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A B S T R A C T

Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force
in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear
artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-
level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously
intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial
automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI)
and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed
and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within
a collection of works presented at the 9th International Conference on the Interplay between Natural and
Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific
discoveries made in laboratories that have successfully transitioned to real-life applications.
1. Introduction

Current research in Artificial Intelligence (AI) is predominantly fo-
cused on addressing the challenge of explainability in developed mod-
els and algorithms, particularly artificial neural networks. This emerg-
ing trend, referred to as Explainable Artificial Intelligence (XAI), offers
several advantages such as enhanced confidence in the decision-making
process, improved error analysis capabilities, result verification, and
potential model refinement. XAI instills safety and trust among users
by elucidating the ‘‘how’’ and ‘‘why’’ of automated decision-making
in diverse applications such as bio-inspired systems, virtual agents,
emotion and affective analysis, robotics, and medical diagnosis. These
advantages will be further explored in this manuscript.

A novel approach within XAI involves interpreting the predictions
of recently developed Deep Learning (DL) models using various vi-
sualization techniques [1]. One notable application is in the medical
field, where XAI methods contribute significantly to the analysis and
classification of mammography images [2], yielding valuable insights.

DL is a generic name that covers an ever-expanding constellation of
computational approaches that have in common some kind of biological
inspiration and the use of gradient descent-based learning methods [3].
The DL revolution started quietly in the 1990s with the first pro-
posed Convolutional Neural Networks (CNN) [4], but its adoption
exploded around 2010, growing exponentially afterwards into a myriad
of architectures and applications [5–9]. In essence, DL approaches are
data-driven and therefore conditioned to the available data. Generative
approaches [10] try to overcome this limitation by producing synthetic
samples by exciting a generative model with noise.
2

Bio-inspired computing methods have continued to see a steady
expansion in recent years. Apart from the rapid growth of DL based ar-
chitectures in Machine Learning (ML), bio-inspired solutions for search
and optimization algorithms are still a rapidly growing field of research.
New methods continuously appear in the scientific literature that are
inspired by the behavior of animals, plants, social phenomena, and
physical systems. A simple search in Scopus with the words ‘‘bio-
inspired’’ (title, keyword, abstract) returns more than 21,000 research
papers, with continuous progress since the beginning of the century.
Fig. 1 shows the percentages of these returned articles, classified by
subject area, indicating a wide variety of applications of bio-inspired
methods, especially in engineering.

These computational approaches have fostered new areas of in-
terdisciplinary research. For example, Affective Computing (AfC) is
an emerging research field aimed at developing methods and tools
for emotion recognition, processing, and simulation in computer sys-
tems [11]. One method that can focus research on affective computing
is its intersection with ambient intelligence (AmI) and context-aware
systems (CAS) leading to the development of Affective Computing and
Context Awareness in Ambient Intelligence (AfCAI) [12]. We assume that
this goal-oriented yet multidisciplinary research approach, encompass-
ing AI, computer science, biomedical engineering and experimental
science, will offer more comprehensive solutions in fundamental and
applied research.

Moreover, the use of virtual agents supporting human tasks has
resulted in more evidence that the development of social interactions
between them can be automated using computing principles inspired
by natural processes. For a long time, technology has been insufficient

in developing systems that relate to human beings in a natural human
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Fig. 1. Scopus found articles related to ‘‘bio-inspired’’ computing methods and
classified by subject area.

way [13]. However, the current prospects indicate that through bio-
logically grounded computing principles and AI the automation of long
term social and emotional relations between human and virtual agents
can occur. For example, this involves computational modeling of social
sowing [14], emotion recognition [15–18], sentiment analysis [19] and
human attention and performance monitoring [15,20–22].

Needless to say, the application of AI to the field of robotics is
currently very open and wide ranging. Research in this area is carried
out from different perspectives, ranging from the more hardware-
related aspects of sensing and actuation, which are necessary to provide
the robot with appropriate sensing data in the correct representation,
or to calibrate and adequately prepare the actuation mechanisms, to
addressing higher levels of cognition that aim to make robots fully
autonomous through the construction of specific applications of robotic
systems. Sensing focus more on the application of various developments
in AI in terms of specific algorithms – often based on deep learners
and other modern approaches – to specific sensing or actuation tasks
within traditional robotic architectures [23]. That is, from the sensor
viewpoint, it seeks to facilitate the detection of specific features using a
single sensor, as in vision, or contemplating a multimodal approach as
in the integration of different sensory modalities [24]. On the other
hand, from an actuation perspective, it deals with calibration and
actuation representation issues.

Finally, biomedical and health applications are a key area in contem-
porary AI research, where new devices and AI approaches, techniques
or toolkits are being developed. The main feature of this field is the
degree of interdisciplinary between diverse professionals. For instance,
the application of medical principles joins to design and develop new
approaches or tools that require the conjunction of engineers, physi-
cians, mathematicians and speech therapists, among others. Bioinfor-
matics, biomechanics, biomaterials, medical devices, and rehabilitation
engineering are other different fields that strongly interact with AI
within biomedical applications. These applications allow advancing in
health care diagnosis, monitoring, treatment or even therapy.

The evaluation of brain functions using digital biomarkers, from
imaging technologies, physiological fluids, genomics, and AI-based data
analytics, is attracting considerable research interest. These methods
provide powerful decision support tools towards the functional as-
sessment of treatment and even possible rehabilitation in neurological
disorders [25]. For example, Neuroimaging (NI) creates a large amount
of information that can be used to diagnose a wide range of brain
diseases. Despite the high quality of these images, selecting the appro-
priate treatment is not a straightforward task because patients suffering
from different pathologies may present similar structural or functional
features and experience similar symptoms. The emergence of AI permits
the development of powerful tools to address this issue, leading to
Computer Aided Diagnosis (CAD) systems that can assist clinicians in
their decision-making.

The application of techniques to model brain connections as ma-
trices (connectomics) is a promising avenue for understanding and
3

analyzing how our brain works, but their medical application to assist
in disease and disorder detection is a field that still needs development.
One of the missing elements for this development is the establishment
of a standard method for calculating connectomes from MRI data. In the
absence of a standard, the analysis of how different connectome calcu-
lation processes, in combination with computational learning methods
for the diagnosis of, for example, Autism Spectrum Disorders, is of
particular interest to allow the possibility of clinical use of these
systems [26]. The use of different connectome calculation methods and
several computational learning methods on the ABIDE dataset [27] are
studied separately.

Additionally, the combination of AI and ML methods with new
biomarkers offers more accurate models to diagnose and predict the
evolution of neurological diseases. ML has also proven its efficiency
and effectiveness in analyzing different types of medical imaging tech-
nologies, including Magnetic Resonance Imaging (MRI) [28,29], Sin-
gle Photon Emission Computerised Tomography (SPECT) [28], X-rays,
CT [30], Electroencephalography (EEG) [31], Cardiac magnetic reso-
nance (CMR) [32], and so on. In the speed and accuracy of pattern
recognition in other fields, ML is close or already has exceeded hu-
man performance, and thus this indicates the great potential of ML’s
widespread application in healthcare and biomedicine.

To the same end, we are also interested in AI tools for diagnosing
and monitoring subjects with subtle patterns, such as Mild Cognitive
Impairment (MCI), based on inexpensive, minimally invasive and easy-
to-acquire biomarkers. Thus, we summarize in the following sections
a number of AI systems that automatically analyze cognitive abilities
(memory, planning, constructional praxis, and semantic production)
and biological signals, either in neuropsychological tests or activities
of daily life.

With the increased computational power and connectivity provided
by modern devices and facilitated by the internet, smart technologies
have pervaded daily life, especially in areas related to health and well-
being. This allows for large amounts of data collection and processing.
These novel devices usually come to the market as entertainment tools,
such as virtual reality goggles, trackers, cell phones, and tablets. How-
ever, they can be used not only for gaming but also for rehabilitative
functions in a clinical setting. Likewise, the number of virtual reality
devices sold in the last five years has increased considerably (statistics
available at: https://www.statista.com/). This is a favorable point for
the development of new longitudinal monitoring applications based
on these new devices. Applications using virtual reality and several
trackers have begun to stand out in recent years [33,34]. This presents
many opportunities to revolutionize not only healthcare but also the
way it is delivered.

1.1. A summary of the paper

We provide a detailed overview (see Fig. 2) of some conceptual
sessions that have been published in the aforementioned areas within
the 9th International Conference on the Interplay between Natural and
Artificial Computation (IWINAC). Due to the relevance of the topic,
DL models and applications are summarized in the first section of this
paper. In particular, Section 2 contains some applied contributions in
DL, encompassing signal processing; image interpretation in medical,
pictorial, and quality control domains; emotion recognition; and some
AI contributions to the foundations of Deep Reinforcement Learn-
ing (DRL) and DL systems explainability. We mainly focus on three
different aspects: stacked autoencoders with Multi-Layer Perceptrons
(MLPs) [35], DRL [36], and the explainability of CNNs by the extraction
of propositional rules [37]. In the following section, Section 3, we
present a paradigm for devising new models and theories in AI as the
mere observation of the behavior of biological systems. Bio-inspired
models and systems are among the most successful methods for tackling
hard combinatorial problems. In certain settings, effective solutions can
only be achieved in an acceptable amount of time using this approach.

https://www.statista.com/study/29689/virtual-reality-vr-statista-dossier/
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Fig. 2. Taxonomy and overview of the main areas covered in this paper and their relationships, with emphasis on the topics covered within.
This section includes original applications of these methods in a broad
array of challenging problems in the fields of scheduling, routing, quan-
tum computing and protein structure prediction, etc. showcasing the
potential of the field. In this sense, biological inspiration has reached
a stage of maturity that allows exploring issues as diverse as those
related to image processing, group formation under efficiency criteria
and emotion expressed through natural language.

