
An Energy Efficient Layer for Event-Based

Communications in Web-of-Things Frameworks

Gérôme Bovet
1
 and Jean Hennebert

2

1
LTCI, Telecom ParisTech, Paris, France

2
ICT Institute, University of Applied Sciences of Western Switzerland, Fribourg, Switzerland

gerome.bove@telecom-paristech.fr, jean.hennebert@hefr.ch

Abstract. Leveraging on the Web-of-Things (WoT) allows standardizing the

access of things from an application level point of view. The protocols of the

Web and especially HTTP are offering new ways to build mashups of things

consisting of sensors and actuators. Two communication protocols are now

emerging in the WoT domain for event-based data exchange, namely Web-

Sockets and RESTful APIs. In this work, we motivate and demonstrate the use

of a hybrid layer able to choose dynamically the most energy efficient protocol.

Keywords. Web-of-Things, RESTful services, WebSockets

1 Introduction

In the last few years, a vision of inter-connected sensors and actuators attached to

physical objects has emerged, leading to the concept of Internet-of-Things (IoT) [1].

This idiom includes the concept of Wireless Sensor Networks (WSN) and goes be-

yond with all kind of physical objects able to communicate. The field of building

automation is a potential target for IoT approaches where numerous communicating

sensors and actuators are in use [2]. In such smart-buildings, new communicating

objects are also appearing, for example to provide the user with feedback on the ener-

gy consumption [3]. The IoT has since then been extended from the IP usage towards

the inclusion of well-known Web patterns to ease the the integration and communica-

tion with things at the application level, leading to the concept of Web-of-Things

(WoT) [4]. One of the main problems of the IoT is certainly in the management of the

energy consumption of this multitude of communicating nodes. Although new low-

power standards like 6LoWPAN, IEEE802.15.4 and RPL are being established at the

network layer, the WoT framework is actually not energy aware at the application

level. We believe that the protocol and data structure used for communicating with

things at the highest layers could contribute to a significant reduction of the energy

consumption.

In this paper, we show the feasibility of using an additional layer at the application

level able to select the most suitable communication method in order to reduce the

energy consumption of things connected to the Internet through Wi-Fi. We rely on the

Web-of-Things paradigm proposing to use WebSockets or RESTful APIs for event-

Published in the Proceedings of the 7th FTRA International Conference on Multimedia and Ubiquitous Engineering (MUE
2013), 9-11 May 2013, Daegu, South Korea, whihch should be cited to refer to this work.

DOI: https://doi.org/10.1007/978-94-007-6738-6_12

based data exchange. Instead of forcing application developers choosing a communi-

cation method, they can rely on an hybrid layer dynamically selecting which method

is less energy consuming depending on how much and how frequently data should be

sent. This represents a meaningful advantage letting developers focus on other tasks

than thinking about costs. Sections 2 and 3 summarize related work and the principles

of event-based WoT communications. In Section 4, we present our proposal for im-

proving the event-based communication. In Section 5, we present the experimental

measurements and their analysis. Section 6 provides details on the implementation of

our hybrid layer and energy consumption measurements. Section 7 concludes our

paper and provides insights on further research.

2 Related work

The Cooltown project [5] is one of the early projects considering people, places and

things as Web resources, using HTTP GET and POST requests for manipulating

things. The recent progresses in embedded devices are now enabling the integration of

Web servers on things. The tendency is clearly shown with, for example, the

WebPlug WoT framework where sensors and actuators used to build so-called

mashups [6]. An important step towards a standardization of the communication at the

application level for web services was the introduction of the SOAP protocol. How-

ever, SOAP is not optimized in terms of energy consumption due to the large over-

head of XML and of the protocol itself [11]. Much lighter, RESTful APIs provided a

clear answer to this problem, with an increased adoption for many IS, especially in

the domain of IoT and WoT [10], [12]. Recently, persistent TCP connections called

WebSockets have been proposed for the communication between things [13]. Prelim-

inary comparisons between HTTP and WebSockets in terms of energy consumption

have been reported in [8]. This previous research shown differences between these

protocols in terms of energy consumption, with complex variations as a function of

the payload and frequency of the communication. Motivated by this previous work,

the research presented in this paper focuses on the analysis of the optimal choice be-

tween RESTful APIs and persistent TCP connections targeting energy efficiency.

