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ABSTRACT

Humans are able to quickly adapt to new situations, learn effectively with limited
data, and create unique combinations of basic concepts. In contrast generalizing
out-of-distribution (OOD) data and achieving combinatorial generalizations are
fundamental challenges for the machine learning models. To address these chal-
lenges, we propose BtVAE, a method that employs supervised conditional VAE
models to achieve combinatorial generalization in certain scenarios and conse-
quently to generate out-of-distribution (OOD) data. Unlike previous approaches
that use new factors of variation during testing, our method uses only existing at-
tributes from the training data, but in ways that were not seen during training (e.g.,
small objects during training and large objects during testing).
We first learn a latent representation of the in-distribution inputs and we pass-
ing this representation in a conditional decoder, conditioning on some OOD at-
tribute values, to generate implicit OOD samples. These generated samples are
then translated back to the original in-distribution inputs, conditioning on the ac-
tual attribute values. To ensure that the generated OOD samples have the specified
OOD attribute values, a predictor is introduced. By training with OOD attribute
values the decoder learns to produce the correct output for unseen combinations,
resulting in a model that not only is able to reconstruct OOD data but also to
manipulate the OOD data and to generate samples conditioning on unseen combi-
nations of attribute values.

1 INTRODUCTION

Combinatorial generalization, the ability to understand and produce novel combinations of familiar
elements, is a key aspect of human intelligence. Humans can make ”infinite use of finite means”
(Wilhelm Von Humboldt, 1999; Chomsky, 2014), using a small set of elements (such as words) to
create limitless combinations (such as new sentences) (Battaglia et al., 2018). For example, one
can imagine a pink elephant even if they have never seen one before. While color and object are
independent, for a human brain imagining a pink elephant is a trivial task. However, for machine
learning (ML) models generating a pink elephant is not as straightforward if there are no pink ele-
phant in the training data as they struggle generating OOD data or mixing existing attributes (color
and object) (Lake et al., 2017; Bengio et al., 2018). Based on Battaglia et al. (2018) combinatorial
generalization should be one of the top priorities in modern artificial intelligence.

In this paper, we propose Back translation VAE (BtVAE) for conditionally generating OOD data.
Our aim is to 1. reconstruct missing combinations of data, 2. manipulate the attributes of the OOD
data and 3. generate samples conditioned on previously unseen combinations of properties. This can
be seen as OOD generation as we aim to generate unseen data. Notably, the OOD data that we as-
sume do not constitute new factors of variation, such as new attributes or domains, but combinations
of attributes that were not previously observed during training.

OOD generation is a relatively new field of research. Data augmentation is an effective way to
increase data diversity and it can therefore improve OOD generalization (Xie et al., 2020). Lee et al.
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(2018), Sricharan & Srivastava (2018), Vernekar et al. (2019) uses GANs and/or VAEs to generate
out-of-distribution samples in order to improve OOD detection. They do not focus at the capability
of the model to generate OOD data, their goal is to augment the training set with OOD data in
order to learn better the OOD classifier for OOD detection. Their resulting OOD samples mimic in-
distribution samples or are confined to the boundary of in-distribution samples. Unlike these works,
our approach focuses solely on generating OOD samples. Additionally, our approach focuses on
generating data from combinations of attributes that have never been seen during training, and not
from the boundary of in-distribution samples.

Recently, several papers using similar OOD dataset as in this paper explore whether models that
have high disentanglement performance are also able to perform certain forms of combinatorial
generalization. (Higgins et al., 2018; Watters et al., 2019; Dittadi et al., 2021; Montero et al., 2021;
Montero et al.; Schott et al., 2022). Dittadi et al. (2021); Cai et al. (2019) have shown promising
results using disentanglement models for OOD tasks but the models have been tested on simple
OOD data where only a small number of combinations were excluded Montero et al. (2021). In
contrast recent studies such as Montero et al. (2021); Montero et al.; Schott et al. (2022) have tested
different models under more challenging conditions found no evidence that the disentanglement
representation supports combinatorial generalization in both latent space and reconstruction space
under challenging generalisation conditions (larger number of combinations are excluded from the
training set). In this paper we test the OOD generation performance of our model by excluding cer-
tain combinations of attribute values from the training data, similar to the approach used in Montero
et al. (2021); Montero et al.; Schott et al. (2022) but instead of aiming for a disentangled latent space
we aim conditional generation of unseen properties.