The studies available in the area of affective computing (AfC) cover
a broad spectrum of research problems: from the development of
appropriate methods for collecting emotion information from subjects,
e.g. methods of data visualization and preprocessing, the evaluation of
existing and development of new ML models, to practical applications,
including the behavior of social agents in social networks, and the
operation of desktop robots in hand disease rehabilitation (Section 4).
These studies demonstrated distinct and valuable approaches to AfC AI-
related research. Emotions are essential in human communication and
interaction. However, automatic systems for emotion recognition are
still an unachieved objective in AfC. This section also introduces some
applications focusing on (i) EEG for detecting emotions in the brain and
(ii) virtual reality (VR) for eliciting and helping to recognize emotions
in healthy and mentally impaired people.

Section 5 explores various applications of AI to the field of robotics,
including hardware-related sensing and actuation aspects and higher
levels of cognition that aim to make robots completely autonomous.
There are two main research perspectives explored: approaches that
provide specific algorithms for particular modules within a robotic
architecture, and approaches that contemplate the architecture as a
whole and seek the integrated operation of architectures that can lead
robots to be able to address open-ended learning situations. A special
focus is dedicated to computer vision, where artificial neural networks
have been used extensively to process images and have a wide range
of applications. However, there are still challenges to be overcome,
such as reliability issues and lack of adaptability once training is
4

completed. Robotic applications are also explored, particularly in terms
of autonomy and natural interaction with humans.

Section 6 deals with new applications, devices or approximations
to neurodegenerative, sensorial, cardiac, or emotional disorders. The
section summarizes new neuroprosthetic approaches and models using
EEG for understanding the brain, controlling exoskeletons, or detecting
stress. Moreover, several ML applications in this field are assessed for
retinal analysis, breast cancer identification and electrocardiographic
(ECG) signal analysis for identifying different cardiac pathologies.

Finally, Section 7 gives additional details and insight on one specific
(and relevant) biomedical application field: neuroscience. This field
covers several aspects of signal processing and fusion techniques, image
and bio-electrical modalities and biomarkers within signal analysis,
computer-aided diagnosis and neurorehabilitation systems, precision
medicine, and so on. The discussion in Section 8 contains the results
and outcomes of the present review paper, while conclusions are drawn
in Section 9.

2. Explainable artificial intelligence in deep learning

XAI is a hot research topic that aims to make AI systems transparent
and trustworthy. Without explainability, developed methods are inca-
pable of devising new theories and leading to incremental science [2].
For instance, a recent review [38] pointing to pitfalls and misconducts
in the proposals of new DL approaches may represent this state of
affairs.

2.1. Recent methods

The most commonly used DL architecture is various types of CNNs,
such as the noisy autoencoders [35], the hybrid with LSTM net-
works [39], Seq2Seq architectures [40], and ad-hoc vanilla CNNs [41].
The application of transfer learning based on publicly available and
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well-known pre-trained networks has also become a common first-
hand approach to tackling diverse problems, as well as hybrid systems
composing classical ML (namely Gaussian Mixture Models) and trans-
fer learning of CNN approaches [42]. Another salient feature worth
noting is the use of public data for the numerical experiments and
demonstrations, which is a definitive step forward to open science [43].

In an autoencoder (AE), the input layer is the same dimensionality
as the output layer. Between these two layers, an arbitrary number of
hidden layers acts as an encoder and a decoder. Generally, the encoder
achieves a transformation of the input to a higher or lower dimensional
space. Subsequently, the decoder recreates the input data from the
encoder’s output. Typical AE applications are data denoising [44,45],
dimensionality reduction [46,47] and generative models [48,49]. Here,
the authors of [35] aimed at testing whether a modified version of
Stacked Denoising Autoencoders (SDAE) could perform better than the
regular model.

Unlike supervised learning, reinforcement learning does not require
labeled input/output pairs. Typically, with this paradigm, an agent
interacts in an unexplored environment to maximize its reward. During
learning, a crucial question is the exploration∕exploitation dilemma.
Specifically, the former is about acquiring more information in the
unexplored territory, while the latter is about making the best de-
cision given current knowledge in order to maximize cumulative re-
wards. Here, the authors of [36] presented an application based on
the ‘‘Montezuma’s Revenge’’ game [50] in which the probability of
determining a very long sequence of particular actions using random
exploration is extremely small; thus, requiring methods with more
directed exploration.

The underlying model in reinforcement learning is a Markov Deci-
sion Process (MDP), whose objective is to maximize the future cumula-
tive reward. With Atari games, each observation was an RGB image
of size (210, 160, 3) where every action was chosen again for several
frames since they are very similar. In addition, images were converted
to grayscale with a smaller size (84, 84). The last 𝑘 images represented a
single observation, so that an agent in the game could better understand
crucial parameters, such as the direction or speed of objects in the
game [51]. With the use of heuristic data, the authors reached good
generalization. Essentially, they focused on whether the features of the
state were rewarding, instead of focusing on whether the state was
rewarding. Finally, the environments used were episodic; their end was
triggered by the loss of a life or after winning the game. The deep neural
networks (CNN) were implemented with the reinforcement learning
library called ‘‘Coach’’.

Before the advent of CNNs, a natural way to explain MLP classifi-
cations was to use propositional rules [52]. Andrews et al. introduced
a taxonomy describing the general characteristics of all rule extraction
methods [53]. Guidotti et al. presented a survey on black-box models
with its ‘‘explanators’’ [54]. Moreover, Vilone et al. review the XAI
domain by clustering the various methods using a hierarchical classi-
fication [55]. Many recent techniques involved learning interpretable
patterns in the local region near a sample [56,57]. However, the main
drawback of local algorithms is their difficulty in characterizing a
phenomenon in its entirety. Moreover, many other techniques used
in image classification visualize areas are mainly relevant for the
outcome [58]. Explainability is a crucial concern that can be imputed
to any trained neural network architecture. For example, with stacked
AEs, propositional rules were generated in [59]. In [37], a technique
for the rule extraction problem applied to a CNN architecture was
proposed.

The advantage of using deep autoencoders rather than MLPs with
many hidden layers is that the former can produce more efficient
feature representations than the latter. Nevertheless, the vanishing gra-
dient problem affects the training through multiple layers. Therefore a
possible approach to avoid this problem is to stack individually trained
layers, i.e. deep SDAE [60]. Specifically, a small amount of noise
5

was added to the input vectors; thus, the weight values of the auto-
associative layers were determined by MSE minimization. In addition, a
two-layer stacked DAE was proposed instead of a single-layer DAE. This
approach was applied to four regression problems and three time-series
datasets.

2.2. Applications of DL with XAI

The key idea behind the rule extraction technique proposed in [37]
is to transfer the feature maps learned by a CNN to the Discretized
Interpretable Multi-Layer Perceptron (DIMLP) [61]. DIMLPs are specific
MLPs from which propositional rules are generated, thanks to the
precise localization of discriminative hyperplanes [62]. CNN networks
were trained with the MNIST benchmark dataset of digits with two
convolutional layers. Then, all the feature maps were transferred to
a DIMLP network that was trained after compression of the maps by
the Discrete Cosine Transform (DCT). In order to execute the rule
extraction algorithm in a reasonable time, the DCT was only applied to
a small number of low spatial frequencies. Finally, propositional rules
were extracted from the DIMLPs, with rules showing in the antecedents
the amplitudes of spatial frequencies in the images represented by the
feature maps. Fig. 3 represents at the left the centroid of the samples
activating a generated rule after applying the inverse DCT (belonging
to class ‘‘0’’). In the middle and on the right are shown two centroids of
two different feature maps linked to the same rule. It is worth noting
that the feature maps detect some characteristic parts of the number
‘‘0’’.

The predictive accuracy of the extracted rules was similar to the
original CNN, when the MLP classifications agreed with the rule clas-
sifications (in about 97% of the testing samples). Thus, replacing a
CNN network with many DIMLPs trained on their feature maps was an
appropriate approach. Besides, it was possible to identify the relevant
locations that contributed to the classification and reasoning behind the
model.

Nowadays, DL covers many tasks can be represented in a way
amenable to a computation that may emulate human reasoning or
perception. The ability to discern among pictorial styles is a subtle
skill [41] that can be mimicked to some degree by DL architectures.
Interestingly, the visualization of the confusion incurred by the trained
DL classifier, as shown in Fig. 4, results in an excellent map of the
relations among pictorial styles. This observation opens the door to new
ways to exploit DL results. For instance, this new approach would allow
us to visualize the relation among diverse neurodegenerative diseases
on the basis of the confusion matrices of weak diagnostic tools. Another
subtle perception task is the detection of emotions in speech, i.e. speech
emotion recognition (SER) [39], whose importance will increase as
the interaction of humans and cyber-systems becomes more and more
natural in our lives.