More specifically, we open the question if rules may be implemented on things for

choosing automatically the most efficient way of communicating.

3 WoT event-based communications

Sensor and actuator data can vary in quantity and frequency according to the context

of use. For example a power outlet will continuously notify about the electricity con-

sumption when a device is plugged in, while on the other side a presence sensor will

only signal a change of state. This kind of behavior is leading to so-called event-based

communications. The WoT proposes two fundamentally different approaches for

managing event-based communication: HTTP callbacks and persistent TCP connec-

tions [7]. Both approaches are detailed below.

Registration. The first step for event-based system is the registration of the con-

sumer at the producer. Using things with REST, we can simply expand the API with a

service dedicated to registration [7]. A thing interested in being notified by change of

states of another object will announce itself by providing the required callback infor-

mation. For example, a lamp actuator will register a door contact sensor to be notified

when someone enters or leaves the room. The lamp sends a HTTP POST request to

http://door.office.home/register. This request can be of two types: (1) REST service -

containing a JSON message indicating a REST service as callback, (2) WebSocket -

containing the HTTP upgrade header field for switching to WebSocket, keeping open

the connection.

HTTP requests. The WoT relies on REST for exposing things as resources to the

Web [9]. Unlike SOAP, REST uses HTTP as application protocol for interacting with

things and not only as transport protocol. The advantages of REST over SOAP are in

having less overhead, and being resource oriented, which fits naturally with physical

objects. With WoT, every object is embedding a built-in Web server exposing an API

for interacting with its sensing, actuating and configuration capabilities. Self-

descriptives URLs are used through common HTTP requests, like GET, PUT, POST

and DELETE. For example, reading a sensor value is done using the GET verb and

actuating using POST. For event-based communications, POST is actually the only

necessary operation. A "consumer" object typically provides a REST service to be

notified of changes in another object. The service URL is provided as callback at the

registration on the producer. This is a significant aspect of our approach as we can

link sensors with actuators.

Persistent TCP connections. The second way of managing event-based commu-

nications proposed in the Web-of-Things framework is using persistent TCP connec-

tions also known as WebSockets [14]. This kind of communication is mostly used in

push scenarios where data has to be sent from a server to a client not running a Web

server, as for example Web browsers. The channel is kept open on both sides as long

as possible.

4 Proposal for energy efficient communications

The main idea of our proposal is to let the producer decide the most energy efficient

way to communicate, either through REST HTTP or through WeSockets. As it will be

shown later in Section 5, either mode become optimal as a function of the frequency

and payload of the messages exchanged. To enable dynamic switching between

modes, we explain here the modifications that are requested. It concerns mainly the

registration process and persistent TCP connections concept explained above. In our

vision, both modes are supported and therefore, the registration JSON message has to

include the available callbacks for REST and persistent TCP connection. The produc-

er will further select automatically which method is best suited for exchanging data

from an energy efficiency point of view. This is illustrated in Figure 1 with an exam-

ple involving a lamp and a door.

Fig. 1. Example of the registration process

For persistent TCP connections, our proposal slightly differs from what is currently

done with WoT. Indeed, WoT approaches suppose that the consumer initiates the

persistent connection, keeping the channel open while the producer sends its data. In

our approach, the producer has to select between HTTP or TCP and therefore initiates

the connection. If the connection is lost due to network faults, the producer will retry

to open a connection on the same port, unless the consumer registers with another

one.

