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Abstract
Objective Although artificial intelligence (AI) has demonstrated promise in enhancing breast cancer diagnosis, the imple-
mentation of AI algorithms in clinical practice encounters various barriers. This scoping review aims to identify these bar-
riers and facilitators to highlight key considerations for developing and implementing AI solutions in breast cancer imaging.
Method A literature search was conducted from 2012 to 2022 in six databases (PubMed, Web of Science, CINHAL, Embase, 
IEEE, and ArXiv). The articles were included if some barriers and/or facilitators in the conception or implementation of AI 
in breast clinical imaging were described. We excluded research only focusing on performance, or with data not acquired in 
a clinical radiology setup and not involving real patients.
Results A total of 107 articles were included. We identified six major barriers related to data (B1), black box and trust (B2), 
algorithms and conception (B3), evaluation and validation (B4), legal, ethical, and economic issues (B5), and education 
(B6), and five major facilitators covering data (F1), clinical impact (F2), algorithms and conception (F3), evaluation and 
validation (F4), and education (F5).
Conclusion This scoping review highlighted the need to carefully design, deploy, and evaluate AI solutions in clinical prac-
tice, involving all stakeholders to yield improvement in healthcare.
Clinical relevance statement The identification of barriers and facilitators with suggested solutions can guide and inform 
future research, and stakeholders to improve the design and implementation of AI for breast cancer detection in clinical 
practice.
Key Points 
• Six major identified barriers were related to data; black-box and trust; algorithms and conception; evaluation and validation; 
   legal, ethical, and economic issues; and education.
• Five major identified facilitators were related to data, clinical impact, algorithms and conception, evaluation and validation,  
   and education.
• Coordinated implication of all stakeholders is required to improve breast cancer diagnosis with AI.
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IEEE  Institute of Electrical and Electronics 
Engineers

MG  Digital mammography
ML  Machine learning
MRI  Magnetic resonance imaging
PACS  Picture Archiving and Communication System
PRISMA  Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses
QA  Quality assurance
RIS  Radiology information systems
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Introduction

Although AI has demonstrated promise in enhancing breast 
cancer diagnosis, the implementation of AI algorithms in 
clinical practice encounters various barriers. This scop-
ing review aims to identify these barriers and facilitators 
to highlight key considerations for developing and imple-
menting AI solutions in breast cancer imaging. The first 
modality that incorporated AI techniques through traditional 
computer-aided detection (CAD) was mammography (MG) 
[1]. CAD was initially developed to assist radiologists in 
the detection of breast cancers they would have potentially 
missed without the help of CAD. However, a large study 
including more than 495,000 digital screening mammo-
grams compared the performance of screening mammogra-
phy with and without CAD by 271 radiologists, and it was 
demonstrated that screening performance was not improved 
with traditional CAD systems [2], and therefore there was no 
clinical benefit for patients. Over the last decade, advances 
in AI have encouraged the clinical study and implementa-
tion of AI-based CAD because it offers superior detection 
performance while not being reliant on hand-crafted imaging 
features [3]. Many studies demonstrated the good perfor-
mance of AI in the detection of breast cancer using MG, 
ultrasound (US), or magnetic resonance imaging (MRI) — 
with similar performance to radiologists [4–8]. Furthermore, 
when AI is used by radiologists, there is less variability in 
radiologists’ interpretations, regardless of their experience, 
leading to a more reproducible and standardized diagnosis 
[4, 7]. Finally, AI is capable of processing and analyzing 
images faster than radiologists. This advantage is particu-
larly pronounced when considering MRI, a multi-parametric 
modality, that comprises a lot of sequences, which consider-
ably reduces reading time. In the case of screening programs 
with MG resulting in a large number of examinations, AI 
can be used for mammogram triage by automatically detect-
ing normal exams, allowing radiologists to focus on other 
more complex exams [9]. The great need for data quality 
and quantity constitutes a disadvantage because if there is 
not enough data or using insufficient quality, AI models 

can be biased. The quantity of available data differs among 
modalities; digital breast tomosynthesis (DBT) and MG are 
typically favored because of their large accessibility [10]. 
Another disadvantage concerns the external validation of a 
model; most models are trained and developed from a sin-
gle dataset and therefore cannot be applied easily to differ-
ent populations or clinical settings [11]. AI can offer both 
advantages and disadvantages to breast imaging, and more 
precisely the barriers and facilitators of the implementation 
of such systems in clinical breast imaging settings have not 
been clearly stated. While previous scoping reviews have 
partially addressed barriers to implementing AI in breast 
cancer imaging [12, 13], they have not provided a compre-
hensive overview of these barriers. This study aims to fill 
this gap by identifying and categorizing the key barriers and 
facilitators to developing and implementing AI solutions for 
cancer detection in clinical breast imaging practice.

