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Abstract. Leveraging on the Web-of-Things (WoT) allows standardizing the 

access of things from an application level point of view. The protocols of the 

Web and especially HTTP are offering new ways to build mashups of things 

consisting of sensors and actuators. Two communication protocols are now 

emerging in the WoT domain for event-based data exchange, namely Web-

Sockets and RESTful APIs. In this work, we motivate and demonstrate the use 

of a hybrid layer able to choose dynamically the most energy efficient protocol. 
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1 Introduction 

In the last few years, a vision of inter-connected sensors and actuators attached to 

physical objects has emerged, leading to the concept of Internet-of-Things (IoT) [1]. 

This idiom includes the concept of Wireless Sensor Networks (WSN) and goes be-

yond with all kind of physical objects able to communicate. The field of building 

automation is a potential target for IoT approaches where numerous communicating 

sensors and actuators are in use [2]. In such smart-buildings, new communicating 

objects are also appearing, for example to provide the user with feedback on the ener-

gy consumption [3]. The IoT has since then been extended from the IP usage towards 

the inclusion of well-known Web patterns to ease the the integration and communica-

tion with things at the application level, leading to the concept of Web-of-Things 

(WoT) [4]. One of the main problems of the IoT is certainly in the management of the 

energy consumption of this multitude of communicating nodes. Although new low-

power standards like 6LoWPAN, IEEE802.15.4 and RPL are being established at the 

network layer, the WoT framework is actually not energy aware at the application 

level. We believe that the protocol and data structure used for communicating with 

things at the highest layers could contribute to a significant reduction of the energy 

consumption. 

In this paper, we show the feasibility of using an additional layer at the application 

level able to select the most suitable communication method in order to reduce the 

energy consumption of things connected to the Internet through Wi-Fi. We rely on the 

Web-of-Things paradigm proposing to use WebSockets or RESTful APIs for event-
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based data exchange. Instead of forcing application developers choosing a communi-

cation method, they can rely on an hybrid layer dynamically selecting which method 

is less energy consuming depending on how much and how frequently data should be 

sent. This represents a meaningful advantage letting developers focus on other tasks 

than thinking about costs. Sections 2 and 3 summarize related work and the principles 

of event-based WoT communications. In Section 4, we present our proposal for im-

proving the event-based communication. In Section 5, we present the experimental 

measurements and their analysis. Section 6 provides details on the implementation of 

our hybrid layer and energy consumption measurements. Section 7 concludes our 

paper and provides insights on further research. 

2 Related work 

The Cooltown project [5] is one of the early projects considering people, places and 

things as Web resources, using HTTP GET and POST requests for manipulating 

things. The recent progresses in embedded devices are now enabling the integration of 

Web servers on things. The tendency is clearly shown with, for example, the 

WebPlug WoT framework where sensors and actuators used to build so-called 

mashups [6]. An important step towards a standardization of the communication at the 

application level for web services was the introduction of the SOAP protocol. How-

ever, SOAP is not optimized in terms of energy consumption due to the large over-

head of XML and of the protocol itself [11]. Much lighter, RESTful APIs provided a 

clear answer to this problem, with an increased adoption for many IS, especially in 

the domain of IoT and WoT [10], [12]. Recently, persistent TCP connections called 

WebSockets have been proposed for the communication between things [13]. Prelim-

inary comparisons between HTTP and WebSockets in terms of energy consumption 

have been reported in [8]. This previous research shown differences between these 

protocols in terms of energy consumption, with complex variations as a function of 

the payload and frequency of the communication. Motivated by this previous work, 

the research presented in this paper focuses on the analysis of the optimal choice be-

tween RESTful APIs and persistent TCP connections targeting energy efficiency. 

More specifically, we open the question if rules may be implemented on things for 

choosing automatically the most efficient way of communicating. 

3 WoT event-based communications 

Sensor and actuator data can vary in quantity and frequency according to the context 

of use. For example a power outlet will continuously notify about the electricity con-

sumption when a device is plugged in, while on the other side a presence sensor will 

only signal a change of state. This kind of behavior is leading to so-called event-based 

communications. The WoT proposes two fundamentally different approaches for 

managing event-based communication: HTTP callbacks and persistent TCP connec-

tions [7]. Both approaches are detailed below. 



Registration. The first step for event-based system is the registration of the con-

sumer at the producer. Using things with REST, we can simply expand the API with a 

service dedicated to registration [7]. A thing interested in being notified by change of 

states of another object will announce itself by providing the required callback infor-

mation. For example, a lamp actuator will register a door contact sensor to be notified 

when someone enters or leaves the room. The lamp sends a HTTP POST request to 

http://door.office.home/register. This request can be of two types: (1) REST service - 

containing a JSON message indicating a REST service as callback, (2) WebSocket - 

containing the HTTP upgrade header field for switching to WebSocket, keeping open 

the connection. 