5 Experimental measurements and analysis

HTTP requests and persistent TCP connections have different impact on energy con-

sumption. This is especially true for objects connected to the Internet with a Wi-Fi

transceiver. We show here how each method can influence the energy consumption of

things.

5.1 Test environment

We used the openPICUS FLYPORT programmable Wi-Fi module. This tiny module

(35 x 48 x 11 mm), is Wi-Fi IEEE802.11 certified and embeds a full TCP/IP stack,

able to connect to IEEE 802.11b/g/n networks. It supports 1 or 2 Mbit/s rates as well

as security protocols such as WEP, WPA-PSK and WPA2-PSK. The FLYPORT can

be powered either at 5V or at 3.3V and drains 128mA current at 3.3V when connected

to Wi-Fi. An IDE is available for developing application in C [15]. We set up an iso-

lated test environment composed of a FLYPORT module acting as the producer, an

access point and a PC acting as the consumer. The wireless network set up is 802.11g,

no encryption and long preamble. We also used a Hameg HM8115-2 for measuring

the energy consumption of the FLYPORT [16]. Having a dedicated test bench ensures

that no other device will be disturbing the proper running of the experiment as it

would be in a public network.

5.2 Power consumption measurements

We describe here our measurement campaign for both TCP and HTTP. During each

test of 30 seconds, the producer sent packets with a fixed payload size at a specific

interval. For measuring precisely the consequence of each method on the power con-

sumption, the FLYPORT was only running a minimal program sending events. The

values of payload and interval are chosen to match the behavior of some specific de-

vices and therefore to perform more realistic measurements. We made the payload

size in bytes vary from 1 to 400 and the intervals between packets in milliseconds

from 50 to 800, which correspond to certain devices one can find in smart buildings.

The combination of the payload sizes and intervals gives us a campaign of 30 meas-

urements as illustrated in Figure 2.

Fig. 2. Results of the average power consumption measurements for TCP and HTTP

From the Figure 2, we see that TCP is overall less energy consuming than HTTP.

TCP appears to be on average 4% less consuming than HTTP with a maximal gain of

9.5%. The quantity of transmitted packets is indeed lower for TCP than HTTP. With

TCP, once the connection is established, only one packet is necessary to send the

JSON message. HTTP is more complex as a connection has to be established every

time a JSON message must be sent. An HTTP connection includes the potential TCP

window negotiation, the HTTP header, the HTTP response, and finally the connection

closing. All this overhead causes an increase in consumption. The measurements also

show that the amount of payload data plays a less important role in the power con-

sumption. This is especially true for HTTP consumption. On the other hand, a factor

influencing the consumption is clearly the sending interval. The main observation is

that both modes are overlapping in terms of efficiency, with TCP is becoming less

optimal than HTTP in some conditions.

5.3 Consumption approximation for TCP and HTTP

HTTP. With TCP, the variable is the necessary time needed to send data, including

all underlying protocols. With Wi-Fi (802.11g) frame composition is taken from [17].

The energy consumption for one packet of data can be computed with the following

function: E(payload) = {PLCP preamble + (MAC header + IP header + TCP header +

payload) * ByteRate } * TransmitPower with IPheader, TCPheader and ByteRate

known from [18-19] and TransmitPower previously measured. When comparing the

theoretical values of the approximation to the measurements of the FLYPORT in

Figure 2, it comes out this function is accurate enough with an average error of

0.86%.

TCP. As explained earlier, the HTTP case is more complicated as for TCP. Instead

of using a theoretical model, we opted for a parametric model where the parameters

are fit to the observations. We converged to an exponential function, approximated as

in P(interval) = a*exp(b*interval) + c*exp(d*interval). Through a numerical fitting

algorithm, we computed the parameters a, b, c and d for every case of payload (1, 10,

50, 100, 200 and 400), ending up with 6 functions for the different payload sizes. The

computed parameters allow the functions to be quite precise with an average error of

0.05%.

