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Abstract—The role of fast yet reliable wireless communications
in various application domains is getting ever more important. At
the same time, as use cases are becoming more and more complex,
application requirements are getting ever more stringent. One
example is intelligent transportation, where the efficiency and
reliability of wireless data delivery is essential for effective service
support. As a consequence, in this context the adoption of AI
techniques is widely considered crucial for enabling vehicular
communications to adapt to dynamic changes of the environment.
In this position paper, we discuss some representative applications
of advanced AI tools in vehicular communications. In particular,
we elaborate on the potential of distributed learning based on
federated learning, of proactive service provisioning, and of graph
neural network for enabling AI-native vehicular communications.

Index Terms—ITS, V2X communications, ML/AI, distributed
learning, QoS-prediction

I. INTRODUCTION

The emergence of new, data-intensive intelligent transporta-
tion systems and services with tight QoS constraints and
complex (and potentially conflicting) requirements is poised
to push current vehicular communication (VC) paradigms to
their limits [1]. Applications such as remote and autonomous
driving, holographic driver vision for situation awareness [2],
real-time intelligent traffic scheduling [3], and personalized,
interactive infotainment based on tactile vehicular commu-
nications [4] bring new and complex combinations of QoS
requirements which challenge current paradigms for vehicular
communications, and which even 5G is not able to satisfy
adequately. To cope with such a tendency towards ever de-
manding applications and services, AI-based mechanisms are
progressively permeating all aspects of vehicular networking.
V2X communications are thus poised to transition towards
the ”AI-native” paradigm which already permeates wireless
communications. That is, in a set of technologies where
learning-based mechanism play a foundational role, enabling
context-aware vehicular communications in which every node
continuously learns and adapts to a dynamic and ever changing
environments. This evolution is fostered by the shift from
centralized computing to distributed edge intelligence, and by
the ever increasing amount of data collected by user devices,
by vehicles, in ITS systems and in any part of the wireless

network infrastructure. It holds the promise to enable smart
resource management, access control, and multi-technology
wireless communications with unprecedented levels of effi-
ciency, reliability and flexibility.

Several are the technical challenges which need to be
addressed to enable AI-native VCs. Among these a cen-
tral role is played by the high heterogeneity of vehicular
networks, in terms of resource availability and application
requirements, which puts to a strain currently centralized
learning approaches. Moreover, their dynamicity and volatility,
which implies a high churn in the set of distributed communi-
cation resources, poses a serious challenge to mechanisms for
dynamic coordination, for resource pooling and sharing, and
ultimately to the possibility of guaranteeing tight QoS levels
for computing and communication services.

This position paper is about a set of learning-based enablers
which are poised to play a pivotal role in overcoming these
challenges, and in satisfying the following requirements:

• need to learn at the edge, in spite of dynamicity, for scal-
ability, resource efficiency and better privacy protection;

• need to satisfy a very heterogeneous set of QoS require-
ments, some very stringent, in dynamic settings;

• need for robust and high availability multihop connec-
tions.

The paper is structured as follows. In Section II, we investigate
the importance of distributed (federated) learning for V2X
applications. Section III deals with proactive quality-of-service
provisioning in vehicular networks, whereas Section IV dis-
cusses the use of a real time emulation platform (EMANE) and
the application of graph neural networks for V2V. Section V
concludes the works.

II. DISTRIBUTED LEARNING FRAMEWORKS FOR V2X

Recently, distributed learning architectures have received
considerable attention from the research community [5]–[12],
as they promise to overcome some of the main limitations
of centralized approaches, such as limited scalability and
communication bottlenecks.



A. Why Distributed Learning in V2X?

Distributed learning schemes find in V2X scenarios a
natural application. Firstly, in collaborative tasks such as
autonomous coordinated driving [13], [14] and platooning, the
direct sharing with other vehicles of raw data collected locally
by each vehicle might easily overload the communication
infrastructure, challenging the effective support of critical tasks
and services. Therefore, distributed learning, where only the
results of the learning process are shared among vehicles, may
help in alleviating the communication burden. Secondly, dis-
tributed learning does not require a powerful central computing
node, thus facilitating its implementation in V2X scenarios.
Thirdly, the power consumption of learning tasks is likely to
be trivial compared to the total power consumption of vehicles.
Therefore, we can assume vehicles are able to provide steady
and considerable computing capacity for distributed learning.