Method

Literature research was conducted in six databases (Pub-
Med, Web of Science, CINHAL, Embase, IEEE, ArXiv) to 
get exhaustive results. The search was limited to 10 years 
(2012–2022) to target the recent advancement of AI in 
clinical breast imaging. Published articles of any design 
were eligible. We excluded conference abstracts, as they do 
not contain sufficient data for this review. Search strategy 
details were designed by M.P. and can be found in Sup-
plement S1.

The selection of studies was done in two stages as 
depicted in the PRISMA [14] flow (Fig.  1), with the 
RAYYAN tool [15]. For the first stage, two reviewers (J.S., 
B.L.) independently screened the title and abstract of each 
article. Then in the second stage, the selected studies, as well 
as additional works found through screening the reference 
lists, were independently reviewed based on the inclusion 
criteria. When there were disagreements between the two 
reviewers, divergences were discussed and solved. There 
was no need for a third reviewer. Papers were included when 
there was mention of barriers and/or facilitators of AI for 
cancer detection in breast imaging. The following criteria 
led to the exclusion of papers:

• Focus only on performance,
• Use of synthetic datasets or data acquired with phantoms,
• Not conventional clinical imaging of the breast (e.g., 

thermal imaging, microwave breast imaging),
• Focus on histopathology images,
• Conference abstract.

Papers that could not be found or were not available were 
also excluded. The final included studies were charted in a 
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table containing structured information and characteristics 
of the studies (e.g., author, year of publication, geographical 
information, paper type, modality) (Supplement Table S4).

Results

Characteristics of the included publications

Of the 1476 screened publications, 107 were included 
(Fig. 1). Most papers originated from the USA (n = 37) 
and China (n = 17) (Fig. 2), and a large proportion (89.7%) 
were published after 2018 (Fig. 3). As depicted in Fig. 4, 
most articles focused on a single modality including 

MG (n = 39), US (n = 16), breast MRI (n = 6), and DBT 
(n = 2). In the “other” category, the studies were classified 
involving two or three modalities (n = 7) such as CT and 
US (n = 1), MG and DBT (n = 4), MRI and US (n = 1), and 
CT and MRI and US (n = 1). The “all” category referred 
to the inclusion of breast imaging as a whole, mentioning 
all the modalities in general (n = 37). Figure 5 shows that 
most of the articles were review articles (57%), and origi-
nal research papers (34%). Scoping (n = 2) and system-
atic reviews (n = 2) (4%), as well as some opinion articles 
(n = 6, 5%), were included. Very few articles made their 
data (n = 6) or code (n = 8) publicly available or available 
under request to the authors. Details are provided in Sup-
plement Table S4.

Fig. 1  PRISMA flow diagram
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Main identified barriers and facilitators of AI 
in breast clinical imaging

Barriers and facilitators were identified through the first 
screening stage, and then clarified and enriched iteratively 
through complete text analysis of the included studies. 
Detailed tables can be found in Supplement Tables S2 

and S3. Table 1 reports the main identified barriers and 
facilitators derived from included papers with relative fre-
quency. We identified six major barriers involving data 
(B1), black box and trust (B2), algorithms and concep-
tion (B3), evaluation and validation (B4), legal, ethical, 
and economic issues (B5), and education (B6). We deter-
mined five major facilitators involving data (F1), clinical 

Fig. 2  Geographic distribution of included articles

Fig. 3  Temporal distribution 
of included articles from 2012 
to 2022
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impact (F2), algorithms and conception (F3), evaluation 
and validation (F4), and education (F5). Figure 6 high-
lights that major barriers were reported twice as much as 
major facilitators. Sub-barriers and sub-facilitators were 
also derived as described in the following.