In this paper, we propose Back Translation VAE (BtVAE), a conditional generative learning frame-
work which aims to achieve combinatorial generalization. Our approach uses a VAE with a condi-
tional decoder that learns to reconstruct and to modify OOD data that have the same attributes as the
training data but in combinations that have never been seen during training. To accomplish this, we
randomly sample values for the conditioning attributes and pass them to the decoder. This ensures
that the decoder receives combinations of attributes that may not exist in the training data. Finally,
we pass the output of the decoder through a second VAE (with shared parameters) conditioning this
time to the corresponding attribute values of the in-distribution input. This way, we translate the
OOD generated data back to the in-distribution data and can check the reconstruction error of our
model. Our translation procedure can be seen as a cycle consistency constraint Zhu et al. (2017);
Kim et al. (2017); Jha et al. (2018), but it doesn’t require swapping the latent representations of two
different

2 BTVAE

In this section, we present BtVAE, a generative model for OOD generation. Our goal is to learn a
conditional generation model p(x|y) that will allow us

1. to generate data conditioning on attribute values combinations that have never been ob-
served in the training set.

2. to reconstruct OOD data.

3. to manipulate certain desired characteristics of the OOD data before reconstructing it.

2.1 PROBLEM FORMULATION

We want to learn a conditional generation model that learns mapping among unseen combination of
attributes that will allows us to generate samples conditioning on desired unseen combinations of
attribute values that are not included at the training data. As in real-world applications, we only have
access to a finite set of inputs and attributes and the data often are collected from two related but
distinct distributions. So, we consider an OOD setting where the prior distribution ptrain(y) during
training is different from the prior distribution ptest(y) during testing. Hence, some values in the set
Ab of an attribute yb are not present in ptrain but are in ptest:

ptrain(y
b = v) = 0 ptest(y

b = v) > 0 (1)
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In fact, the training and test distributions are completely disjoint, meaning that each point can only
have non-zero probability mass in either ptrain or ptest.

For example, if the dataset contains images of people’s face, the training dataset does not contain im-
ages of women wearing glasses or images of men with blond hair, if the dataset is a set of molecules,
the training dataset might not contain a range of LogP or molecular weight values and the test dataset
consist only from these excluded combinations. We have to mention that while ptrain and ptest are
different on our setting, they are both related to the true distribution p.

We consider a conditional latent-variable model pθ(x, z|y) = pθ(x|y, z)p(z), where x denotes an
observation, y represents the associated attributes and z the associated latent variables. The marginal
p(z) is a prior over the latent variable and pθ(x|y, z) is an exponential family distribution whose
natural parameter is a function of z parametrized by θ, e.g. through a neural network. A generative
conditional model may not always effectively use the conditioning information during the generative
process, particularly when dealing with out-of-distribution data. To address this issue and improve
OOD generations, we propose BtVAE which employs a conditional VAE and the back translation
procedure. During the training the input observation is modified by conditioning it on randomly
chosen attribute values, and then the modified input is used to reconstruct the original observation
while conditioning on the actual attributes. By conditioning on randomly chosen attribute values
during training, the model learns to handle a variety of combinations of input-attribute pairs, that
may are excluded from the training data thus making it capable of handling OOD data.