6 Implementation and evaluation of the hybrid layer

We had first to develop a REST server library in C for the FLYPORT. The services

are registered by indicating a URL scheme corresponding to the Web service, and

providing a pointer to a callback function that will be called when the server receives

a request for this particular service. We then implemented the hybrid layer in charge

of dynamically choosing the appropriate method between TCP and HTTP when send-

ing events to registered consumers. We first implemented a history structure for re-

cording the past events sent to consumers. An instance of this structure is created for

every consumer registered. This allows computing the energy consumed to send the

previous events. According to this result, the layer then switches to the most efficient

method and this every time a new event must be sent. For computing the TCP mode

energy consumption, we implemented the function described in Sect. 5.3. The imple-

mentation includes a rule for intervals higher than 10 seconds to consider the keep-

alive packets (specific to the FLYPORT as it may differ on other modules) . The final

value is computed as follows: energy of each packet sent in history + energy at idle

between the shipments + energy of keep-alive packets. For HTTP, we implemented

the function as in Sect. 5.4. Using the history, we know the interval and the average

payload. Those values are then used as parameters for our approximation function.

Linear interpolations are used in the case of payload different as our reference values

(1, 10, 50, 100, 200 or 400). The obtained power value is then converted in energy by

knowing the time duration of the history.

Table 1 shows the energy measurements of our hybrid layer where some relevant

saves were achieved. For comparison purposes, we had to rerun the campaign for

each TCP and HTTP modes as our REST server running on the module is also con-

suming some energy. The column Gain shows the percentage of energy saved relative

to the highest value between TCP and HTTP. The column Loss shows the percentage

of energy lost relative to the lowest value between TCP and HTTP. The negative val-

ues in the Gain can be explained by the consumption due to the hybrid layer. Never-

theless, our hybrid layer clearly shows its usefulness allowing saving 6.2% of energy

in the best case and 2.1% on average. The hybrid layer also chooses the best method

for higher intervals above 10 seconds as it selects HTTP, which is theoretically the

best one for higher intervals.

Table 1. Power consumption comparison between TCP, HTTP and the hybrid layer

7 Discussion and conclusion

Our measurements showed that TCP and HTTP are not equivalent in terms of energy,

even if their purpose is the same. By offering a hybrid layer, we expect to globally

reduce the energy consumption and lengthen battery life of Web-of-Things. Although

our hybrid layer allows energy savings for sensors sending at a fixed interval, the

behavior remains open for varying intervals. The number of records saved in the his-

tory will play a role on how the layer will respond to changes of interval. Another

unresolved issue concerns the rate of symbols sent over Wi-Fi. The approximation

function for TCP requires knowing at which rate the module sends its data. Due to

changes in the surrounding environment, traffic congestions and other reasons, this

rate may be changing. In our case, we forced a rate of 2Mb/s in our test infrastructure.

In this paper, we explored a new way on how to reduce the energy consumption of

things working inside the WoT framework. Instead of giving the responsibility of

choice between TCP and HTTP for event notifications to developers, we introduce an

hybrid layer doing the job for them. Our results show that energy savings can be

achieved by selecting the most appropriate transport protocol. Further to this, we be-

lieve that our approach simplifies callbacks between things. Future work includes

addressing the varying interval of events and finding the best history size to conciliate

reaction time and filtering of outlier intervals. While the measured energy savings are

relatively limited, we believe our hybrid layer has further potentials, for example if

used as caching method of events by considering time penalties to limit the radio's

use.