In addition, tasks such as object detection [15] and steering
angle prediction [16] benefit from knowledge sharing among
all participating vehicles. Since the data collected by vehicles
are likely to be limited locally and biased, the sharing of the
learned knowledge may contribute to the elaboration of some
form of local consensus among vehicles in a given scenario,
thus potentially improving the vehicle’s awareness of the
surrounding environment and the driving decisions. Moreover,
sharing machine learning models instead of data offers better
support to privacy protection, as raw data (possibly containing
sensitive user’s information) is not shared [17].

B. System Structure for Federated Learning in V2X

A distributed learning approach which is suitable for the
above mentioned applications is federated learning (FL) [18],
in which the participating workers (vehicles) share a same
learning task, and thus a same machine learning model. The
data for training the model is often collected locally by the
vehicles. After some local training, workers in FL share their
trained model with others and/or with a parameter server, and
the knowledge learned locally is thus propagated to all partici-
pants. Based on the existence of a central parameter server, FL
can be classified into centralized [18] and decentralized [19].
Centralized FL requires a relatively stable communication
connection between the server and the workers, for the learned
model to propagate effectively and improve over time. On the
other hand, decentralized FL only requires reliable device-
device communications between workers. The efficiency of
information propagation thus depends on the structure of the
connectivity graph of workers [20]. For V2X applications,
centralized FL is suitable for a scenario with a server, either
predefined or elected from workers. Decentralized FL instead
can be applied to spontaneous learning tasks in a server-less
region. There are also schemes which are a combination of the
two approaches mentioned above, normally with a hierarchical
structure [21], [22]. For instance, in a two-layer hierarchical
system, several edge servers coordinate the workers within
a specific sub-region, acting as a parameter server for only
a subset of the workers. The communication between edge
servers is then performed with or without a central server.

Hierarchical FL systems are also suitable for V2X scenarios
when there are edge nodes interconnected as sub-servers.

C. Challenges of Federated Learning in V2X

The learning schemes described still face significant chal-
lenges when deployed in realistic V2X scenarios. The most
prominent limitation is the volatility of the wireless channel
(and the churn in the set of workers) resulting from the
mobility of vehicles. For FL, various solutions have been
proposed in different synchronization algorithm to address this
limitation [23].

For synchronous FL, where there is a specific round time
for workers to train and upload models, the goal is to have
a set of participating workers with similar overall training
plus uploading time. Here, the tradeoff is between allowing
more participants in the scheme, and minimizing the idle
time for each worker (i.e. the time spent waiting for other
workers to complete their local training step). To this end, it is
possible for the server to perform client selection [24] in each
round, choosing workers capable of training and uploading
within certain time limits. Another solution from the server’s
perspective is to optimize the allocation of communication
resources as in [25], [26]. In V2X applications, the server
needs to know the computing capacity and link conditions
of each worker, which is not always feasible in practical
scenarios. Other solutions entail work from the clients’ side.
Under a known time limitations, workers either speed up local
training by allocating more computing resources or training
models partially [27] with gradient sparsification [28], or
reduce the communication time by compressing the model
[29]. Such methods do not apply in those conditions in which
vehicles completely lose the connection with the server.

For asynchronous FL, where the server / workers per-
forms model aggregation upon receiving a model update, the
variability in communication time due to vehicles’ mobility
can also be problematic. Although the server / workers are
open to accept model updates of any training and uploading
duration, model uploaded by vehicles with bad communication
conditions are likely to be based on an earlier distributed
global model. These model updates are conventionally referred
to as stale, which could be harmful to the global model because
they are either less trained or biased towards a specific worker.
The research community offers limited solutions for this
phenomenon, usually with a attenuation function to decrease
the weight of stale model updates during aggregation. In
general, such solution leans more on decreasing the negative
impact of stale models from slow workers. For incorporating
the contributions from possibly out-of-synchronous vehicles
in V2X, there needs to be dynamic training and uploading
strategy from clients’ side so that their computational results
are received in a timely manner.