2.2 MODEL

BtVAE, Figure 1, is composed of a probabilistic encoder and a conditional probabilistic decoder. The
encoder maps an input data point x to its latent representation z. The decoder then takes this latent
representation and random sampled attribute values from the prior, ỹ ∼ p(y) and generates a new
version of the input, x̃, that may have attribute value combinations that do not exist in the training
data. In the same time we aim to keep the other details of the given input x as much as possible
unchanged. To ensure that the generated output x̃ preserves the content of of the original input
x while changing only the conditioning attributes we translate x̃ back to x. We map x̃ back to the
original input data point, x, by passing x̃ through the encoder again to get a new latent representation,
z̃, and then passing z̃ and the original attribute values, y, to the decoder to reconstruct the original
input, x. The proposed model is trained jointly end-to-end.

Figure 1: Main architecture of the BtVAE model. The model consists of two VAEs with conditional decoders.
The first one (blue) modifies the input image conditioning on random sampled attribute values and then the
second one (green) translates the modified image back to the original conditioning on the attribute values of the
original input.

This procedure is called back translation. The result of back translation is that when we now pass
(z̃,y) into the decoder, we know how the output should look like, and we can train the model to
map (x̃,y) into x. The back-translation process is trained by minimizing the back-translation loss,
Equation 2 , which is a combination of three terms.

Lbt = Eqφ(z̃|x̃) log pθ(x|z̃,y)︸ ︷︷ ︸
A

−DKL((qφ(z|x)‖p(z))︸ ︷︷ ︸
B

−DKL(qφ(z̃|x̃)‖p(z))︸ ︷︷ ︸
C

(2)

The first term is the negative reconstruction cost between the output of the second VAE and the input
of the first one. It can be seen as a cycle consistency loss E[||x−Dec(Enc(x̃),y)|| that ensures that
the content of the input x will be preserved. Term B penalizes the derivations of the approximate
posterior when conditioning on a given input x from the prior and term C penalizes the derivations
of the approximate posterior when conditioning on the modified input x̃ from the prior.
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However, a trivial solution of the model in order to map (x̃,y) into x would be to ignore the con-
ditioning attribute component ỹ in which case the x̃ would be simply a reconstruction of the input
data x. To overcome this, the generated output x̃ is passed through the attribute network fη . In this
way we constrain the generated output x̃ to have the target attributes values, ỹ, i.e. f(x̃)→ ỹ. This
is done by minimizing the attribute constraint objective, Equation 3

Lattr = Ex̃∼pθ(x̃|z,ỹ)[l(fη(x̃), ỹ)] (3)

where, η is the prediction model and l(·) represents a loss function. When the attributes are binary
labels fη is an classifier and l is Binary Cross Entropy, while when the attributes are continuous fη
is a regressor and l is a classical mean squared error (MSE).

The final objective of the model is obtained by combining the back-translation objective with the
attribute constraint regularizer, Equation 4.

L = Lbt +Lattr (4)

At the beginning of the training the only useful information provided to the decoder is the random
sampled attribute values y. This, in combination with the attribute network, encourages the decoder
to use the provided attributes throughout the entire training process. As the model becomes better
trained, the process can be seen as a form of data augmentation, where new inputs with desired
attributes x̃, ỹ (which can be out-of-distribution data) are used. By encoding these new inputs x̃ and
decoding them using the original attribute values y, we can manipulate the attributes of the input
while maintaining a clear understanding of how the generated output should look like (through the
use of back translation). This allows not only us to measure the reconstruction error between the
generated output and the desired output, which provides a way to evaluate the model’s performance,
but also to preserve the content of the original input x.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

DATASETS

We evaluate our method using two datasets with independent controlable factors, dSprites (Matthey
et al., 2017) and Shapes3D (Burgess & Kim, 2018) and one with continuous attributes, the MNIST
(LeCun et al., 2010). Both dSprites (2D shapes) and Shapes3D (3D colored shapes) are generated
from 6 ground truth independent latent factors. For the MNIST dataset, instead of conditioning on
the digit ID, which is highly informative, we used two continuous attributes, namely stroke width
and digit tilt.