B1 Data

Data size and variety (B1.1) The majority of publications 
(n = 60) reported the problem of small datasets for training 
and validation, as the size of the datasets was relatively small 
[16] to properly train AI algorithms. Different mentioned 
causes were limited data availability due to privacy concerns 
or technical constraints (e.g., collection of paired imaging 
data) [17, 18], insufficient data diversity (variety of popula-
tion and imaging protocols, pathology nuances, etc.) often 
leading to overfitting, or data balancing issues (under/over-
represented categories in the dataset, commonly observed 
in the medical field and that can affect prediction accuracy) 
[11, 16, 17, 19–22].

Data quality and data processing (B1.2) Linked to data quan-
tity, model performance depends on data quality affected by 
noisy or missing/incomplete data. This barrier was often 
mentioned (n = 48) as it requires appropriate data labelling 
supported by reliable annotation methods, which can be a 
very demanding process (need for trained staff to label or 
verify the data). This process was qualified as expensive, 
time-consuming, and subjective if not adequately performed 
[18, 19, 23–28].

Data sharing (B1.3) The ability to share and pool data across 
actors (institutions, research teams, etc.) was reported as lim-
ited (n = 15). These limitations concern patient confidential-
ity, regulations, institutional policies, or different interests 
of stakeholders [10, 23, 29, 30].

B2 Black box and trust

Model transparency (B2.1) The barrier of model transparency 
was often mentioned (n = 51). There is a need to develop trans-
parent models able to explain what is predicted, how it has 
been done, and the degree of prediction confidence. Thus, it is 
important to have an interpretable AI system (the rationale fol-
lowed by the system) to detect possible biases generated by the 
algorithms [11, 31, 32]. In the literature, the terms “transpar-
ency”, “explainability”, and “interpretability” are often used 
interchangeably, and there are no generally accepted defini-
tions; therefore, all three terms were regrouped.

Clinician trust (B2.2) Related to the interpretability problem, 
the adoption of an AI system depends on the level of confi-
dence that the radiologists have in the AI system and its find-
ings, and also on the understanding they have about the tool 
(n = 19) [24, 33, 34]. Avoiding dependence on AI systems 
to preserve users’ ability to think critically and make good 
patient decisions is also linked to radiologists’ trust [35, 36].

Fig. 4  Method distribution among publications (MG, digital mam-
mography (36%); US, ultrasound (15%); MRI, magnetic resonance 
imaging (6%); DBT, digital breast tomosynthesis (2%); all, breast 
imaging techniques in general (35%); other, two or three breast imag-
ing modalities (6%))

Fig. 5  Type of publications (opinion article (5%) includes perspective 
articles, editorial comments, and case study)
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Table 1  Identified barriers and facilitators

Barriers Number of paper (%) Facilitators Number of paper (%)

B1 DATA F1 DATA 
  B1.1 Data size and variety 60 (56.1%)   F1.1 Datasets initiatives 15 (14%)
  B1.2 Data quality and data processing 48 (44.9%)   F1.2 Algorithmic approaches to address 

data barriers
27 (25.2%)

  B1.3 Data sharing 15 (14.0%) F2 CLINICAL IMPACT 
B2 BLACK-BOX AND TRUST   F2.1 Diagnostic performance 53 (49.5%)
  B2.1 Model transparency 51 (47.7%)   F2.2 Clinical workflow 58 (54.2%)
  B2.2 Clinician trust 19 (17.8%) F3 ALGORITHMS AND CONCEPTION
  B2.3 Patient trust 11 (10.3%)   F3.1 Multivariable data 24 (22.4%)
B3 ALGORITHMS AND CONCEPTION   F3.2 Numerous algorithms 11 (10.3%)
  B3.1 Model architecture 16 (15.0%) F4 EVALUATION AND VALIDATION
  B3.2 Technical constraints 17 (15.9%)   F4.1 Increased accessibility of AI 3 (2.8%)
  B3.3 Multivariable data 28 (26.2%)   F4.2 Benchmarking of AI approaches 6 (5.6%)
  B3.4 Involvement of stakeholders 29 (27.1%) F5 EDUCATION
B4 EVALUATION AND VALIDATION   F5.1 AI for education 5 (4.6%)
  B4.1 Meaningful clinical evaluation 44 (41.1%)
  B4.2 Data variability 54 (50.5%)
  B4.3 Quality assurance 17 (15.9%)
B5 LEGAL, ETHICAL AND ECONOMIC ISSUES
  B5.1 Liability 22 (20.6%)
  B5.2 Law and policies 24 (22.4%)
  B5.3 Fair AI 22 (20.6%)
  B5.4 Cybersecurity 10 (9.3%)
  B5.5 Economic issues 11 (10.3%)
B6 EDUCATION
  B6.1 User education 9 (8.4%)