Besides attempting to model the brain, ML, especially deep artificial
neural networks, have been inspired by the functioning of biological
elements to mimic their properties. Following this principle, [63] pro-
poses a different approach to continuous learning, a desirable property
in neural network models that are not entirely developed nowadays.
The proposal explores the stability-plasticity dilemma to avoid losing
already learned information when dealing with non-stationary distri-
butions. It is done by altering the learning algorithm with a new
learning rate function in a competitive learning paradigm. Although
the experiments are performed only on 2-dimensional binary images
(as depicted in Fig. 5), they are promising and set a research direction
for improving the system.

2.3. Application to image and video processing

Although object detection and image segmentation are among two
of the most successful DL areas of application, their limitations are
far from being solved. The performance of the methods makes them
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Fig. 3. A centroid of samples activating a rule after applying the inverse DCT (left) and two centroids of two different feature maps linked to the same rule (middle and right).
Fig. 4. The graph of relations between art styles, induced by the confusion matrix of the best DL architecture found, mimics the experts opinions and historical records.
Fig. 5. Example of neurons adapting to different figures shapes.

suitable to work with objects of considerable size in the images. Even
though in many circumstances this limitation is not a problem, there
are many cases in which small objects should be detected or segmented.
Related to this problem, [64] proposes a test-time augmentation meta-
method in which a pre-trained semantic segmentation model was used
to generate high-resolution sub-images in which the different areas
are identified. The final results are significantly improved although
the execution increases given that the semantic segmentation method
has to be applied several times. Fig. 6 shows an example of image
segmentation.

While the small object detection problem is inherent to image and
video processing, there are others created by humans to take advan-
tage of neural network-based systems. Adversarial attacks are input
manipulations designed to cause false predictions in image classifica-
tion models by adding imperceptible perturbations to an image. To
defend against such attacks, [65] proposes a GAN-based pre-processing
methodology. Instead of allowing direct processing of the image 𝑖, the
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Fig. 6. Example of image segmentation using test-time augmentation method as
described in [64].

proposed method encodes the image into a latent vector 𝑧 using a
previously trained autoencoder and a GAN to generate from 𝑧 another
image similar to 𝑖. If 𝑖 contains a malicious perturbation, the pre-process
removes it.

Once we can assume that the system is working correctly, some
problems are difficult to define and, thus, particularly hard to solve.
Anomaly detection is one of them because of its dependence on context.
In [66], an object detection method is used to identify vehicles, track
them, and obtain their trajectories and velocity vectors. The trajectories
and velocities are compared with those of the nearest neighbors to
obtain a context for defining the usual behavior and distance anomalies
to that behavior.

DL is used to solve time- and resource-intensive problems, and light
versions of typical architectures can help solve real problems in real
time. In [67], a simple yet effective approach is used to measure the



Information Fusion 100 (2023) 101945J.M. Górriz et al.
Fig. 7. Architecture approach for live streaming latency estimation.

Fig. 8. Sample frame of sperm imaging and schematic zoom of the parts of a normal
spermatozoon: Head (a), middle-piece (b) and tail (c).

end-to-end (e2e) latency in the live video streaming pipeline, from
when the signal is generated in the production studios until it is played
on the client device. The method is based on user-centric behavior by
looking at the time the content is produced in the source context and
comparing it to the current clock time at the playback device. Given a
clock timestamp introduced in the signal at the production stage, we
rely on an intelligent streaming latency measurement agent that first
detects with YOLO that mark at the playout device, then uses optic
character recognition (OCR) to convert the bitmap text in the clock
to a string text, and finally, compares it with the real-time clock in
the machine, providing real-time end to end streaming latency (see
Fig. 7). The method, albeit simple, allows us to measure the latency
of any playout device, as it does not rely on any in-band signaling
but a human-centric behavior simulated by an intelligent measurement
agent.

On the other hand, the lack of labeled data is problematic when
applying deep architectures in many fields. Here, solutions that provide
synthetic data are very useful. One of these fields is sperm analysis,
which has a central role in diagnosing and treating infertility (see
Fig. 8). Traditionally, the assessment of sperm health was performed by
an expert by viewing the sample through a microscope. To simplify this
task and assist the expert, CASA (Computer-Assisted Sperm Analysis)
systems were developed. These systems rely on low-level computer
vision tasks such as classification, detection and tracking to analyze
sperm health and mobility. These tasks have been widely addressed
in the literature, with some supervised approaches surpassing the hu-
man capacity to solve them. However, the accuracy of these models
have not been directly translated into CASA systems. The generation
of synthetic semen samples to tackle the absence of labeled data is
necessary. In [68], a parametric modeling of spermatozoa is proposed
demonstrating how models trained on synthetic data can be used on
real images with no need for the further fine-tuning stage.

2.4. Novel applications with miscellaneous technologies

Of course, DL systems are becoming pervasive in the most diverse
technological chores, from the basic signal denoising process [35] to
the segmentation of images [69] to the interpretation of radiologi-
cal images for the identification of specific diseases [70] (see also
Section 7).
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Fig. 9. Susceptibility map selected for 15 day cumulative precipitation using Jenks
method.

A challenging application is the recognition of hand-made signa-
tures [40] in historic documents, which are very noisy due to doc-
ument conservation and the diverse conditions of the scanning pro-
cess. Historical postcards also constitute noisy visual data and are
very heterogeneous in structure. Deep image segmentation using al-
ready well-established U-net approaches [69] allows the extraction
of handwritten data for subsequent analysis. In lane detection for
automated driving tasks, the extensive use of temporal information em-
bedded in encoder–decoder networks allows for increased robustness
and accuracy [71].

Critical industries are also increasingly adopting DL approaches for
quality control. In microelectronics [42], image data augmentation
allows training a robust hybrid system including GMM and transfer
learning of ResNet50 system for feature extraction. In aeronautics
manufacturing, where thousands of fixation elements must be precisely
detected, single-shot detectors have shown great performance [72].

Another field in which ML can be successfully applied is the pre-
diction of catastrophic events like landslides. This is a problem tradi-
tionally tackled with conventional methods, of a deterministic nature,
with a limited number of variables and a static treatment of these
variables. In the first one, Landslide prediction with ML and time
windows has proven to be a successful alternative for dealing with
geoenvironmental problems. A feature engineering process allowed us
to determine the most influential geological, geomorphological and
meteorological factors in the occurrence of landslides. These variables,
together with the landslide inventory, form a dataset to train differ-
ent ML models, whose evaluation and comparison showed the best
performance of the multilayer perceptron with an accuracy of 99.6%.
The main contribution consisted of treating precipitation dynamically
using time windows for different periods and determining the ranges
of values of the conditioning factors that, combined, would trigger a
landslide for each time window [73].

Furthermore, the use of ML models for the identification of high
landslide-risk areas yielded probability values that can be represented
as multi-temporal landslide susceptibility maps. The distribution of the
values in the different susceptibility classes is done by comparing equal
interval, quantile, and Jenks methods, which allowed us to select the
most appropriate map for each accumulated precipitation (Fig. 9). In
this way, areas of maximum risk are identified, as well as specific
locations with the highest probability of landslides. These products are
valuable tools for risk management and prevention [67].

3. Bio-inspired applications, in general

Bio-inspired Computation (BIC) is a branch of AI based on behaviors
and characteristics of living beings, particularly the inheritance and
behavior of swarms. Genetic Algorithms (GA) may be considered the
flagship of the kind of algorithms relying on inheritance and adapta-
tion to the environment, but other approaches of this type, such as
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Differential Evolution (DE) or Genetic Programming (GP), have a long
track of success as well. Furthermore, swarm algorithms such as Particle
Swarm Optimization (PSO), Artificial Bee Colony (ABC) or Ant Colony
Optimization (ACO), among others, introduced new features borrowed
from the emergent behavior of swarms without central control, which
makes them more suited to some problems and able to adapt to both
discrete and combinatorial, single and multiobjective, or unimodal and
multimodal problems.

The boom in BIC continues to occur in many cases without a
thorough analysis of what is really new in each new bio-inspired
metaheuristic approach and in comparison to the well-established and
widely used methods of evolutionary computation and swarm intelli-
gence optimization methods. Many papers are tailored to show that the
new method performs better than others on a set of benchmarks or in
a particular application by adjusting the defining parameters to those
benchmarks or that application, while the other methods used in the
comparison are adjusted to their standard values or to values reported
by authors in related applications, as noted in [74]. Thus, researchers
in this field must be self-critical of the rise of these new solutions,
contrasting what is really new and what is included in other traditional
search algorithms or what novelty a new bio-inspired metaheuristic
brings.

BIC algorithms are considered weak methods since the only knowl-
edge needed in the problem domain is embedded into the fitness
function. However, their flexibility allows the designers to introduce
domain knowledge, usually by means of local searchers or greedy
algorithms, but also with specific recombination or variation operators,
or even coding schemes that are specific to the problem. The resulting
approaches, termed Memetic Algorithms (MA), are among the most
outstanding methods for many complex problems.