III. LEARNING-BASED PROACTIVE STRATEGIES FOR QOS
PROVISIONING

Several V2X use cases, such as tele-operated driving,
vehicle platooning, and high-definition map collecting and



sharing, put stringent QoS requirements in terms of cov-
erage, data rate, delay, and other related Key Performance
Indicators (KPIs) [30]. To avoid any service interruption,
these requirements need to be always satisfied despite the
challenging and highly variable conditions experienced in
vehicular environments. In these use cases, changes in vehicle
and/or application behaviors may have a strong impact on the
service performance. For example, a tele-operated vehicle that
is performing a turn may generate a higher video bit rate due
to changes of background images and change of camera focus
while turning. Thus, a change of vehicle behaviour (e.g., left
turn) will have an immediate impact on application behaviour
(e.g., increased bit rate). On the other hand, a reduction of
video resolution by the application to accommodate a reduced
network capacity could result in speed reduction, because the
video quality might not be enough to safely keep the current
speed.

In this regard, predictive QoS (PQoS) schemes might help
towards ensuring seamless operations by forecasting any po-
tential QoS degradation, and adapting the system behavior in
a proactive manner. This approach guarantees that appropriate
QoS performance, especially for time-critical applications, are
always met, even in presence of challenging network condi-
tions. By continuously predicting QoS performance, mobile
networks may inform V2X applications through In-advance
QoS Notification (IQN) in case a service degradation is
foreseen [31]. Upon the reception of a IQN, applications
can proactively adapt their behavior in such a way to limit
the impact on the service experience and avoid any service
interruption.

The prediction algorithm is one of the main components
of PQoS schemes, since forecasting QoS performance with
high accuracy is essential for the proper functioning of this
solution and, to this aim, AI-based algorithms represent a key
enabler. Indeed, compared to traditional statistical approaches,
such as parametric models, AI-based approaches possess better
generalization properties and they are able to achieve high
accuracy if properly trained. This approach is made possible
by the pervasiveness of ML-based intelligence on vehicles, as
well as by the growing amount of data collected by and about
moving users. Research in this context spans over several
dimensions, but is still at a rather early stage. In the following,
we briefly review the main ones.

A. Architectural enhancements for Predictive QoS

This dimension concerns the design of architectural frame-
works and signaling schemes that can enable the actual de-
livery of IQNs to the connected vehicles. These frameworks
mainly attempt to address three questions: how to monitor
and collect data, how to make predictions, and how to deliver
predictions to the interested parties. 5G already support PQoS
functionalities as part of the NWDAF [32]. This function
provides the ”Notification on QoS Sustainability Analytics”
service, which monitors QoS performance of subscribed ap-
plications and notifies the application server in case the
requirements cannot be satisfied [32]. Other solutions have

been proposed in the literature. For example, [33] proposes
a new entity for the radio access network able to collect
data from different sources, to make QoS predictions based
on the acquired data, and to apply network countermeasures
in case of QoS degradation. These solutions represents a
first attempt to include the PQoS functionalities in mobile
networks. However, the distributed and highly dynamic nature
of V2X use cases makes accurate QoS predictions difficult to
achieve. In this regard, new frameworks that are tailored to
the peculiar characteristics of vehicular scenarios need to be
investigated.

B. Measurement campaigns and datasets

Currently, the availability of datasets that can be used as
an input to train and test QoS prediction algorithms is very
limited. Moreover, the lack of datasets that can be used as a
common reference prevents the fair comparison of different
proposals. In this regard, different initiatives are trying to
overcome this challenge. For instance, measurements of data
rates for high-mobility users have been conducted in [34] and
[35]. Also, the authors in [36] presented an open-source dataset
that was collected from a prototyped 5G system, and used it
to assess the performance of different algorithms for uplink
throughput prediction. Such campaigns are deemed important
though, as they capture the unique and complex characteristics
of the radio environment under study. Measurement parameters
of interest may contain data from base stations, core network,
weather and traffic-related databases, to name a few, and may
apply to multiple mobility and topology scenarios.