Fig. 6  Sankey diagram representation of major barriers (left) and facilitators (right) distribution among included papers
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Patient trust (B2.3) Patient confidence (n = 11) in the AI sys-
tems was also reported as important in the same way as for 
radiologists, and is also linked to communication between 
human and machine when the diagnosis is disclosed [3, 37].

B3 Algorithm and conception

Model architecture (B3.1) A large variety of AI algorithmic 
models exists, along with multiple ways for parameterizing, 
training, validating, and testing these models. This contrib-
utes to the difficulty of choosing and tuning the right architec-
ture for a given purpose, as well as devising objective ways to 
compare results between models (n = 16) [20, 26, 38].

Technical constraints (B3.2) Model architectures may impose 
some constraints (n = 17) on the input data (data dimensional-
ity, resolution, layout, etc.) leading to data transformation (e.g., 
data dimensionality reduction) [10]. Similarly, hardware con-
straints (storage, memory, computing capabilities, etc.) may 
limit the choice of usable models or further contribute to data 
transformation [26, 38–41]. Finally, difficulties related to the 
integration of AI tools in clinical practice (e.g., compatibility 
with PACS and RIS systems, characteristics of the imaging 
modalities) are part of these technical constraints [33, 42, 43].

Multi‑variable data (B3.3) The development of efficient 
algorithms is more challenging due to the complex nature 
of multi-variable data essential for clinical reasoning. This 
data includes multi-modality imaging, multi-parametric 
protocols, clinical knowledge, and previous or contralateral 
examinations (n = 28) [29, 44].

Involvement of stakeholders (B3.4) There is a need for a 
closer collaboration (n = 29) between all stakeholders (cli-
nicians, data scientists, researchers, industry, policymakers, 
patients, etc.) in the design and development of AI systems 
[1, 19, 33, 45], sharing of development tools and procedures, 
as well as in the definition of common definitions and met-
rics for evaluation and model comparison [18, 27, 28].

B4 Evaluation and validation

Meaningful clinical validation (B4.1) Assessments of clinical 
utility, performance, and adoption are of paramount impor-
tance and were thus often mentioned in the studies (n = 44). 
Prospective studies are required to evaluate performance and 
the effect on clinicians in clinical settings, distinguishing engi-
neering metrics from clinical ones [11], as well as the type of 
clinical scenarios (e.g., screening vs. follow-ups). Large trials 
should be conducted, possibly over long periods, and the use 
of independent test datasets was promoted [1, 3, 19, 28].

Data variability (B4.2) In real-world clinical practice, there 
is inherent data variability depending on e.g. manufacturers, 
equipment age and characteristics, imaging protocols, and 
population traits that must be taken into account to assess the 
generalization of the deployed AI systems (n = 54) [10, 19, 27].

Quality assurance (QA) (B4.3) Continuous monitoring of 
AI algorithms was recommended (n = 17) for continuous 
improvements or to prevent performance degradation over 
time due to changes, requiring to put in place QA procedures 
with adequate resources [40, 43, 46].

B5 Legal, ethical, and economic issues

Liability (B5.1) Many open questions are raised concerning 
the final responsibility in the decisions made for patient care 
(n = 22) (e.g., Can final decisions be made by the AI sys-
tems? Who will be responsible for errors? Will AI negatively 
influence radiologists?), and thus these questions need to be 
addressed [11, 42].

