dense models, the candidate vectors can also be used as feature
importance estimates. The elements of a candidate vector u are used as weights that are multiplied
element-wise to the feature importance values obtained by back-propagating the model’s gradients
all the way to the input. Section 2.5 gives more detail on how to obtain concept visualizations and
interpretations.
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Figure 1: Visualization of the discovered concept vectors for ImageNet classes. In the first two rows,
the input image is shown together with a zoomed-in version of the automatically segmented concept.
The last row shows the input images with largest projection on the concept vectors and the relative
concept segmentation masks. Our results are in line with previously discovered concepts for these
classes.

2.5 CONCEPT VISUALIZATION

Visualization is a useful tool to verify the human-understandability of the discovered concepts. We
define concept activation maps as the visualization of the model’s response, for a given concept, to a
certain input. The computation of such maps is straightforward for convolutional networks. For a
discovered concept direction u ∈ Rd, and an input image xi, we can visualize the layer’s activation
responding to the discovered concept as the sum of the d feature maps for each channel ϕi,1, . . . , ϕi,d
weighed by the concept vector coefficients. In other words, one can take the feature maps of each
channel and weight them by the coefficient values of the concept vector1. Note, if we were to consider
a concept that is fully aligned with the n-th feature map with n < d, e.g. u = (0, ..., 0, 1, 0, ..., 0),
that is non-zero only for un, the visualization for xi would correspond to the n-th feature map itself.
Concept segmentation masks can be directly derived from the concept maps by retaining the input
pixel values with concept activation higher than the 80-th percentile in the concept maps as in Bau
et al. (2017).

2.6 DATASET EXPLORATION

Concept discovery can be used for dataset exploration, for example, to find input samples that are
mislabeled or that contain confounding factors. Given the representation of an input sample in the
latent space, we project it onto the concept vectors as in Eq. 2. Anomalous samples are then identified
based on the statistical dispersion of the data projected onto the concept vectors. For instance,
we isolate 10% of the representations that fall outside of the interquartile range of the projection
coefficients for the training data. The inputs corresponding to these representations are flagged for
further inspection, as they may contain artefacts or potentially misleading confounding factors.

3 RESULTS

This section gathers the experimental results obtained by applying concept discovery to multiple
tasks and models. The experiments are run on de-facto standard models for which pretrained weights
are available online and interpretability research has already given multiple insights. Here we focus
on Inception V3 (IV3) with pretrained weights Szegedy et al. (2016) on the ImageNet ILSVRC2012
dataset Russakovsky et al. (2015). We first show with empirical evidence that our concept discovery
method can be used to automatically identify and recognize concepts of natural image categories in
Section 3.1. We then assess our method with human evaluation and quantitative studies in Section 3.2.
Finally, we analyse the results of dataset exploration in Section 3.3.

1Being the concept vector a singular vector, it has norm of one.
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Note that concept discovery is applied only to 1% of the entire ImageNet training dataset to limit the
memory requirements and make the computation accessible to our infrastructure. We undersample,
for instance, by retaining only one of every hundred training images. Where not stated otherwise, we
consider the concatenation layer Mixed 7b, which is a deep layer close to the end of the model and
where we expect to identify complex concepts. Similar analyzes can be performed at multiple depths,
layers and even on entirely different architectures, as demonstrated in the Appendix D.

3.1 DISCOVERED CONCEPTS IN IV3

For comparative purposes, we focus on classes that were already analyzed in related works Ghorbani
et al. (2019); Bau et al. (2017); Kim et al. (2018), namely lionfish, police-van, bubble and zebra.
We identify (with M = 1) one concept vector for each class, four orthogonal vectors in total.
Figure 1 depicts the visualization outputs, which illustrate different types of concepts, ranging from
patterns (as in the lionfish fins and the zebra coat), to graphics and tires (police van), and to glossy
reflections (bubble). The concept segmentation masks are obtained in a completely unsupervised
way as explained in Section 2.5. The concepts are automatically segmented at different scales,
and the segmentation is robust to repetitions of a concept within the same image. Additional
concept visualizations for other classes than the selected ones and for ResNet50 are provided in the
Appendix D, and a complete analysis for all classes will be made accessible online.

3.2 HUMAN EVALUATION AND QUANTITATIVE ASSESSMENT

Following the literature Ghorbani et al. (2019), we incorporated a human evaluation test with
30 participants2. The test was comprised of experiments on (i) intruder detection (ii) concept
meaningfulness and (iii) inter-user agreement. The users were introduced to the test by an exemplar
question and the relative correct answer (Appendix Figure 7). The intruder detection experiment (i)
was designed to evaluate the coherency of ten discovered concepts for ten different classes. Each
question showed a visualization of four concept segmentation masks obtained from the most relevant
concept vector, and one random segmentation mask obtained for a different (non-relevant) concept
vector. In each question, they were asked to identify the outlier image, namely the image being
conceptually different from the rest. On average the participants were able to identify the intruder
with an accuracy of 0.88. To evaluate the concept meaningfulness (ii), we asked participants to
label the concepts based on the visualization of the concept segmentation masks for three images.
Despite the small image segments illustrated by the concept segmentation masks, all participants
correctly labeled all the images, showing that the concept segmentation masks were easy to interpret
and associate with a concept. Finally, we evaluate inter-user agreement (iii) by asking each user to
agree or disagree with the concept labels defined by other participants. Out of 30 users, the inter-user
agreement was above 91% for all questions.