Nowadays, biological inspiration has reached a stage of maturity
that allows exploring issues as diverse as those related to image process-
ing, group formation under efficiency criteria, and emotion expressed
through natural language. In the following subsections, we summarize
several main contributions in the field and, as pointed out, they include
original applications of bio-inspired algorithms such as GA, MA, DE, GP
or ACO, to a number of industrial and scientific problems of current
interest, such as Quantum Computing, Protein Structure Prediction,
Complex Scheduling and Learning Heuristics, and so on.

3.1. Quantum computing

Quantum Computing (QC) is an emergent technology with that
promises to solve many problems intractable with classic computational
methods. However, the development and execution of Quantum Algo-
rithms raises a number of specific challenges. One of these problems
is distributing the quantum operations over a given quantum hard-
ware to minimize the risk of decoherence, and satisfying a number of
constraints imposed by the hardware structure, which is termed the
Quantum Circuit Compilation Problem (QCCP). This is one of the main
issues in QC. This problem was addressed in [75], where the authors
exploit GA to solve the QCCP derived from the so-called Quantum
Approximation Optimization Algorithm (QAOA) applied to the MaxCut
constraint satisfaction problem, obtaining competitive results with the
state-of-the-art. Fig. 10 illustrates the main steps of this procedure.

3.2. Complex scheduling

Companies in any modern industry need sophisticated scheduling
systems to meet their production on time, subject to the best use
of human and energy resources. This fact poses harder and harder
scheduling problems that require innovative solving methods to reach
satisfying solutions. Given the extreme difficulty of most of the new
scheduling problems of industrial interest, bio-inspired approaches such
as swarm and local search algorithms are, in many cases, the most
reasonable choice. A number of papers from the BICA session deal with
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Fig. 10. Example of MaxCut instance (a) and one possible solution over the quantum
hardware with 4 qubits (b left) represented by a quantum circuit (b right). Each
binary gate must be executed on adjacent qubits, for this reason some 𝑠𝑤𝑎𝑝 gate (that
represented by × in the extremes) must be inserted.

Fig. 11. AlphaFold2 structure prediction of protein Q31R69 (Synechococcus elongatus,
116 amino acids) with two helices and several beta sheets. The more blue, the greater
the confidence in the prediction.

scheduling problems arising in different industrial environments. For
example, in [76] the authors propose an accurate model for virtual
resources scheduling in a cloud, which is based on the quality of service
requirements and pay-per-use basis and solved by GAs.

In many real-life problems, the duration of the tasks is uncertain a
priori. Therefore a robust schedule must remain feasible for any actual
processing time. This fact was considered in [77,78]; in the first case,
uncertainties are modeled by intervals, while in the second the authors
propose the use of fuzzy numbers. In [77], the authors tackle the classic
Job Shop Scheduling (JSP) with makespan minimization by an ABC
algorithm, and in [78], the confronted problem is Flexible JSP with
energy optimization by means of MAs.

3.3. Protein structure prediction

Protein structure prediction (PSP) is a challenge in bioinformat-
ics, since structure determines protein function. The authors in [79]
analyze the advantages and drawbacks of a number of PSP strate-
gies, considering the recent DL-based methods of RoseTTAFold and
DeepMind’s AlphaFold2, as well as energy minimization methods. The
latter alternative includes an MA based on DE and Rosetta’s fragment
replacement technique for PSP [80,81]. Fig. 11 shows an example of
structure prediction using AlphaFold2.

3.4. Learning heuristics

Heuristics for problem-solving are normally defined by humans
exploiting the knowledge from experts in the problem at hand. This
is the case, for example, of scheduling priority rules that are often
applied when the time available to build a schedule is limited (real-
time) or when the problem is dynamic and tasks must be scheduled
online. However, the automatic construction of such rules may be the
best option. This approach is followed in [82,83], where the authors
exploit GP to evolve rules for the Travelling Salesman Problem (TSP)
and the Unrelated Parallel Machine Scheduling Problem, respectively.
This is a suitable approach because scheduling rules are arithmetical
expressions that can be naturally evolved by GP. Moreover, GP provides
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Table 1
Fitness for GA and Bacteria strategies.

Iterations GA Bacteria

1 0.524 𝟎.𝟓𝟐𝟏
200 0.425 𝟎.𝟒𝟐𝟒
400 𝟎.𝟒𝟏𝟔 0.418
600 0.416 𝟎.𝟒𝟏𝟓
800 0.416 𝟎.𝟒𝟏𝟒

1000 0.415 𝟎.𝟒𝟏𝟑
1200 0.415 𝟎.𝟒𝟏𝟏
1400 0.415 𝟎.𝟒𝟏𝟎
1600 0.414 𝟎.𝟒𝟏𝟎
1800 0.413 𝟎.𝟒𝟏𝟎
2000 0.413 𝟎.𝟒𝟏𝟎

a variety of rules, which may be further used to build ensembles, an
approach considered in [83], where the authors show that ensembles
may produce much better solutions than single rules at a reasonable
cost.

3.5. Educational and social applications

Group formation is an interesting challenge for several reasons.
First, different criteria must be met according to the group objectives.
In the specific case of group formation of students to improve the
results of the learning process, the accepted general condition is that
the composition in every group is as heterogeneous as possible. This
means that the greater the difference between individuals in the group,
the greater their learning capacity. On the other hand, different groups
should be as similar as possible, which means that the smaller the
differences between the different groups, the more overall learning
capacity improves. One possible approach has been the use of lexical
availability techniques, to consider the level of knowledge of students
in different specific topics. An interesting alternative is to consider
the metaphor of the behavior of bacteria. These organisms perform
as a population that is always searching for an optimum condition
for survival. In the particular case of students, the success criterion,
which represents the achievement of academic goals, is similar to the
survival criteria of a population [84]. Table 1 shows how fitness evolves
when genetic algorithm (GA) and bacteria strategies are used. It can be
seen that with bacteria, solutions are better than when we use genetic
algorithms, and the stationary state of the best value is obtained with
a smaller number of iterations.

In recent years, emotions (see Section 4) have emerged as a relevant
topic in the field of social sciences, particularly when emotions can be
recovered from the lexical availability of speakers. The key reference
can be found in [85], explaining the adaptive characteristic of emotions
and identifying the eight primary ones. Fig. 12 shows the emotions
wheel in the structural model. Each emotion is associated with a color.
According to the intensity of an emotion, the corresponding color
intensifies. Emotions are more intense when they approach the center
of the wheel, and they may evolve from a particular state to a different
one. In the figure, we can see that, if trust intensifies, then it can turn
into admiration. On the other hand, if trust diminishes, it may turn into
acceptance. The lexical availability methodology allows us to recover
the most used vocabulary by a population sharing a particular context.
This proposal is aimed to predict emotions, grouped in interest centers.
Data collected for the experiments considered eight different countries
and a total population of 13,918 individuals. Once again, the com-
bination of a classic approach (the lexical availability methodology)
and neural networks allows us to detect emotions in a specific context
or historical reality. The training of neural networks with these data
has permitted us to predict how emotions can evolve depending on
particular geographical and social parameters. The central idea is to
collect data to describe emotional states, which is a similar approach
to that considered above, related to students’ learning processes [86].
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Fig. 12. Plutchik wheel.

4. Interdisciplinary research in affective computing

The use of virtual agents that support human tasks has increased
rapidly in recent years. This stream of research has evidenced that
computing principles inspired by natural processes can automatize
social interactions between virtual agents and humans. For a long
time, technology has been insufficient in developing systems that relate
to human beings in a natural human way [13], but nowadays the
relationships between human and virtual agents are feasible. To do so,
this involves computational modeling of social sowing [14], emotion
recognition [15–18], sentiment analysis [19] and human attention and
performance monitoring [15,20–22].

Research in the field of affective computing (AfC) that is aimed at
the development of systems that recognize, interpret, process or simu-
late human effects [87,88], addresses a number of research questions:

• How can emotions be classified?
• Which data can be used as a source for inferring emotions?
• How can emotion-related data be collected to ensure that the

prepared dataset covers a variety of emotions yet has ecological
soundness?

• How to prepare emotion prediction models using ML and statis-
tical methods?

• In which ways and to what extent can emotion-related informa-
tion be practically used in computer systems?

Different studies in the area of AfC address only selected ques-
tions, and the answers they offer vary depending on the multidisci-
plinary composition of the research teams, as well as intended specific
applications.

Emotions can be defined as positive or negative experiences asso-
ciated with a particular pattern of physiological activity. Much work
has studied emotions on different physiological variables such as elec-
troencephalographic (EEG) recordings, since the brain is considered to
be the source of all reactions to any external stimulus [89].

People infer other people’s basic emotions primarily from facial
expressions and tone of voice, whereas a deficiency in this ability
would lead to a misinterpretation of social cues [90]. Dynamic on-
screen stimuli do not evoke in subjects the feeling of ‘‘being there’’,
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Fig. 13. From social interaction to detected interpersonal synchrony to behavioral
adaptation like bonding.

which is necessary to assess emotional states. In recent years, the
use of dynamic avatars for emotional recognition tasks has become
widespread, showing that virtual stimuli are as valid as classical stimuli
for representing emotional states [17].