Law and policies (B5.2) This barrier (n = 24) highlighted 
concerns about the importance of patient-privacy policies, 
market approval or clearance of AI solutions, intellectual 
properties (e.g., who owns the data?), and regulatory 
guidelines [11, 19, 33].

Fair AI (B5.3) There are many ways to unintentionally introduce 
biases in AI systems (e.g., in data collection or development 
stages) and it is crucial to embrace fair AI practices promoting 
equity in diagnosis and treatment across diverse populations 
without excluding minorities (n = 22) [21, 28, 30].

Cybersecurity (B5.4) Few studies reported concerns 
about cybersecurity (n = 10). Healthcare data being very 
sensitive, the importance of addressing security risks, 
preventing imaging data sabotage/manipulation (e.g., 
adversarial attacks by inserting or removing patholo-
gies), and ensuring data protection and privacy were 
reported [3, 19].

Economic issues (B5.5) Economic barriers were mentioned 
in some papers (n = 11), due to different interests among 
stakeholders (e.g., company vs. researchers), reimburse-
ment policies (e.g., CAD is reimbursed in the USA but 
not in EU for most cases, with the potential exception of 
screening) [47], increased health costs due to unnecessary 
actions (non-relevant findings leading to overdiagnosis or 
overtreatment) [48], costs of collecting and processing 
data, especially from expensive/less common modalities 
such as MRI, and the costs of running and maintaining AI 
systems [23, 33, 45].
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B6 Education

User education (B6.1) Few papers (n = 5) reported that users 
(radiologists, patients, health professionals, etc.) must have 
sufficient knowledge about AI data (collection, annotation, 
etc.) and AI tools (terminologies and concepts, methods, and 
applications, etc.) to critically evaluate them, and be aware 
of their strengths and limitations [9, 11, 33, 35].

F1 Data

Datasets initiatives (F1.1) There exist initiatives from mul-
tiple public and private sector institutions to create large, 
diversified, annotated datasets, to be made available to pub-
lic databases, challenges, etc. (n = 15) [19, 23, 32, 39, 49].

Algorithmic approaches to address data barriers (F1.2) Some 
solutions were mentioned or utilized to try to address the 
issues of lack of or non-shareable data (n = 27) [28], such 
as federated learning (data remains locally but algorithm 
parameters travel [10, 19]), swarm learning [10], transfer 
learning [16, 26], data augmentation [49], data normaliza-
tion [10], and generative models [39].

F2 Clinical impact

Diagnostic performance (F2.1) A model/AI system’s per-
formance is evaluated using a test set. In the different stud-
ies, the metrics usually used are area under the ROC curve 
(AUC), or sensitivity and specificity, with or without com-
parison to the radiologist or in combination with the radiolo-
gist. Generally, good diagnostic performance was reported 
in surveyed reviews and original research works (n = 53) [5, 
8, 50, 51].

Clinical workflow (F2.2) A lot of papers (n = 58) reported 
that AI systems positively impacted clinical workflow by 
improving efficiency in clinical practice, such as triaging, 
using AI as proof reader, reading time reduction, improved 
communication with patients, reduction of radiologist 
fatigue, cost reduction, or more reproducible readings [9, 
11, 12, 52, 53].

F3 Algorithms and conception

Multi‑variable data (F3.1) Some papers (n = 24) argued that 
multi-variable data (e.g., multi-modality imaging, multi-par-
ametric protocols, or inclusion of clinical non-imaging infor-
mation) could lead to better results for AI tools because each 
source of data provides valuable information and machine 
learning (ML) offers approaches to embrace multi-dimen-
sional data [10, 13, 37, 54].

Numerous algorithms (F3.2) It was also reported that the 
large number of algorithms developed provides greater 
flexibility for AI integration (n = 11). The use of ensemble 
models combining the predictions of several algorithms has 
also been reported as a way to increase performance [21, 
32, 55, 56].

F4 Evaluation and validation

Increased accessibility of AI (F4.1) There is an increasing 
number of (certified) AI products that are made available in 
clinical practice, facilitating the setup of clinical trials and 
prospective studies (n = 3) [19, 34, 37].