To test combinatorial generalisation, following Montero et al. (2021); Montero et al.; Schott et al.
(2022), we create disjoint splits of train sets Dtrain and test sets Dtest. We excluded some combi-
nations of the generative factors in the case of the dSprites and the Shapes3D data and a subset of
the MNIST dataset from the training data. We test the capability of out model to reconstruct unseen
OOD data, to generate samples conditioning to desired property combinations that they do not exist
in the training data and to manipulate the attributes of the OOD data.

To create the training/test split all examples with combinations of a subset of attribute values are
excluded from the training set and added to the test set. Thus, an example of a dataset may consist
of a training set where all combinations where [g1 > 0.5, g2 > 0.5] have been excluded from the
training set and have been added to the test set. Note that the model trained on such a datasets would
come across a number of examples where [g1 > 0.5] and also examples where [g2 > 0.5], but never
be trained on an example where both these conditions are true simultaneously. This method was
used to create training / test sets for each of the datsets in the following manner:

• dSprites: all images with xPos > 0.5 and yPos > 0.5 were excluded from the training
set. A shape never appear on the right up side of the image, but do appear on the left and
down side and right and up side.
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• Shapes3D: all images such that [floorColor < 0.3] and [wallColor > 0.5] were removed
from the training data. Thus, floor colors in the first third of the HSV spectrum (red,
orange.etc) as wall color in the second half of the HSV spectrum (shades of blue, purple,
etc) did not appear in the training set. Thus floor colors like red and orange were observed
in combination with wall color like red, orange.
• MNIST : all images of the digits 7 and 2 with −0.9 < StrokeWidth < 1.5 and
−1 < Tilt < 0.5 were excluded from the training set. The digit 7 or 2 never appear
with StrokeWidth equal to 1. Tilt equal to 0 but the digit 8 could have this property values
combination.

BASELINES

BtVAE is based on the framework of the conditional VAE. To assess its effectiveness in addressing
OOD reconstruction, attribute manipulation, and conditional generation, we compare it against a
conditional VAE as a baseline.. Additionally, we compare our model with the CsVAE (Klys et al.,
2018) and the MSP (Li et al., 2020). CsVAE, like BtVAAE is based on a conditional VAE model, but
uses two latent variables to separate the information correlated with the attributes y into a pre-defined
subspace. This separation is achieved by minimizing the mutual information z and y, and results
in better control over the generative process. The MSP model, on the other hand, uses orthogonal
matrix projection onto subspaces to factor out the information about the attributes of interest y from
the latent variable z. Both the CsVAE and MSP models, similar to our BtVAE model, are supervised,
and they both allow for more precise control over the latent representation making possible potential
implications in OOD settings.

EVALUATION

As evaluation metric we use the R2 score based on the MSE score (Schott et al., 2022; Xu et al.,
2022). We define the the R2 score per attribute yi as

R2
i = 1− MSEi

σ2
i

with MSEj = E(x,y)∼Dtest [(yj − fj(x))
2] (5)

where σ2
i is the variance per attribute on the whole dataset. A largeR2 value indicates perfect fit and

a value close to zero indicates random guessing since the MSE would be identical to the variance.
By utilizing theR2 score, we can quantitatively evaluate our model’s performance in terms of fitting
and predicting attributes.

3.2 RESULTS

We examine the ability of our model to generate the samples conditioning on property combinations
values that have never seen during the training, to reconstruct OOD data and to manipulate the
attributes of the OOD data when all the labels are available.

All the models are successful in reconstructing OOD data, as demonstrated in Figures 5, 6. The
original images are displayed in the first row of the reconstruction figures, while the corresponding
reconstructions appear in the second row. In the case of the Shapes3D dataset, all models show re-
markable performance with an R2 value close to 0.99, as indicated in Table 2. This result highlights
the models’ ability to effectively leverage the conditioning attributes, floor color and wall color, in
the reconstruction process, even in cases where the attribute combinations are not present in the
training data. This is further verified visually in Figure 5, where we can see that the models not only
maintain the correct colors but also accurately reconstruct the shape.