C. Algorithms for QoS predictions

Perhaps the majority of the state-of-the-art focuses on this
issue (e.g., [37], [38]). Research works in this context present
a) a QoS prediction approach (e.g., a QoS prediction mech-
anism that uses an LSTM architecture) and network-related
QoS metrics, in order to identify specific patterns and predict
in advance the QoS that will be available in the near future to
Connected Autonomous Vehicles (CAV) [38]), b) a proposed
method for the data collection (simulation/emulation/real
traces), c) the features of the collected/available dataset, d) the
ML algorithms deployed, e) the evaluation KPIs considered,
and f) the setup that has been used in terms of hardware,
software, network, etc.

D. Testbeds and simulation platforms

The design of efficient PQoS solutions is challenging, as it
requires to perform multiple rounds of training and optimiza-
tion which are hard to carry out in real networks because of
high complexity, fragility, and costs. In fact, mobile operators
typically do not grant access to their networks for research
purposes, because the risk of damaging the infrastructure or
infringing privacy policies cannot be tolerated.

Experiments with testbeds represent a viable solution to
emulate the behavior of real systems with a high level of
realism. For example, in [39] the authors presented a testbed
built using an RC car equipped with a 5G modem, as well



as high-resolution cameras and LiDAR sensors. While this
approach can achieve a high level of realism, it presents several
limitations in terms of scalability, preventing evaluations with
a large number of users.

Recently, simulations have emerged as a tool to evaluate
the performance of PQoS solutions without the need for real
systems to be deployed. In [40], the authors presented a full-
stack simulation framework to design and test AI-based PQoS
solutions. The framework features accurate models for the
simulation of wireless channels and vehicles’ mobility, as well
as an accurate application model. One of the main advantages
of this approach is that it does not require any specialized
hardware, thus reducing costs with respect to the above two.
Moreover, it allows setting the operating conditions under
which the system needs to be evaluated, and to replicate the
same conditions in such a way as to compare the performance
of different PQoS designs in a fair manner. However, the
validity of the results strongly depends on the accuracy of
the simulation models, which should be carefully taken into
account in order to draw the right conclusions [41].

IV. A USE CASE: APPLICATION OF GNNS TO ROUTING
OPTIMIZATION

To illustrate some of the challenges mentioned, this section
focuses on improving the performance of mission critical
applications using V2V communications without infrastructure
support. The context of interest spans the topics of MANET,
VANET,3GPP D2D and autonomous vehicles communica-
tions. The focus here is on mobile nodes which can directly
communicate to each other to form a Mobile Ad-hoc Network
using sub-6GHz wireless communications. Each mobile node
serves as router to deliver IP packets to nodes beyond their di-
rect neighbors. Due to limited spectrum resources, the number
of mobile nodes typically involved is less than about 100: 24
in the case of the well-accepted and realistic mobility scenario
for tactical MANET, openly available at anglova.net [42] and
presented in Figure 1.

Fig. 1. Illustration of two mobility scenarios. LEFT: an urban static scenario
and RIGHT: the dynamic anglova.net scenario: CP1 with 24 nodes. The traces
from North to South show the mobility of the nodes.

The communication in V2V networks should offer a large
throughput and a high Completion Ratio (CR) in order to
provide the user with updated information from all other
nodes. In typical MANETs applications, the throughput of
the network is low because of the routing nodes and a poor
resource allocation scheme. The performance can be increased
of the network by considering an adaptive resource allocation
method in collaboration with a distributed routing scheme.
The traffic data considered here is assumed to be a worse
case scenario where each node produce a unicast packet for
each of the other nodes. Each packet is acknowledged if
correctly received at its destination. The user traffic does not
support packet retransmission when a message is lost. Unless
stated otherwise, all nodes send messages to all other nodes at
random but with the same average bit rate. The performance
is defined here mainly as the Completion Ratio (CR), equal to
the percentage of correctly acknowledged messages received
within a given maximal Round Trip Time (RTT) of 20s.