4.1. A theory for social interactions with virtual agents

Long-term socio-emotional enduring relations are addressed in the
Attachment Theory (AT) [91,92] and referred to as based on an attach-
ment style [93,94]. Following the AT, the attachment figure forms the
base from which the individual interacts with other persons and the en-
vironment, which determines whether humans will experience a system
(i.e., a virtual agent) as sensitive, cooperative, available, and accepting
them [95,96]. Through computational modeling a secure attachment
can be achieved when the following prerequisites are achieved:

• Sensitivity and responsivity: flexibility with respect to user and
environment.

• Mirroring and emergence of synchrony: user and virtual agent
getting in sync.

• behavioral adaptivity: user and virtual agent adapting their be-
havior.

• Empathic understanding and responding: user and virtual agent
showing empathic understanding.

Social interactions are highly dynamic, flexible and adaptive [97–
100]. This means that an intelligent system should model the user’s
emotions and its social and physical environment [101,15]. A system
is accurate when it is able to respond flexibly and with the correct
timing to the user. To do so, the user’s states and processes have to
be monitored in a sensitive manner and analyzed over time.

From the side of a virtual agent, mirroring is the basis for imitation
of the user [102], in addition to synchrony and mimicry [103]. An
agent model where synchrony between two agents emerged at different
modalities (movements, affective responses and verbal utterances) was
designed in [104]. In another work, adaptive agent models learned to
synchronize their actions and feelings over time through a dynamic
network-oriented approach, being visualized through avatars [105].
Learning interpersonal synchrony in two interacting virtual agents can
also be learnt when parameters control basic reactive error (phase)
correction and anticipatory mechanisms [106]. In [107] another ap-
proach is described of how interpersonal synchrony can emerge from
nonverbal actions. In Fig. 13, a schematic overview is provided on
how social interaction in agents can lead to detected interpersonal
synchrony, resulting in behavioral adaptations like bonding.

Interpersonal synchrony dynamically relates to relationship adaptiv-
ity both in the short-term (e.g., [108,109] and long-term, e.g., [110].
From a neuroscientific perspective, such short-term behavioral adap-
tivity can be modeled through nonsynaptic adaptive excitability of
states [111–114], whereas long-term behavioral adaptivity can be mod-
eled through synaptic plasticity [115,116], as has been captured by an
adaptive agent model [117].
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Fig. 14. Quasi-static areas of interest defined for the train cab view (cf. Fig. 15):
regular view (left) and appearance of the incidental objects (right) [21].

Fig. 15. The train cab view in a virtual environment [21].

Finally, one of the most fundamental forms of mutual understanding
is indicated by the notion of empathy [118,119]. Empathy is the natural
process of feeling and understanding of somebody else’s emotional
state [120] and can have different variations [121]. Computational
social agent models showing empathic understanding have been previ-
ously developed [122,123]. Moreover, Wang [124] designed empathic
virtual characters as a crucial aspect for the use in e-learning.

4.2. Affective computing with social interactions

An important step in AfC research is to collect a dataset that
accurately describes emotions. One approach is to ask actors to simulate
the required emotion [16]. Another is to ask users to describe their
current state in response to a prompt from a mobile application. To
overcome this issue, pre-trained models [18] can be used to detect
strong emotions based on continuous monitoring of blood volume
pulse, heart rate and accelerometer signals collected with a smartwatch,
indicating when to ask the person about their current emotional state.

The selection or self-preparation of the dataset is followed by the
analysis of a wide range of signals [87,88]. Data visualization methods
such as inter alia are used in exploratory subgroup discovery [125]
in the context of team interaction data. The research – based on the
VIKAMINE system [126] – specifically focuses on four novel visu-
alizations for the inspection and understanding of subgroups, which
facilitates the interpretation and assessment of the subgroups and their
respective parameters.

One can also segment data into batches easier to explore. This
approach was used for studying train drivers’ attention [21]. As the cab
view changes continuously, the whole view is divided into sectors that
contain different types of objects such as signals and track surrounding
(see Fig. 14). This partitioning facilitates the analysis of the elements
to which attention is drawn while driving, in a virtual environment
created with the Unity3D tool (see Fig. 15).

Besides exploratory analyses, the development of valid emotion
prediction models is crucial for AfC research. In [19], authors proposed
a ML model for predicting which sentiment a given place causes in the
people attending it. Specifically, they trained Long Short-Term Mem-
ory (LSTM) and Convolutional LSTM (ConvLSTM) on a dataset which
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Fig. 16. EEG and VR at the core of emotion recognition.

included different information such as the location and WiFi status of
the link, as well as the tablet and phone of the person connected to the
network.

Proprietary models created by companies from massive data sets
are also available via APIs. Two models for emotion recognition from
facial images (Microsoft Face API and the Kairos Emotion Analysis
API), are investigated in [16]. The study is performed using 4 dif-
ferent benchmark datasets, conveying 8 emotions. Here, ready-to-use
software systems can build blocks enabling highly flexible, robust, and
lightweight frameworks.

Finally, AfC studies include not only fundamental research but are
also directed towards solving practical problems. In [14], authors ex-
plored the possibility of automating the ‘‘sowing’’ process, during which
a social agent behaves like a regular user to increase its audience before
spreading malicious content on social media. The work developed a
theoretical and computational model based on the Twitter platform.

The AfC solution may also be a desktop robot that recommends
exercises for the rehabilitation of hand diseases [15]. Emotions are
assessed to identify possible problems while the care receiver performs
the exercise using a MobileNetV1 network and ad-hoc datasets. Besides,
the decision-making processes are locally performed through Edge AI
technology.

4.2.1. Emotion recognition in EEG
This section addresses the brain signal acquisition using EEG, to

classify people’s emotional states (Emotion Recognition -ER-) in virtual
worlds (see Fig. 16).

Virtual Reality (VR) enables the study of the ability to perceive
and distinguish between different affective facial expressions [127].
This technology overcomes traditional desktop screen conditions in the
identification of expressions both in front and side views for different
conditions. However, this enabling technology requires some kind of
preprocessing to reduce the negative effects of motion sickness [128]
and to identify the main factors that cause them. To this end, a driving
simulator with multiple experimental countermeasures was developed
and tested on thirteen volunteers. Results determined the key elements
of a normative participant to tolerate and overcome the symptoms
of this condition, establishing a series of recommendations and best
practices for further work with VR technologies.

The performance of ER is conditioned by setting a proper baseline
state. In [129] the problem of setting up a baseline emotional state
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before or after the presentation of emotional stimuli during emotion
induction is studied. The effect of neutral stimuli and the duration
necessary for reaching the baseline brain activity is assessed by means
of spectral analysis of electroencephalographic signals. Concretely, the
brain activity at the beginning, middle and end of a neutral stimulus
is compared with the activity at the end of the previously presented
emotional stimulus. The results report that 30s of neutral stimulus suc-
cessfully leads to a baseline state after the elicitation of emotions with
low arousal or low valence in all brain regions and for all frequency
bands, whereas the doubling of time is necessary for the regulation of
emotional states with high arousal or high valence levels.

Finally, emotional processing (EP) of ex-combatants of illegal armed
groups is studied as a means of successful reintegration into soci-
ety [130]. Determining the links between EP and brain activity in this
population is an open issue due to the subtle physiological differences
observed between them and civilians. Therefore, a combined approach
with EP psychological assessments and EEG functional connectivity
at the source level (EEG brain imaging based) that feeds a support
vector machine was proposed. Results showed that it is possible to
differentiate between psychophysiological patterns of ex-combatants
and controls based on their EP, a key component to developing new
psychological interventions for this population.

4.2.2. Emotion recognition in real-life applications
Real-life emotion detection is a complex issue, as it can be affected

by user personality, mood, context, and motivation [131]. Therefore,
there is a need for appropriate methods to collect, process, and model
emotions.

Regarding the collection of data from respondents’ reports, the
results presented in [18] indicate the usefulness of using pre-trained ML
models to detect when emotion assessment should be triggered. Com-
pared to the quasi-random triggering method, the proposed method
allowed the collection of 4–17% more reports with intense emotions (cf.
Table 2).

Regarding the analysis of affective data, the usefulness of data
visualization [125] and segmentation [21] methods should be pointed
out. Tailored visualization of movement and speech data from team
interactions allowed the discovery of subgroups, and insights into
their complexity (cf. Fig. 17), specifically relating to distinct (excep-
tional) time periods of team interactions, and the respective social
interactions [125]. In turn, the appropriate segmentation of the screen
into sub-areas facilitated analyses of average fixation times in the
train driver’s cab view, allowing the identification of differences be-
tween railway enthusiasts and professional train drivers. Also, no dif-
ferences were observed between the natural and virtual environments,
which is a strong argument confirming the realism of the simulation
prepared [21].

The analysis of existing models for recognizing the 8 emotions –
anger, contempt, disgust, fear, joy, sadness, surprise and neutral – from
facial expressions [16] led to the conclusion that accuracy and the
number of emotions recognized by Microsoft’s API outperformed the
other API (cf. Fig. 18). While the analysis carried out in [19] showed
no major differences between the LSTM and ConvLSTM models in
sentiment analysis associated with time and place, likely due to the
fact that the data set used is very small and not enough information is
available. The results are preliminary, but they lay the basis for further
studies, including a comparison of the multivariate models.