Benchmarking of AI approaches (F4.2) There were men-
tioned (n = 6) international scientific challenges that con-
tribute to strengthening the benchmarking of AI approaches 
by providing open and reproducible evaluation (training 
and testing data, evaluation metrics, and tools) that strongly 
encourages or imposes the sharing of computer code from 
participants [47, 57].

F5 Education

AI for education (F5.1) Few papers (n = 5) highlighted that 
some systems or models can be used for the education of 
clinicians, such as generative models producing images 
for the training of radiologists [39, 50] or systems giving 
feedback to radiographers for image quality or acquisition 
parameters [48].

Discussion

This scoping review provides a comprehensive summary of 
the barriers and facilitators encountered during the creation 
and deployment of AI in clinical settings. Solutions can then 
be found and measures can be taken for better implementa-
tion of AI systems in practice — bringing tangible benefits 
to both patients and clinicians.

Conception

The importance of data size (B1.1) and data quality (B1.2) 
was predominant in the included studies, being directly 
related to the effectiveness of machine learning and the 
issue of data sharing (e.g., less than 17% of original papers’ 
data is publicly available or under request as shown in Sup-
plement Table S4). As a result of screening programs and 
higher availability, it was highlighted that digital MG and 
DBT studies usually have large datasets (many thousands of 
patients, from 9919 to 32,714 women in studies with MG 
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[58] and DBT [51]) often acquired in several centers, in 
comparison to studies involving US and MRI [1, 10]. MRI 
studies especially lacked data (from 93 [59] to 1715 patients 
[25] in included studies, with varying types of MR proto-
cols). While US imaging may benefit from larger accessibil-
ity, an important discrepancy was observed among studies 
where the number of patients ranged from 92 to 5151 [54, 
60–67]. Variety in the data was also reported as a critical 
issue since clinical data is often imbalanced due to disease 
prevalence, data availability, or population characteristics, 
which remains an unsolved issue still under research in the 
ML field [16]. In practice, data curation is a difficult and 
tedious task, especially depending on the type of collected 
data or modality of imaging. Collection without interfering 
with the clinical practice workflow, anonymization process, 
ethics commission requirements, and compliant and robust 
databases are among the many hurdles faced during this 
process. Despite being expensive and time-consuming, data 
curation with clinical expert validation remains an absolute 
necessity [68].

To address these challenges, some solutions can be con-
sidered, like large datasets initiatives (F1.1) (e.g., result of 
competitions opened to the research community [57, 69]), 
more adapted algorithmic approaches (F1.2), or the promo-
tion of data sharing and collaboration between clinical set-
tings by supporting regulations on patient confidentiality in 
favor to research (such as the generalized patient consent). 
These actions can contribute to having larger but also more 
representative and diversified datasets.

To support data annotation, one suggestion would be to 
rely more on automated systems compliant with regulations 
and ease the work of clinical annotators. For instance, patho-
logical findings reported in radiological reports could be 
associated with their exact localization in the images via 
user-friendly reporting tools, simplifying the data annota-
tion and expediting its processing. In the context of cre-
ating a data challenge on US breast lesions, Lassau et al 
[57] observed the added value of relying on professional 
tools to anonymize and gather annotated data from eleven 
clinical centers in a centralized and an automatic way, in 
accordance with regulations such as GDPR. Involving and 
training healthcare professionals with experience in medical 
imaging, such as radiographers in the collection and anno-
tation of imaging data, can be another solution to address 
the time-consuming data preparation and processing usually 
performed by radiologists.

The large variety of identified model architectures 
involving multiple parameters can be a double-edged 
sword at the conception stage. On the one hand, this allows 
more flexibility in the design and contributes to reinforc-
ing some models (F3.2). On the other hand, this can also 
result in empirical model selection and parameter setting 

(B3.1) in the presence of ubiquitous technical and data 
constraints (B3.2 and B3.3). This contributes to the dif-
ficulty to choose the right model for the clinical target 
problem — fostering the need to gather all stakeholders 
(B3.4) to define common guidelines for the design and 
comparison of AI models [70]. Fortunately, the availability 
of code will continue to increase (~ 30% is publicly avail-
able or under request, Supplement Table S4) — supporting 
the reproducibility and transparency of published works.