A. Solutions for V2V multi-hop

Solutions to obtain the best possible performance can be
formulated as the combination of three algorithms: a routing
scheme, a resource allocation method, here a time sched-
uler and a flow control process. Fig. 2 presents the inter-
actions between these three algorithms. Without congestion,

Fig. 2. Illustration of the problem in V2V. The routing is linked to the resource
allocation scheme as one cooperative approach to increase the Completion
Ratio performance metric in V2V networks. The topology is important for the
routing and the traffic for the resource allocation scheme. The Flow control
process and Source Admission Control allow to mitigate packet loss due to
network breakups or congestion.

the routing protocol is responsible of packet loss if weak
quality links are used. The resource allocation is defined as a
schedule of time slots specified for a Time Division Multiple
Access (TDMA) frame. A poor schedule will congest the
nodes because of the large traffic that cannot be satisfied
with the current schedule. A flow control mechanism can
prevent routing and scheduling problems when the network
is disconnected (no route) and/or the resource are limited
(traffic ¿ available resource), respectively. As shown in Figure
2, the interaction are multiple and presented from a routing



point of view. Optimizing the performance of V2Vs requires
routing, scheduling and possibly limiting the transmission rate
of sources (Source Admission Control: SAC or Flow Control:
FC) or between neighbour nodes (Link Control).

B. Real time emulations: EMANE

Real time emulations are seldom used in the V2V litera-
ture due to the complexity of the radio transmissions. The
open source EMANE platform, running on powerful Virtual
Machines (VMs) using one Linux container per node, renders
possible to conduct numerous numerical experimentation close
to reality at a fraction of the cost of real measurements.

C. Machine Learning based attempts

Reinforcement Learning (RL) has been investigated to im-
prove the performance of MANETs in real time emulations.
Two attempts using GNNs are illustrated in Fig. 3 . The GNN
approaches presented in [43], showed the difficulty to convert
solutions designed for slowly varying fixed Software Defined
Networks (SDN), i.e., a multi-commodity flow problems to a
useful schemes for V2V communications.

Fig. 3. Illustration of the GNN Model, with the possible inputs or observa-
tions: Graph, Queues, position, bitrate, SINR, etc., and possible outputs or
action: schedule for resource allocation, link estimation or path prediction
for flow control, routing, etc. The goal is to increase the completion ratio
and throughput for the admitted source-destination pairs. ”Good” policies and
rewards remain to be defined.

Currently, the problem still appear to be difficult to solve
optimally, even in non-real time and even if an omniscient
centralized computing unit existed, due to the time varying
demand and topology. Well-know practical solutions do exist
such as the Optimized Link State Routing (OLSR) Protocol
Version 2 (RFC 7181). A deeper understanding of the main
OLSRv2 features (DAT link states, multi-points relay, dis-
tributed routing) remains to be exploited. Analysis of so-called
OLSR node-view-graphs has recently started.

D. An Omniscient Dijkstra Routing for benchmarking

Repeated emulations confirm that OLSRv2 (Completion Ra-
tio CR=76%) is outperformed by our centralized Omniscient
Dijkstra Routing (ODR, CR=94%) [44]. ODR computes all
possible shortest paths and then choose a set of single paths to
distribute evenly the number of node traversals. When fading is

taken into account, we observe that ODR (CR=83%) remains
better than OLSRv2 (CR=67%) simply by reducing the ODR
pathloss threshold (from 121 to 115dB). But, keeping the ODR
pathloss at 115dB worsen the CR (from 53 to 50%) compared
to 121dB when weak links are broken such as during the first
300s of the Anglova scenario. The high mobility and the poor
connectivity of the network in the beginning of the scenario
are claimed to be the major issues. Congestion could also be an
issue and remain to be verified. Reducing the time interval of
the HELLO packets and Topology Control (TC) benefit OLSR
from CR=76% to 82% and OLSR reacts faster to topology
changes.