When it comes to applications, the developed prediction mod-
els [14] confirmed that automation of the social media ‘‘sowing’’
process is feasible. However, it is challenging due to the need to create
handlers for interactions from the social network, e.g. when the social
agent is mentioned in a message. It is also important to consider
whether the ‘‘sowing’’ process is ethical. On the other hand, the results
obtained in [15], demonstrated the high accuracy of the physical
cognitive assistant in monitoring hand gesture exercises, both in gesture
detection (97%) and emotion recognition (90%). The validation of the
desktop robot in a nursing home is proposed to be tested by caregivers
and patients of a daycare center.
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Table 2
Results of using three ML models to detect intense emotion compared to quasi-random and self-triggered assessment. Each
cell represents the distribution of responses to the question of whether the user experienced an intense emotion: Yes/No/Don’t
know/Total number [18].

Random forest AdaBoost (10 s window) AdaBoost (60 s window)

ML model 37%/50%/13%/229 30%/53%/17%/175 33%/51%/15%/189
Quasi-random 34%/51%/15%/356 29%/50%/21%/173 28%/49%/23%/121
Self-triggered 48%/50%/2%/62 44%/49%/7%/57 28%/61%/11%/36
5. A golden age of artificial intelligence in robotics

The application of AI to the field of robotics is currently very
open and wide-ranging. The research in this field is carried out from
hardware-related sensing (calibration and preparation of actuation
mechanisms) to actuation aspects (robots autonomy and specific ap-
plications; see Section 5.3).

The first approach can be divided into algorithms for particular
modules within a robotic architecture or tools that contemplate the
architecture as a whole [132]. The second approach focused on alter-
natives that address domains and tasks not contemplated at the design
time [133]. In this case, the algorithms are not focused on the tasks
to be performed by the sensing system, but on algorithms to allow the
system to acquire these capabilities by itself in a more grounded and
domain-specific manner. This is the case of motivational systems [134]
or contextual memory systems [135].

5.1. Robotic architectures

An example of this approach is presented by [136], whose work
revolves around a complete cognitive architecture: the e-MDB [137].
In particular, the authors explore the effects of variational-autoencoder-
based representation learning and of its resultant latent spaces, as well
as the decision processes used for action selection within the e-MDB
architecture, as shown in Fig. 19. A procedure to obtain the world and
utility models necessary for deliberative operations from autonomously
produced latent state spaces is proposed. This is complemented with
the tool described in [138] for generating reactive policies from these
deliberative structures.

These approaches rely on the reuse of knowledge and learning
from interspersed episodic interactions with different domains, which
increases efficiency. This implies some type of lifelong or continual
learning capabilities and contextual knowledge storage [139,140]. Con-
tinual learning tries to address the stability-plasticity dilemma to avoid
catastrophic forgetting when dealing with non-stationary distributions
of data, which is usually the case for robotic systems. Lifelong learning,
on the other hand, focuses on the reuse of learned knowledge to
facilitate further learning. In this line, [63] addresses the problem of
continual learning for unsupervised learning methods. Unlike previous
works usually focused on supervised or reinforcement learning, they
proposed a novel approach based on a continual learning rate function
that can cope with non-stationary distributions by adapting the model
to learn continuously.

5.2. Algorithms

The topics addressed in the second research perspective are quite
different from those of the first one introduced at the beginning of
this section, since they are more concrete and focused on specific AI
algorithms, such as deep learning and other modern approaches [23].
From the sensor’s viewpoint, it seeks the detection of specific features
using a single sensor, as in vision, or contemplating a multimodal
approach, as in the integration of different sensory modalities [24].
From an actuation perspective, it deals with calibration and actuation
representation issues.

Considering the problem of system actuation, [141] proposes a cali-
bration scheme for a lower-limb, motor-imagery-based brain–computer
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interface (BCI) for controlling an exoskeleton that is more efficient than
previous schemes. It was tested over real subjects guided to perform
motor imagery with visual feedback in a VR scenario before each
session with the exoskeleton. This approach has the advantage that VR
implies less physical effort and allows the users to practice the motor
imagery mental task. Results confirm that the performance of the BCI
showed clear improvements over baseline methodologies.

In more traditional robotic settings, it is important to provide
robots with appropriate sensing and sensor representation strategies so
that posterior decision processes are appropriately informed. To this
end, [142] presented a model based on evolution to solve a spatial task.
This consists in locating the central area between two landmarks in a
rectangular enclosure with the aim of inducing the agents to identify
landmark location, spatial relation between landmarks, and position
relative to the environment. They compared egocentric and allocentric
frames of reference and found that the allocentric one led to better
performance.

On the other hand, [143] seeks to demonstrate how the use of
depth map cameras has considerable advantages compared to laser
range measurements. Depth map cameras, as compared to the single
measurement provided by 2D laser systems, have as many planes as the
vertical resolution of the camera. Thus, the height of objects above the
ground can be derived, endowing the system with the 3D characteristic.
To demonstrate these claims, they run a series of successful experiments
of robots navigating under objects such as bridges.

The aim of AI is to model the real world using images or videos
captured by sensors, assisting in processing tasks such as traffic or
medical images. In computer vision, there is a growing number of
methods for improving robot sensing by using artificial neural networks
in large-scale data for image processing. The use of AI has also spread
to a wide variety of fields, both in digital data analysis and in the
generation of the same or another kind of data. We are witnessing
how the generation of synthetic data is becoming accessible even to
the general public thanks to the various generative models that have
emerged in recent years (VAE [144], GAN [145], DM [146]) with the
consequent transformative applications for society. But there are some
problems to be solved. Their reliability, although increasing, is still
deficient when dealing with small objects. Their training method makes
them susceptible to certain modifications in an image (attacks), which
would cause a failure in the network. Their operating paradigm usually
makes them not adaptable once their training period is over.

Robotics is an evolving field that, through its coupling with AI,
has exploded in terms of applications and possibilities. The increasing
interest in using ML and DL has allowed the creation of autonomous
systems that solve problems in different fields. All of the new AI
developments, when projected onto the realm of robotics, have led
to evermore ambitious robotic applications, as an application focused
area. In the following sections, we explore the relevance of image and
video processing with DL and ML and their applications.

5.3. ML applications in robotics

Robotics is an application in which all the developments need to
be tested under different circumstances and objectives. The application
areas of robotics are quite broad as they imply different types of robots
(aerial, terrestrial, underwater, or assistive), applications (monitoring,
manipulating, assisting, autonomous operation), and different domains
in which these tasks are carried out.
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Fig. 17. Sample summary of a single subgroup in team interaction data [125].

Two examples in the area of monitoring humans from different
types of robots (ground and aerial) are provided in [15,22]. The
former proposes a physical, cognitive assistant robot that monitors
hand gesture exercises for elderly people or people with some kind
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of hand-related disease. The cognitive assistant makes use of visual
information on hand posture and incorporates the detection of the
patient’s emotional state during the exercise to help improve motiva-
tion. In the latter, the authors present a system for the vision-based
detection of three postures of individuals (standing, sitting, and lying
down) from an unmanned aerial vehicle. They use the MediaPipe Pose
Python module, considering only seven skeleton points and a set of
trigonometric calculations. The work is evaluated in a Unity virtual
reality (VR) environment that simulates the monitoring process of an
assistant UAV. The experiments carried out by the authors show very
promising results.

On the other hand, the therapeutic intervention in children with
ASD (aged 6–8 years, who have the ability to speak and an IQ equal
to or higher than 70 [147,148]) needs to identify the emotions to be
regulated and to implement a series of emotional regulation strategies
to increase or decrease these emotions [149]. As an innovation, the
proposed protocol will include more automatic multimodal measure-
ments, including electrodermal activity signals, and video analysis
of the emotional state of the children interacting with the robot to
eventually enhance the positive effects of robot training. In the previous
designs of robot training with Pivotal Response Treatment (PRT) train-
ing [147,148,150], more obtrusive cortisol measurements were used to
evaluate the stress levels during training with a social robot. At the
beginning of the session, the child is offered a choice of game, and all
activities are characterized by a variety of visual elements; the sessions
are recorded for subsequent analysis of the patient’s behavior in order
to synchronize the different behaviors and times of the game with the
data obtained from the GSR sensor.

In addition, appropriate and personalized content creation in edu-
cation environments involving children with ASD is an important issue
in technology created by specialized user groups, as proposed in [151].
The goal of the ROSA toolbox (Fig. 20) is to make teachers more
effective by providing tailored educational plans for children with ASD
and easy progress monitoring. For children with ASD, the lessons in
the toolbox will be tailored to their unique needs, increase children’s
motivation for learning, and enable children to develop better lan-
guage, social, and communication skills. The robot will present content
tailored to its abilities. The ROSA toolbox can provide personalized
and motivating educational and communicative support, exploring and
exploiting the unique possibilities of a social robot as an expressive
medium and educational tool for children with ASD.

6. Biomedical and health applications

When discussing biomedical applications the areas involved are
numerous and diverse. One of the biomedical areas that have received
considerable attention over the last decade is neurodegenerative disor-
ders, such as Parkinson’s Disease (Parkinson’s Disease (PD)) [152,153]
or Alzheimer’s Disease (Alzheimer’s Disease (AD)) [154–156]. Indeed,
the number of patients with PD is expected to double in twenty years
and will triple around 2050.