As a quantitative evaluation of the importance of the concept vectors, we compute the impact of
removing the discovered concepts as in Ghorbani et al. (2019). Occlusion is performed on the
input pixels with high values in the concept map of each concept, for instance, the input pixels
with concept map values higher than the 80-th percentile of the values. We quantify the smallest
destroying concepts (SDC) as the smallest number of concepts to remove in order to see a performance
degradation on at least 80% of the dataset. Such degradation is observed on approximatively 400
classes when the first most relevant concept is removed, and it extends to almost all ImageNet classes
(962 out of 1000) when we remove the first five concepts (as illustrated in the Appendix Figure 9).

3.3 DATASET EXPLORATION

We visualize some of the inputs that are flagged by the dataset exploration with concept discovery.
Our method flags 23% (0.2% of ImageNet) of the training set for which the representation are
distributed as outliers. For 184 of these images (1.8% of the training set) the model prediction is
wrong, differing from the ground-truth label. The flagged images belong to the training dataset,
hence they represent hard training examples that may be confusing the model rather than making it
more robust. This is confirmed by the lower top-1 accuracy on the flagged images at 0.90, against
the accuracy on the rest of the training images at 0.93. The accuracy on the images flagged by our

2The evaluation test can be accessed at https://forms.gle/MJ63G984ERvozuF38
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Figure 2: Results of dataset exploration with concept discovery. The method identifies training
images with particular issues. The first example presents a strong style shift from real images to
drawings. Extremely poor resolution affects the quality of the second input. The last two images
present confounding factors. Multiple labels are equally correct for the third image, and the last
image shows an optical illusion. Where there seems to be a cliff, there is actually a high resolution
detail of two ants on a wooden surface.

Figure 3: Visual explanations for two training image examples that were flagged as outliers. Multiple
equally valid labels exist for the first example, and here the model is focusing on both the coffee
mug and the goblet in the image. Because of the low resolution of the safety pin example, the silver
reflection on the top right is misunderstood by the model as a can opener.

method is also lower than that obtained on images flagged by using a random neuron or a random
direction, both of which have an accuracy of 0.92. This confirms that the discovered concept vectors
identify directions in the latent space that are more informative for dataset exploration than random
neurons or vectors.

Figure 2 shows some examples flagged by our method. The flagged images present either strong
variations in the style and image resolution (e.g., the first two images from the left) or contain
confounding factors. In the third image from the left, for example, multiple labels are equally correct,
as both a shovel and a lawn mower are present in the image. Additional examples are shown in the
Appendix. To interpret the result, as in Figure 3 we visualize the concept maps and the segmentation
masks for some of the training images that are flagged as outliers. The model is deceived by multiple
object categories in the same image, and by optical illusions that are enhanced by poor resolution as
in the case of the safety pin image being wrongly classified as can opener.

We evaluate the utility of dataset exploration for concept discovery on 1000 randomly selected
validation images. The method flags 22% of the validation images for further inspection. The top-1
accuracy on these images is 0.73, against 0.78 on the rest of the validation images. To verify if these
images are actually harder samples for the model to classify, we perform uncertainty estimation by
approximating an ensemble of five models with Monte Carlo Dropout Gal & Ghahramani (2016).
The aleatoric uncertainty 3 is higher on the flagged images (at 2.13) than on the rest of the validation
set (at 1.96). Figure 10 of the Appendix illustrates that the flagged validation images show similar
artefacts to those in Figure 3, such as the shift from real images to drawings, poor resolution and
multiple object categories in the same image.

3Assessed by the expected entropy as in Malinin et al. (2022)
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4 CONCLUSIONS

We proposed a simple yet effective method that can be used to identify concept vectors representing
informative signal in the representation of a layer. From the empirical results and user studies
we can observe that most of the identified concepts are understandable and aligned with human
reasoning. At the same time, it is also true that the automatic discovery of the latent concepts
used by complex models is a challenging research direction. There is no theoretical guarantee that
human-understandable concepts will always emerge when interpreting deep learning models. In most
scenarios, intelligible behaviour and uninterpretable signals are likely to coexist, with models sharing
both similarity and differences in the processing of the input signals. Even in such cases, we believe
that concept discovery with SVD is a tool for unbiased interpretability, since it does not require any
pre-defined preference on the type of concepts being analysed. We demonstrate that such type of
analsyis can be useful to identify novel patterns and artefacts that affect the training of deep learning
models. This can be particularly beneficial in limited data regimes or in fields where deep learning
models are accelerating knowledge discovery such as chemistry and biology.
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A APPENDIX