In the attribute manipulation task, we condition the model on eight different attribute value combi-
nations, with the first four being in-distribution attribute value combinations and the latter four being
OOD combinations of attribute values. In Figures 8b, 8c, 8d and 8e, the first four columns display
the results of the in-distribution attribute value combinations, while the remaining four columns
show the results of the OOD attribute combinations. In both datasets, BtVAE and MSP are able
to effectively manipulate the attributes, even for combinations that were not seen during training.
cVAE is only able to manipulate the images using in-distribution combinations and struggled to
generate data with OOD attribute combinations.
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dSprites Shapes3d
Model Recon. Manip. Recon. Manip.
BtVAE 0.83 0.82 0.99 0.99
MSP 0.76 0.81 0.99 0.99

CsVAE 0.62 0.16 0.99 0.12
cVAE 0.84 0.72 0.99 0.56

2: R2 score on the reconstruction and
attribute manipulation capability of the models
using dSprites and Shapes3d datasets

(a) BtVAE (b) MSP (c) cVAE
3: MNIST OOD reconstructions

(a) BtVAE (b) CsVAE (c) CVAE
4: Shapes3D: Samples conditioning on OOD attribute val-

ues.

5: Shapes3d OOD reconstructions

(a) BtVAE (b) MSP

(c) CsVAE (d) cVAE

6: dSprited OOD reconstructions

(a) BtVAE (b) MSP

(c) CsVAE (d) cVAE

(a) BtVAE (b) MSP (c) cVAE
Figure 7: MNIST, OOD Attribute manipulation

Finally, in the task of conditional generation, BtVAE is the only model capable of generating con-
ditional samples based on OOD attribute values, as shown in Figure 4. By drawing samples from
a standard normal prior and conditioning on combinations of attributes that were not present in the
training data, the model effectively utilized the target properties while simultaneously generates a
diverse range of shapes and coloured objects. This highlights the successful learning of the latent
representations and that the model in disentangling the latent representations from the conditioning
attributes.

For the MNIST dataset we excluded from the training data a range of values from the stroke width
and digit tilt properties of the digits 7 and 2. In the tasks of reconstruction and attribute manipula-
tion, the BtVAE model achieves a R2 score close to 0.96 in both OOD reconstruction and attribute
manipulation, Figures 3a, 7a and it is able to capture the target digit while reconstructing the OOD
data. The MSP model is also successful in reconstructing OOD data and manipulating the OOD
attribute value combinations, however, it fails in the conditional generation task. On the other hand,
the cVAE model struggles in the OOD setting, with a tendency to predict a digit close to the desired
one, but with the correct given attribute values, whenever the attribute combination is outside of the
training distribution. As we can see in Figures 3c, 7c while the target properties are accurate, but
this is not the case for the digit as we can see a digit 2 being replaced with a digit 8.

4 CONCLUSION

In this paper, we proposed an approach to handle OOD generation, where OOD is defined as com-
binations of attribute values not observed during training. We evaluated the effectiveness of the
BtVAE model in three OOD generation tasks: (1) reconstruction of unseen data, (2) manipulation
of attributes using unseen combinations of values, and (3) conditional generation based on unseen
attribute value combinations. The results showed that the BtVAE model performs well in all three
tasks. Additionally, baseline models also demonstrated promising results in OOD tasks, especially
in OOD reconstruction and attribute manipulation, demonstrating that supervised learning can some-
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(a) OOD (b) BtVAE (c) MSP

(d) CsVAE (e) CVAE
Figure 8: Shapes3D OD Attribute manipulation: using the latent representation of the images in Figure 8a we
generate new images by interpolating the floor and wall colour.

times suffice for OOD generation using simple datasets. However, it is crucial to further evaluate
the model’s performance on more challenging datasets.
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