E. A GNN attempt to improve ODR

Alternative routes in presence of an all to all traffic were
investigated using the GNN-t algorithm [43]. GNN-t was
trained on the Anglova scenario using the number of traversals
derived from the shortest paths (using the Dijkstra algorithm).
A small random variation were added to the predicted weight
to get a unique set of paths. Considering the small number
training set (1000s for the Anglova CP1 scenario), our GNN-t
presents unexpected large difference of the weights from one
prediction to another. Still, GNN-t showed good performance
in minimizing the maximal number of hops compared to
ODRb. GNN-t is slightly better than ODR (CRgnnt=81% and
CRodr=80%). The nodes on alternative routes become also
congested and the latency is increased. Further investigations
of GNN-t and improving only the routing did not appear
promising.

F. Radio Resource Allocation

Providing additional resources (time slots) to the routing
nodes is intuitively beneficial. Additional resources in term
of time slots have been scheduled for the most traversed
nodes as computed from the routing tables. The sub-optimal
schedule is oblivious to traffic thus the performance are limited
when using our so-called worst case all to all user traffic.
Theoretically, good performance can be obtained when two
clusters are connected with a few links. In the Anglova
scenario, the traffic rate could be increased from 3.6kbps using
a classical round robin to 10kbps using an optimal schedule
tuned to the demand.

G. Source Admission Control

Simply, avoiding to send data to temporarily disconnected
node could reduce congestion and improve the perceived
QoS. So, resource allocation was investigated with Source
Admission Control (SAC) to offer a more reliable commu-
nication system in presence of congested nodes and network
disconnections.

An omniscient SAC was implemented to detect network
disconnections in a dynamic environment. Omniscient SAC
drops the packet at the source node when routes are not
available. Current SAC only support one type of traffic, but
a new version is being developed to support any application
traffic. A store and forward mechanism leveraging the global



graph will be considered to predict network disconnection or
local congestion. The packet can be stored and forwarded later
or the traffic rate will be reduced when the schedule cannot
keep up with the demand.

H. Future work using GNN

Our best routing scheme (ODR) should be modified to
account for the traffic demand. Furthermore a distributed
version of ODR is required. Distributing the link states used
by ODR appears rather simple knowing that OLSR is doing
just that, but many practical details remain to investigated. A
current investigation seeks to train a GNN to predict the global
graph of the network from local information such as the DAT
metric ij or the link quality between nodes. A temporal graph
prediction remains a challenge for wireless communication as
the link quality can greatly vary in time. Predicting realistic
traffic scenario is also a future challenge which could benefit
from a GNN approach. Merging AI based solutions for V2V
and V2I will be key to offer acceptable QoS for V2x use cases.

V. CONCLUSIONS

As was stated, the importance of wireless communications
in ITS systems is permanently increasing, and it is evident that
efficient and reliable data delivery is often becoming one of the
critical factors to guarantee proper service provisioning. In this
paper, we have discussed the role of advanced AI/ML tools
in future vehicular wireless communications networks. Based
on the three selected examples - i.e., distributed learning,
proactive QoS provisioning, and application of GNNs, we have
shown the great potential of such solutions in improving the
performance of vehicular communication networks. We claim
that distributed approaches may provide numerous benefits
here, as network nodes may, on the one hand, exchange infor-
mation between themselves, enriching their individual level of
knowledge; on the other - they may distribute the computation
and processing load among multiple elements. In that context,
the application of advanced and new solutions, such as GNNs,
creates new areas for performance improvement. Moreover,
the integration of predictive QoS schemes based on AI has
the potential to ensure seamless service provisioning despite
the highly variable conditions faced in vehicular environments.
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H. D. Schotten, and S. Stańczak, “Network under control: Multi-vehicle
e2e measurements for ai-based qos prediction,” in 2021 IEEE 32nd
Annual International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC), 2021, pp. 1432–1438.
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