Studies have also focused on heart attacks and strokes, which are
associated with a frantic and stressful lifestyle. Mental health is another
fundamental topic of analysis, where emotional deficits have been
related to mental disorders, like depression, schizophrenia, or bipolar
behavior [157,158].

Cancer is another constant concern in research. As well as other dis-
eases or conditions such as developmental dyslexia [159,160],
autism [161,162], or glaucoma, which causes progressive and irre-
versible damage that reduces the vision field of the patient.

New ML algorithms may also be applied to biomedical data. One of
the main diseases that affect the optic nerve is glaucoma, which causes
progressive and irreversible damage that reduces the vision field of the
patient. The thickness of the retinal nerve fiber layer is an indicator
of the status and progression of this illness. A line of research in the
early diagnosis of glaucoma is based on the analysis of the asymmetry
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Fig. 18. Accuracy scores for each tested scenario: 2 APIs for facial emotion recognition, 8 emotions, 5 datasets [16].
Fig. 19. Processes involved in the SRL of the e-MDB.

between the morphological characteristics of both eyes. Automatic
methods for the measurement of the retinal thickness and the use of
classification techniques based on these characteristics of asymmetry
for the early diagnosis of glaucoma is a promising approximation.

6.1. COVID applications

Rates of depression and anxiety increased by more than 25 percent
in the first year of the COVID-19 pandemic, adding to the nearly one
billion people who were already affected by a mental disorder. At the
same time, the frailty of health systems makes it difficult to address the
needs of these patients. Mental health is a lot more than the absence
of illness: it is an intrinsic part of our individual and collective health
and well-being [163].

During the COVID-19 pandemic, it was important to estimate the
capacity of the room and venue for avoiding overcrowding. Having
enough free space to give people the guaranteed distance is beneficial
to prevent the spread of infectious disease [164]. A novel CNN that
automatically counts crowds based on the environment audio signals
is proposed in the latter reference. The proposed system is reported to
outperform the previous DL Crowd Counting system on inferring room
capacity. This system provided a good idea to deal with this problem
for future research.
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Fig. 20. The ROSA toolbox: a content creator, software that runs on the robot for
interpreting the lessons, and a review panel for teachers.

Diagnostic systems based on DL techniques for the diagnosis of
COVID-19 infection were also highly demanded in the last few
years [30]. The proposed method performs a three-layer wavelet de-
composition of the input image signal to extract features and calculates
wavelet entropy to remove redundant features, reduce the dimension-
ality of the features, and reduce the space and time costs required for
model training. These extracted features are then fed into a feedforward
neural network with a hidden layer for classification. They introduced
the Self-adaptive Particle Swarm Optimisation Algorithm (SaPSO) as
a training algorithm that can explore more solutions while purpose-
fully finding the optimal solution. Their experiments were based on a
chest CT image dataset containing 296 samples (148 from COVID-19
patients and 148 healthy controls) and achieved an excellent accuracy
of 85.14% ± 2.74%. Their approach requires minimal medical expertise
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and is of great importance for the future of humankind in dealing with
emerging epidemic diseases.

6.2. Neuroprosthetic applications

Neuroprostheses are emergent devices able to produce incredible
results as Deep Brain Stimulators. Cortical visual prostheses are a
subgroup of visual prostheses which use electrical stimulation of the
occipital cortex to evoke visual perceptions in profoundly blind people
[165–167]. The stimulation approaches are usually open-loop, meaning
that the stimulation is not controlled by any other factor. However,
closed-loop approaches have shown advantages in many neural pros-
theses. In the case of cortical visual prosthesis, the closed-loop approach
can be based on the phase of local field potentials recorded by the elec-
trodes. Indeed, previous studies have shown that it is easier to induce
perception through stimulation at certain phases of brain oscillations.

However, although electrical stimulation is an established treatment
option for multiple central nervous and peripheral nervous system dis-
eases, its effects on the tissue and subsequent safety of the stimulation
are not well understood. Therefore, it is crucial to design stimula-
tion protocols that maximize therapeutic efficacy while avoiding any
potential tissue damage. Further, the stimulation levels need to be
adjusted regularly to ensure that they are safe even with the changes
to the nerve due to long-term stimulation. Using the latest advances in
computing capabilities and ML approaches, computational models are
needed. Another essential factor consists in analyzing brain structures
in the medical imaging field. These are challenging problems due to
neurological diseases’ heterogeneity. Besides, measuring brain changes
quantitatively in neurodevelopmental is crucial to evaluate clinical
outcomes correctly. From a computer-vision perspective, establishing
correspondences between shapes often requires computing similarity
measures that, in most cases, are unavailable.

6.3. EEG analysis and applications

EEG is also a useful tool for many different applications, including
robotics, emotional technologies [168,169] (see preceding Section 4),
and perception. Neurorehabilitation has gradually become one of the
most hopeful tools for treating specific injuries and diseases during
the last decade. Several studies have shown that conscious movement
effected by patients with mobility difficulties, assisted by a clinical
device such as an exoskeleton, contributes positively to their mobility
recovery, shortening the rehabilitation times and improving its results.
Besides, other studies have hypothesized that the motor cortex is par-
ticularly active during specific phases of the gait cycle. Decoding lower
limb kinematics from EEG signals is a promising application.

Mental fatigue is a complex behavior that affects daily activities as
driving, exercising, etc. To identify this fatigue, EEG may be used. Sev-
eral automatic procedures have been provided to support neurologists
in mental fatigue detection episodes (e.g. sleepy vs normal). ML and DL
methods seem a promising approach in this field.

Finally, neuroaesthetics is the scientific approach to studying aes-
thetic perceptions of art, music, or any other experience that can give
rise to aesthetic judgments. One way to understand the processes of
neuroaesthetics is by studying EEG signals that are recorded from
subjects while they are exposed to some expression of art, and study
how the differences among such signals correlate to the differences
in their subjective judgments; typically, such studies are conducted on
limited data with purely statistical signal analysis. Larger data sets and
novel ML-based data analysis are needed.
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Fig. 21. Vectorcardiographic differences in LBBB versus control patients. Left top panel:
VCG traces (lead y). Bottom panel: QRS and 𝑇 loops evidencing QRST angles much
larger in the LBBB patient than in the Control. QRST angles between LBBB and control
patients is summarized for every vectorcardiographic plane on the right top panel.
Source: Adapted from [174].

6.4. ECG processing and classification

ECG processing supports a number of cardiac applications, such
as modeling of electrocardiographic patterns in health/disease [170],
diagnosis of ischemia [171], conduction abnormalities [172], and even
prediction of cognitive function [173]. Mathematical models are help-
ful in testing and optimizing ECG algorithms when electrocardiographic
data are scarce. Traditionally, ECG models are used to account for
rhythm alterations. Nowadays, ECG models allow the synthesis of 12-
lead ECG morphology patterns associated with ischemia at different
extents. A cardiac model that allows the generation of heartbeats with
ischemic alterations induced by an occlusion in the right coronary
artery is an example of this emerging field [171].

ECG processing is also useful in predicting clinical benefits of the
cardiac resynchronization therapy (CRT), which is applied in cases
of heart failure. Unfortunately, CRT presents a non-responsive rate of
about 40%. An approach to improve this failure rate is aimed at making
more accurate Left Bundle Branch Block diagnosis (LBBB), since LBBB
patients are the population that benefits most from CRT. Recently,
much effort has been made in this area. In this sense, AI may act
synergetically with ECG processing to improve LBBB diagnosis. More-
over, explainable DL may reveal relevant ECG features that significantly
contribute to LBBB diagnosis. For instance, convolutional networks can
be utilized to separate LBBB relying on clinical criteria, such as strict
LBBB, non-strict LBBB, and non-LBBB. ML and feature engineering may
also contribute to obtaining more accurate LBBB diagnoses. Under this
light, the Vectorcardiographic space turns out to produce promising
LBBB biomarkers. In particular, the QRST angle appears as a sensible
LBBB biomarker. Fig. 21 shows the vectorcardiographic lead y for both
a representative LBBB patient and a healthy subject (Control). Beneath,
their QRS and 𝑇 loops are shown, evidencing QRST angles much more
prominent in the LBBB patient than in the control. This angle becomes
larger due to the presence of T-waves and QRS complexes with opposite
polarity. The QRST angles between LBBB and control patients are
summarized for every vectorcardiographic plane on the left top panel.

Reconstructing attractors of dynamical systems is another promising
field. This approach can be applied to electrocardiography databases,
for obtaining the first statistical moments for the embedding dimension
vectors and applying statistical tests to distinguish between normal and
pathological signals. This produces significant differences that lead to
new classification strategies, infer functional states, and establish a new
path for processing signals with high embedding dimensions, i.e., high
computational complexity.
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Finally, uniform embedding techniques have limitations for the
reconstruction of the phase space of nonlinear time series whose dy-
namics is not completely known, so new embedding techniques based
on non-uniform methodologies can help in this problem. This can be
applied to electrocardiography databases. For the uniform reconstruc-
tion, Average Mutual Information can be used to find the time delay
while False Nearest Neighbor and Average False Neighbor can be used
to find the attractor dimension. Non-uniform embedding provides a
better quality in the reconstruction of the phase space.