Clinical implementation

Despite several studies highlighting the potential of AI 
systems in terms of diagnostic performance (F2.1) and 
clinical workflow improvement (F2.2), only a few are 
properly implemented and used in clinical practice. In 
two recent systematic reviews on the use of AI in breast 
cancer screening programs, no prospective study for test 
accuracy was found [71]. This is a crucial point (B4.1) as 
a prospective study design is crucial to assess real clinical 
impact. Multi-center studies are also very important to 
assess the generalizability of developed AI systems, with 
different devices, acquisition protocols, and populations 
[3]. If data can be shared across institutions, validation on 
other data and imaging devices can be facilitated, and con-
tinuous update and quality control on AI systems would 
be possible.

Among the included studies, model transparency (B2.1) 
was an often-reported barrier. The black-box nature of 
modern AI algorithms is a major barrier to clinical imple-
mentation due to limited explanations for decisions, and the 
possible presence of bias — eroding the trust of clinicians 
and patients. Many methods to explain decisions of AI mod-
els are being investigated by the ML community, but these 
should be validated in clinical practice with end-users [72, 
73]. Moving forward, it is imperative that future research 
focuses on the systematic development of more transpar-
ent AI algorithms using or creating explainability methods. 
Furthermore, these methods need to be evaluated to prevent 
potential biases.

These ethical aspects are closely related to legal concerns 
that are rising with the development of AI. At present, there 
are no international laws or consensus on the guidelines for 
the regulation of AI in medicine. However, many interna-
tional supportive actions (e.g., WHO [74] and OCDE [75]) 
and national initiatives are being developed (e.g., USA 
FDA’s Software as Medical Device Action Plan [11] or EU’s 
“right to explanation” for patients [76]). Nevertheless, we 
strongly believe that achieving an international consensus 
for AI regulation is imperative, as opposed to relying solely 
on regional or national initiatives.
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Specificities of breast imaging modalities

Identified barriers and facilitators were globally encountered 
in each modality of clinical breast imaging (MG, DBT, US, 
or MRI); nevertheless, nuances related to the specificities 
of each modality were also identified. Compared to other 
modalities, US is more strongly operator-dependent due 
to the operator’s level of expertise, image quality appre-
ciation, variability of acquisition (e.g., probe positioning, 
tissue compression, use of other imaging techniques like 
Doppler or elastography), and device parameters. This 
variability hinders the training and application of models 
[77–79]. In addition, careful attention is required when using 
common augmentation techniques as they may alter typi-
cal patterns of breast lesions (e.g., the presence of posterior 
acoustic shadow) [79]. Finally, embedded AI systems are 
often desired for real-time US investigation, introducing 
significant technical constraints given their low computing 
capabilities [54].

Even if AI methods developed for MG can be applied to 
DBT with transfer learning [80], DBT still presents some 
particularities related to the acquisition at multiple angles 
allowing the assessment of different depths of the breast 
[80]. This process is not standardized among clinical sites 
(number of images and angular range), enforcing the need 
for multi-center and multivendor studies [81].

Breast MRI generates a large amount of data, mainly due 
to the multi-parametric nature of this modality (multiple 
types of sequences), involving high dimensional data, e.g., 
DCE-MRI (dynamic contrast-enhanced MRI), 4D ultrafast 
sequences (series of 3D images over time with a high tem-
poral resolution allowing visualization of contrast media 
uptake within 1 min), and diffusion sequences. The resulting 
series of 3D and 4D data are difficult to handle due to tech-
nical constraints (memory and computing resources), and 
the absence of off-the-shelf ML architectures to efficiently 
support and process the data (especially for 4D data). This 
often results in data transformation (such as dimensionality 
reduction) with the risk of losing information [10].

Methodological choices with limitations 
and perspectives

Despite AI performance indicators being predominantly 
present in the surveyed literature, we purposely chose to not 
focus on performance metrics in the context of a scoping 
review. However, the dimension of performance was con-
sidered in the facilitators when a positive clinical impact 
was reported, since a well-performing AI solution will more 
likely be implemented or accepted in clinical practice.