Payload [bytes] Interval [ms] TCP [mW] HTTP [mW] Hybrid [mW] Gain [%] Loss [%]
1

1

1

10

10

10

50

50

50

100

100

100

200

200

400

400

50

100

200

50

100

200

50

100

200

50

100

200

50

100

50

100

406

404

402

405

405

403

408

404

402

407

403

402

411

406

415

410

429

420

409

430

422

411

432

422

409

430

422

411

431

423

429

423

407

406

403

405

405

404

409

404

403

408

404

402

414

406

418

412

5.41

3.45

1.49

6.17

4.20

1.73

5.62

4.46

1.49

5.39

4.46

2.24

4.11

4.19

2.63

2.67

0.25

0.49

0.25

0.00

0.00

0.25

0.24

0.00

0.25

0.25

0.25

0.00

0.72

0.00

0.72

0.49

References

1. Mattern F and Floerkemeier C (2010) From the Internet of Computers to the Internet of

Things. In: Sachs K, Petrov I, Guerrero P (eds) From Active Data Management to Event-

Based Systems and More. Springer, Heidelberg, p 242

2. Bovet G and Hennebert H (2012) The Web-of-Things conquering Smart Buildings. Bulle-

tin 10s/2012:15-19

3. Gisler C, Barchi G, Bovet G, Mugellini H and Hennebert J (2012) Demonstration Of A

Monitoring Lamp To Visualize The Energy Consumption In Houses. In: Proc. of the 10
th

International Conference on Pervasive Computing, Newcastle, UK, June 2012

4. Guinard D, Trifa V, Mattern F and Wilde E (2011) From the Internet of Things to the Web

of Things: Resource Oriented Architecture and Best Practices In: Uckelmann D, Harrison

M, Michahelles F (eds) Architecting the Internet of Things. Springer, Heidelberg, p 97

5. Kindberg T et al (2002) People, Places, Things: Web Presence for the Real World. Mobile

Networks and Applications 7:365-376

6. Ostermaier B, Schlup F and Römer K (2010) WebPlug: A Framework for the Web of

Things. In: Proc. of the First IEEE International Workshop on the Web of Things

(WOT2010), Mannheim, Germany, April 2010

7. Guinard D (2011) A Web of Things Application Architecture - Integrating the Real-World

into the Web. ETHZ, 2011

8. Bovet G and Hennebert H (2012) Communicating with Things – An Energy Consumption

Analysis. In: Proc. of the 10
th

 International Conference on Pervasive Computing, Newcas-

tle, UK, June 2012

9. Fielding R and Taylor R (2002) Principled design of the modern Web architecture. ACM

Transactions on Internet Technology 2:115-150

10. Aijaz F, Chaudhary M and Walke B (2009) Performance Comparison of a SOAP and

REST Mobile Web Server. In: Proc. of the 3
rd

 International Conference on Open-Source

Systems and Technologies, Lahore, Pakistan, December 2009

11. Groba C and Clarke S (2010) Web services on embedded systems – a performance study.

In: Proc. of the 8
th

 IEEE International Conference on Pervasive Computing and Communi-

cations, Mannheim, Germany April 2010

12. Hamad H, Saad M and Abed R (2010) Performance Evaluation of RESTful Web Services.

Computer Engineering 2:72-78

13. Priyantha N, Kansal A, Goraczko M et al (2008) Tiny Web Services: Design and Imple-

mentation of Interoperable and Evolvable Sensor Networks. In: Proc. of the 6
th

 ACM con-

ference on Embedded network sensor systems, Raleigh, USA, November 2008

14. Fette I and Melnikov A (2011) The WebSocket Protocol. RFC, December 2011

15. OpenPicus (2012) FLYPORT Datasheet.

http://space.openpicus.com/u/ftp/datasheet/flyport_wifi_datasheet_rev8.pdf

16. Hameg (2012) HM8115-2 power meter description. http://www.hameg.com/0.147.0.html

17. Vassis D, Rouskas A and Maglogiannis I (2005) The IEEE 802.11g standard for high data

rate WLANs. IEEE Network journal 9:21-26

18. Stevens R (1993) TCP/IP Illustrated: the protocols. Addison-Wesley Longman Publishing

Co., Boston, USA

19. Gast M (2005) 802.11 Wireless Networks: The Definitive Guide, Second Edition. O'Reilly

Media