B EXTENSION TO VISION CLASSIFICATION TASKS

Our approach can be easily extended to fit a variety of data types, latent spaces and model tasks.
Let us consider a convolutional neural network (CNN) f : Rh′×w′×c′ → RK classifying an input
image in n = K classes. Particularly, fi,k is the predicted probability of input xi belonging to class
k , namely p(y = k|x = xi). Nk is the number of samples in class k, with N =

∑K
k=1Nk. For

convolutional layers, the feature extraction is ϕl : Rh′×w′×c → Rh×w×d and it maps an input image
xi to d feature maps of width w and height h.

We compute the SVD in the latent space of a convolutional layer, after the aggregation of the spatial
information by a global average pooling operation, hence Φ ∈ Rd×N , where d is the number of
channels. More precisely, by pooling, we reduce each ϕ(xi) ∈ Rh×w×d to a d-dimensional vector.

Step 2 is also modified to consider K-classification tasks with CNNs. For each class k, we compute a
separate gk ∈ Rd. To obtain the ranking, we further evaluate how each gk compares to the values
obtained for the other classes. For instance, we compare gk to the distribution of the g−k obtained for
all the input data points that are not of class k, hence for all the K classes except k.

Formally, for each class k we compute the average of the projection of gk on the singular vectors:

gk =
1

Nk

∑
i,yi=k

UT gi,k, (4)

where gi,k ∈ Rd is the global average pooling of ϕ(xi) ⊙ ∇ϕψi,k
4. We then compute the sample

mean and standard deviation of the values obtained for all the rest of the data, namely for all classes
except k. The mean is obtained, for instance, by averaging over all the samples xi such that yi ̸= k:

g−k =
1

N −Nk

∑
i,yi ̸=k

UT gi,k′ . (5)

Similarly, the variance is computed as:

σ−
k

2
=

1

N −Nk

∑
i,yi ̸=k

(UT gi,k′ − g−k′)
2. (6)

Finally, the importance scores for each singular vector in U are given by:

zk =
gk − g−k
σ−
k

(7)

where zk,j is the importance score of the j-th column in U . This measure is then used to obtain a
class-specific ranking, from which we retain the first M positions to identify M concept vectors.

C ADDITIONAL RESULTS ON IV3 AND RESNET50

We provide additional results for 16 classes, namely airliner, clock, corkscrew, albatross, border
collie, road sign, flamingo, mushroom, artichoke, hammerhead shark, screwdriver, iPod, tench fish,
suspension bridge, umbrella and cucumber. The concept segmentation masks for the first most
important concept are shown in Figure 5. The concepts were resized to fit in the square, but they
originally appear at multiple scales in the input images.

Results obtained on ResNet50 (at layer 4.0.add) are shown in Figures 6 and 4. The visualizations
point to concepts that are similar to those highlighted in IV3 visualizations, such as the fish fins, the
zebra stripes, the glass-like reflections and van tires and logos. Figure 4 shows the input images in
the dataset that have the largest projection value on the concept vector for the four analysed classes.
We can see the striped pattern emerging again for the class zebra, although in this case the color of
the stripes seems to be given less importance. For the class bubble, the shape of the bird belly and
their repeated presence may share a similarity with the images in the bubble class.

4Note, the pooling is here applied after the element-wise product of the features maps and the gradients
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Figure 4: Results on ResNet50. Visualization of the inputs with the largest projection value on the
concept vectors for the classes lionfish, police van, bubble and zebra. Next to the input images we
visualize the concept segmentation masks.

Figure 5: IV3 concepts for additional classes. We show the resized segmentation masks.
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Figure 6: Results on RestNet50. Segmentation masks of the concept vectors in layer4.add of
ResNet50 for the same classes and input images in Figure 1.

D ADDITIONAL EVALUATION RESULTS

Figure 7 shows two examples proposed during the user study to familiarize the users with the
questions. Some of the labels proposed in part (ii) of the studyare shown in Figure 8 in the form of
wordclouds. Finally, Figure 9 shows the SDC values for the 1000 ImageNet classes.

(a) Task example in the user study part (i) on
concept coherency.

(b) Task example in the user study part (ii)
on concept understandability.

Figure 7: Examples proposed in the user study to familiarize the participants with the questions.

Figure 8: Labels proposed by the users for the visualization of the main concepts for the classes
airliner and mountain bike. The word font indicates the frequency of each word in the user responses.

E ADDITIONAL DATASET EXPLORATION RESULTS

Figure 10 shows some validation inputs that were flagged by our method for further inspection. The
first image shows style shift from real photos to drawings. The second and third images present
multiple objects belonging to different categories.
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Figure 9: Input space removal

Figure 10: Validation inputs flagged for further inspection
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