In addition to works that explicitly mentioned barriers 
and/or facilitators of AI in breast imaging diagnosis, we 
decided to also include some papers that indirectly refer to 

barriers or facilitators based on the study design or author 
comments. Similarly, we included some publications not 
exclusively focusing on breast cancer as they were relevant 
in the context of breast cancer imaging and because they 
enriched the analysis of identified barriers and facilitators. 
The decision to include reviews, opinion articles, and origi-
nal research also contributed to a more exhaustive scoping 
of the literature.

Most of the included papers originated from the USA, 
China, South Korea, India, and European countries (Fig. 2); 
thus, the results of this scoping review cannot reflect all the 
specificities of countries across the globe. For instance, 
depending on the difficulties of access or socio-economic 
constraints of some countries, some barriers may become 
more important [82] but facilitators may also appear, such 
as a greater demand for AI to counter a shortage of qualified 
professionals. This could pave the way for future work focus-
ing on geographic, cultural, and socio-economic issues and 
potential discrepancies that could be related to AI introduc-
tion in breast cancer care.

Authors’ opinion

There is still work to be done before AI systems are imple-
mented sustainably in clinical practice. Regarding research, 
we believe it is important to promote transparency and 
reproducibility. Furthermore, it is important to acknowledge 
that AI models are susceptible to biases, particularly in cases 
where data are imbalanced or certain segments of the popu-
lation are under-represented. To address this concern, it is 
recommended in the literature that research systematically 
includes demographic data (such as age, sex, ethnicity) and 
provides a comprehensive description of the measures taken 
to ensure data quality [68, 83]. This approach allows for the 
evaluation of biases within the models.

In practice, it appears urgent to establish methods for 
data collection and processing through the development 
of automated tools and active involvement of all health 
professionals engaged in breast imaging including radiog-
raphers, radiologists, and medical physicists. For instance, 
radiographers could assume a more significant role [19] 
in tasks such as data collection, data processing, protocol 
optimization, evaluation, clinical integration, and qual-
ity control for AI development and maintenance [84–86]. 
Another critical aspect to emphasize is that trust, from 
health professionals, patients, and also society in general, 
can impact the integration and adoption of AI in clini-
cal settings. To address this barrier, it is crucial to focus 
on transparent AI algorithms with robust explainability 
methods and user-friendly AI interface systems during the 
conception stage. Additionally, more attention should be 
paid to the education of health professionals and patients 
about AI. This scoping review revealed a persistent lack of 
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education among healthcare professionals, with insufficient 
integration of AI into their curricula despite recommenda-
tions [11, 87]. The acceptance of AI by patients is also a 
determining factor, with studies indicating that patient uti-
lization of AI is more acceptable when under the continu-
ous supervision of a physician [88]. This is understandable 
since physicians consider the patient’s complete medical 
history, while AI systems often focus solely on the imaging 
modality for which they are designed. Patients also har-
bor concerns regarding AI, such as preserving choice and 
autonomy, ensuring AI safety, and managing costs [89]. 
It is essential to address these concerns by implementing 
practices such as obtaining informed consent, establishing 
robust data privacy security measures, and ensuring that 
AI services are covered by health insurance. In conclusion, 
we strongly recommend the inclusion of AI training in pro-
fessional education programs, accompanied by continuous 
training to keep up with the rapidly evolving techniques. 
Moreover, patients should be actively involved by receiv-
ing adequate information and being given the opportunity 
to participate in decisions regarding their care manage-
ment and treatment. All stakeholders, including patients 
and healthcare professionals, should be actively engaged 
in the development of AI in healthcare.

Conclusion

By identifying barriers and facilitators along with sug-
gested solutions, this scoping review can provide valuable 
guidance to inform future research endeavors and support 
stakeholders in enhancing the design and implementation 
of AI for breast cancer detection in clinical practice. It 
highlighted the need to carefully conceive, deploy, and 
evaluate AI solutions in practice. Fortunately, most iden-
tified barriers had corresponding facilitators — showing 
that solutions are being explored to mitigate the current 
issues faced by clinical AI. There is little doubt that AI can 
improve breast cancer imaging, but a lot of coordinated 
effort among stakeholders will be required. In particular, 
health professionals involved in the production and con-
sumption of medical images should be trained in AI prin-
ciples and closely interact with AI systems.
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