HTTP requests. The WoT relies on REST for exposing things as resources to the 

Web [9]. Unlike SOAP, REST uses HTTP as application protocol for interacting with 

things and not only as transport protocol. The advantages of REST over SOAP are in 

having less overhead, and being resource oriented, which fits naturally with physical 

objects. With WoT, every object is embedding a built-in Web server exposing an API 

for interacting with its sensing, actuating and configuration capabilities. Self-

descriptives URLs are used through common HTTP requests, like GET, PUT, POST 

and DELETE. For example, reading a sensor value is done using the GET verb and 

actuating using POST. For event-based communications, POST is actually the only 

necessary operation. A "consumer" object typically provides a REST service to be 

notified of changes in another object. The service URL is provided as callback at the 

registration on the producer. This is a significant aspect of our approach as we can 

link sensors with actuators. 

Persistent TCP connections. The second way of managing event-based commu-

nications proposed in the Web-of-Things framework is using persistent TCP connec-

tions also known as WebSockets [14]. This kind of communication is mostly used in 

push scenarios where data has to be sent from a server to a client not running a Web 

server, as for example Web browsers. The channel is kept open on both sides as long 

as possible. 

4 Proposal for energy efficient communications 

The main idea of our proposal is to let the producer decide the most energy efficient 

way to communicate, either through REST HTTP or through WeSockets. As it will be 

shown later in Section 5, either mode become optimal as a function of the frequency 

and payload of the messages exchanged. To enable dynamic switching between 

modes, we explain here the modifications that are requested. It concerns mainly the 

registration process and persistent TCP connections concept explained above. In our 

vision, both modes are supported and therefore, the registration JSON message has to 

include the available callbacks for REST and persistent TCP connection. The produc-

er will further select automatically which method is best suited for exchanging data 

from an energy efficiency point of view. This is illustrated in Figure 1 with an exam-

ple involving a lamp and a door. 



 

Fig. 1. Example of the registration process 

For persistent TCP connections, our proposal slightly differs from what is currently 

done with WoT. Indeed, WoT approaches suppose that the consumer initiates the 

persistent connection, keeping the channel open while the producer sends its data. In 

our approach, the producer has to select between HTTP or TCP and therefore initiates 

the connection. If the connection is lost due to network faults, the producer will retry 

to open a connection on the same port, unless the consumer registers with another 

one. 

5 Experimental measurements and analysis 

HTTP requests and persistent TCP connections have different impact on energy con-

sumption. This is especially true for objects connected to the Internet with a Wi-Fi 

transceiver. We show here how each method can influence the energy consumption of 

things. 

5.1 Test environment 

We used the openPICUS FLYPORT programmable Wi-Fi module. This tiny module 

(35 x 48 x 11 mm), is Wi-Fi IEEE802.11 certified and embeds a full TCP/IP stack, 

able to connect to IEEE 802.11b/g/n networks. It supports 1 or 2 Mbit/s rates as well 

as security protocols such as WEP, WPA-PSK and WPA2-PSK. The FLYPORT can 

be powered either at 5V or at 3.3V and drains 128mA current at 3.3V when connected 

to Wi-Fi. An IDE is available for developing application in C [15]. We set up an iso-

lated test environment composed of a FLYPORT module acting as the producer, an 

access point and a PC acting as the consumer. The wireless network set up is 802.11g, 

no encryption and long preamble. We also used a Hameg HM8115-2 for measuring 

the energy consumption of the FLYPORT [16]. Having a dedicated test bench ensures 

that no other device will be disturbing the proper running of the experiment as it 

would be in a public network. 



5.2 Power consumption measurements 

We describe here our measurement campaign for both TCP and HTTP. During each 

test of 30 seconds, the producer sent packets with a fixed payload size at a specific 

interval. For measuring precisely the consequence of each method on the power con-

sumption, the FLYPORT was only running a minimal program sending events. The 

values of payload and interval are chosen to match the behavior of some specific de-

vices and therefore to perform more realistic measurements. We made the payload 

size in bytes vary from 1 to 400 and the intervals between packets in milliseconds 

from 50 to 800, which correspond to certain devices one can find in smart buildings. 

The combination of the payload sizes and intervals gives us a campaign of 30 meas-

urements as illustrated in Figure 2. 

 

Fig. 2. Results of the average power consumption measurements for TCP and HTTP 

From the Figure 2, we see that TCP is overall less energy consuming than HTTP. 

TCP appears to be on average 4% less consuming than HTTP with a maximal gain of 

9.5%. The quantity of transmitted packets is indeed lower for TCP than HTTP. With 

TCP, once the connection is established, only one packet is necessary to send the 

JSON message. HTTP is more complex as a connection has to be established every 

time a JSON message must be sent. An HTTP connection includes the potential TCP 

window negotiation, the HTTP header, the HTTP response, and finally the connection 

closing. All this overhead causes an increase in consumption. The measurements also 

show that the amount of payload data plays a less important role in the power con-

sumption. This is especially true for HTTP consumption. On the other hand, a factor 

influencing the consumption is clearly the sending interval. The main observation is 

that both modes are overlapping in terms of efficiency, with TCP is becoming less 

optimal than HTTP in some conditions. 

5.3 Consumption approximation for TCP and HTTP 

HTTP. With TCP, the variable is the necessary time needed to send data, including 

all underlying protocols. With Wi-Fi (802.11g) frame composition is taken from [17]. 



The energy consumption for one packet of data can be computed with the following 

function: E(payload) = {PLCP preamble + (MAC header + IP header + TCP header + 

payload) * ByteRate } * TransmitPower with IPheader, TCPheader and ByteRate 

known from [18-19] and TransmitPower previously measured. When comparing the 

theoretical values of the approximation to the measurements of the FLYPORT in 

Figure 2, it comes out this function is accurate enough with an average error of 

0.86%. 

TCP. As explained earlier, the HTTP case is more complicated as for TCP. Instead 

of using a theoretical model, we opted for a parametric model where the parameters 

are fit to the observations. We converged to an exponential function, approximated as 

in P(interval) = a*exp(b*interval) + c*exp(d*interval). Through a numerical fitting 

algorithm, we computed the parameters a, b, c and  d for every case of payload (1, 10, 

50, 100, 200 and 400), ending up with 6 functions for the different payload sizes. The 

computed parameters allow the functions to be quite precise with an average error of 

0.05%. 

6 Implementation and evaluation of the hybrid layer 

We had first to develop a REST server library in C for the FLYPORT. The services 

are registered by indicating a URL scheme corresponding to the Web service, and 

providing a pointer to a callback function that will be called when the server receives 

a request for this particular service. We then implemented the hybrid layer in charge 

of dynamically choosing the appropriate method between TCP and HTTP when send-

ing events to registered consumers. We first implemented a history structure for re-

cording the past events sent to consumers. An instance of this structure is created for 

every consumer registered. This allows computing the energy consumed to send the 

previous events. According to this result, the layer then switches to the most efficient 

method and this every time a new event must be sent. For computing the TCP mode 

energy consumption, we implemented the function described in Sect. 5.3. The imple-

mentation includes a rule for intervals higher than 10 seconds to consider the keep-

alive packets (specific to the FLYPORT as it may differ on other modules) . The final 

value is computed as follows: energy of each packet sent in history + energy at idle 

between the shipments + energy of keep-alive packets. For HTTP, we implemented 

the function as in Sect. 5.4. Using the history, we know the interval and the average 

payload. Those values are then used as parameters for our approximation function. 

Linear interpolations are used in the case of payload different as our reference values 

(1, 10, 50, 100, 200 or 400). The obtained power value is then converted in energy by 

knowing the time duration of the history. 

Table 1 shows the energy measurements of our hybrid layer where some relevant 

saves were achieved. For comparison purposes, we had to rerun the campaign for 

each TCP and HTTP modes as our REST server running on the module is also con-

suming some energy. The column Gain shows the percentage of energy saved relative 

to the highest value between TCP and HTTP. The column Loss shows the percentage 

of energy lost relative to the lowest value between TCP and HTTP. The negative val-



ues in the Gain can be explained by the consumption due to the hybrid layer. Never-

theless, our hybrid layer clearly shows its usefulness allowing saving 6.2% of energy 

in the best case and 2.1% on average. The hybrid layer also chooses the best method 

for higher intervals above 10 seconds as it selects HTTP, which is theoretically the 

best one for higher intervals. 

Table 1. Power consumption comparison between TCP, HTTP and the hybrid layer 

7 Discussion and conclusion 

Our measurements showed that TCP and HTTP are not equivalent in terms of energy, 

even if their purpose is the same. By offering a hybrid layer, we expect to globally 

reduce the energy consumption and lengthen battery life of Web-of-Things. Although 

our hybrid layer allows energy savings for sensors sending at a fixed interval, the 

behavior remains open for varying intervals. The number of records saved in the his-

tory will play a role on how the layer will respond to changes of interval. Another 

unresolved issue concerns the rate of symbols sent over Wi-Fi. The approximation 

function for TCP requires knowing at which rate the module sends its data. Due to 

changes in the surrounding environment, traffic congestions and other reasons, this 

rate may be changing. In our case, we forced a rate of 2Mb/s in our test infrastructure. 

In this paper, we explored a new way on how to reduce the energy consumption of 

things working inside the WoT framework. Instead of giving the responsibility of 

choice between TCP and HTTP for event notifications to developers, we introduce an 

hybrid layer doing the job for them. Our results show that energy savings can be 

achieved by selecting the most appropriate transport protocol. Further to this, we be-

lieve that our approach simplifies callbacks between things. Future work includes 

addressing the varying interval of events and finding the best history size to conciliate 

reaction time and filtering of outlier intervals. While the measured energy savings are 

relatively limited, we believe our hybrid layer has further potentials, for example if 

used as caching method of events by considering time penalties to limit the radio's 

use. 
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