6.5. Bio signal analysis in neuromotor disorders

Neuromotor disorders might have their causes on either pre-motor
or primary neurons, on bulbar midbrain areas, on motor units, or in the
muscular fibers [25]. These disorders, such as PD, Amyotrophic Lateral
Sclerosis (ALS), Huntington’s Chorea, or Myasthenia Gravis (MG), name
the aggregate of symptoms that are the result of the neuromotor system
affected structures. Most of them do not have a clear etiology or effec-
tive treatment yet, but some treatments might successfully improve the
functional motor capacities and living conditions of patients. PD is the
most prevalent neuromotor disease among all, quantify its incidence
in 15 cases per 100,000, with a prevalence ranging from 100 to 200
cases per 100,000 [175]. PD has a major impact on the daily activity
behavior of patients, resulting in difficulty in walking, handling objects,
resting tremor, facial rigidity, etc. as well as non-motor symptoms
(e.g. cognitive decline, depression, etc.) which are also challenging PD
patients’ ability to lead an independent life [25].

Having this panorama in mind, it is convenient to evaluate the
neuromotor function of PD participants. Specifically, the interest lies
in measures of potential changes in the functional behavior of patients
after being submitted to non-invasive stimulation in order to induce
more stability in their neuromuscular activity in the shortcoming period
after. One type of stimulation consists in the application of auditory
stimuli which might compensate the lack of endogenous oscillations
at the basal ganglia due to neurodegeneration [176]. The oscillations
in the basal ganglia of PDPs typically shift down to frequencies in the
beta band, 14–30 Hz, characteristic of hypokinetic states or dopamine
deficiency, as well as to < 10 Hz frequencies, associated with tremor,
dystonia and sleep. Neuroacoustical Stimulation (NAS) consisted in the
application of binaural beats following the protocol described in [177],
from the beatings of a pure tone applied to each ear corresponding to
the two-tone frequency differences. In the two first cases discussed in
the section, NAS used a sinusoidal signal of 154 Hz through the left ear,
and another sinusoid of 168 Hz through the right ear, which induce a
binaural perceived tone of 14 Hz. To analyze the effects of NAS on PDPs
in longitudinal studies, two approaches can be taken.

The first approach [178] concentrates on the assessment of the
effects of NAS on the motor activity of PD patients with a smart
watch while carrying on movement tests consisting of exercises such
as walking a short distance, raising from an armchair, extending and
flexing arms and wrists, and so on. Triaxial accelerometer signals
captured tremor magnitudes in the 3.5–7.5 Hz band, tremor endurance
within the resting periods between exercises, and bradykinesia in the
0.5–3.5 Hz band during pronation and supination exercises. The results
from two PDPs (male and female) and five controls (two males, three
females) presented different statistical distributions between PDPs and
controls regarding tremor and bradykinesia during an eight-week pe-
riod. The distributions of PDPs produced higher medians and wider
dispersion than their control counterparts. Although these were prelim-
inary results and cannot be attributed any statistical significance due
to the sample size, they constitute promising advances to be extended
in future studies, as it was put forth during the debate after the
presentation.

The second approach analyzes the results of NAS on the phonation
of the same participants [179]. In this case, the vowel sequence [𝑎 ∶→
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∶→ 𝑖 ∶→ 𝑜 ∶→ 𝑢 ∶] was used as the benchmarking test. Their u
Fig. 22. Timely evolution of 𝜆: sham rTMS case.

performance was evaluated on a set of four recording sessions after
NAS, separated by a week between recordings. The features analyzed
were the logarithm of the Vowel Space Area, the Formant Centraliza-
tion Ration, the Vowel Articulation Index, the Second Formant Span,
the normalized First and Second Formant Spans, the modulus of the
Normalized Formant Spans, and the Absolute Kinematic Velocity of
the jaw-tongue joint. The male participant tests manifested positive
evolution on the Second Formant Span, whereas the female participant
showed positive evolution in all the features, except in the Normalized
First Formant Span. The male participant showed improvements in the
Cepstral Peak Prominence and in the tremor on the EEG-related 𝜗 band
(4− 8 Hz). The female participant showed improvements in the Energy
Profile distribution.

Another research topic is to explore the effect of active/sham repet-
itive Transcranial Magnetic Stimulation (rTMS) [180] on hypokinetic
dysarthria in PDPs [181]. In this case, the phonation features used
in the comparative analysis were the Jitter, Shimmer, Cepstral Peak
Prominence, and the amplitude distributions of the EEG-related 𝛿
(0–4 Hz), 𝜗 (4–8 Hz), 𝛼 (8–16 Hz), 𝛽 (16–32 Hz), 𝛾 (> 32 Hz), and

(8–12 Hz) tremor bands, extracted from a sustained vowel [a:].
he resulting features’ densities were compared using the normalized
ensen–Shannon distances with respect to a set of 16 normative controls
f both genders. The data were extracted from a recording previous to
timulation and four recordings after stimulation, spaced in time cover-
ng a three-month period. The results showed a corrective effect in the
ctive stimulated participant across the feature set except for Shimmer,
nd positive effects also, although not so clearly distinguishable in the
ham-stimulated participant (see Fig. 22). A potential interpretation
ointed to the possible benefits of speech exercises having also a
ossible rehabilitative effect on the sham case.

A fourth study, [182], reveals the differential behavior of the am-
litude distributions of the {𝛿, 𝜗, 𝛼, 𝛽, 𝛾, 𝜇} bands from the vocal fold
train tremor, extracted from a sustained vowel [a:] by comparing
heir entropy contents on two PDPs (one male, and one female) with
espect to two normative controls (one male, one female) [183]. This
reliminary investigation provides some useful early insights regard-
ng apparent differences between PD and control participants, in the
ense that entropy showed to be much larger in PDPs with respect
o controls for all the EEG-related bands studied. To summarize, the
ession showed a compact structure on a neat connecting narrative,
ith four contributions analyzing the issue of phonation instability in
D under different but related scopes, including NAS and rTMS looking
orward to rehabilitation. This was put forward in the discussion,
ogether with the need of benchmarking databases specifically designed
o accomplish this specific kind of study at a statistical significance
evel. The perspective of studying phonation instability in relationship
o EEG-related band activity could open interesting new research lines
ffering insights on the indirect estimation of neuromotor activity in

pper motor areas by means of speech and phonation (see Fig. 23).
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Fig. 23. Timely evolution of 𝜆: active rTMS case.

7. Artificial intelligence in neuroscience

Neuroscience has been one of the most benefited areas from the
advances in AI [184]. The use of different machine learning algorithms
to explore and discover patterns related to specific neurological condi-
tions, disorders, or diseases constitutes an important added value to tra-
ditional methods. Among the applications being clearly benefited from
ML and AI algorithms are those related to NI and neurophysiological
or speech signals.

In the case of NI, AI allows the automatic identification of patterns
linked to a specific disorder and useful in a differential diagnosis
task [185]. In the same way, these techniques may provide relevant
exploratory information regarding the development of the disease and
thus, for the personalized treatment towards the paradigm of precision
medicine [186].

A large number of conditions can be monitored through NI tech-
niques in conjunction with ML approaches. This includes ailments such
as Developmental Dyslexia, Autism, or Schizophrenia, or other degen-
erative conditions such as PD or AD, which cause cognitive function to
decline and never recover. Moreover, neuronal damage derived from
other circumstances, such as respiratory disorders that can produce
hypoxia, can also be examined with similar techniques. The primary
relevance of these studies is the worldwide increase in the prevalence
of neurological disorders, and an early diagnosis is crucial to slow the
progression of these diseases [28].

7.1. AI supports NI analysis

Different NI modalities play crucial roles in the study of neurological
disorders. In fact, these noninvasive techniques provide highly relevant
information that assists clinicians in diagnostic decisions. This infor-
mation is extracted and analyzed in Computer Aided Diagnosis (CAD)
systems [187], which include AI methods in the different stages of the
NI processing pipeline. Registration methods constitute a critical step
that may determine further analyses. These methods are also benefited
from ML methods. For example, the spatial registration of brain scans
to a common reference space [188,189] does not only allow direct
comparisons voxelwise but also increases interclass separation. With
this and similar processing applied, CAD systems based on ML can more
easily identify patterns that explain how the human brain works and
how it deviates from typical aging trajectories towards degenerative
disease [190].

In the evaluation of patients with dementia, their brain scans may
be significantly altered in terms of morphology as a result of neurode-
generation and thus undergo greater changes to their shape during the
warping process to a normative template or atlas. Moreover, in the case
of PD, FP-CIT SPECT scans depict dopamine transport concentrations
that are localized almost exclusively to the striatum with relatively
little activity elsewhere in the cortex or cerebellum [191]. On the other
hand, the changes in FP-CIT SPECT scans with a spatial registration
17
Fig. 24. Schema showing the results of a spatial deformation when applying either
intensity preservation of the concentration or the intensity preservation of the amount.

Fig. 25. Architecture of the siamese network used to compute the asymmetry between
brain regions.

that adopted an intensity preservation strategy are assessed with a
novel dimensionless factor that uses the differences between affine and
non-linear spatial registration in [188].

When applying the intensity Preservation of the Amount (PA), areas
expanded during the warping process are correspondingly reduced in
intensity. Similarly, warping with the intensity Preservation of the
Concentration (PC) also lowers mean values (see Fig. 24). This increases
the interclass separation between Healthy Controls (HC) and patients
with PD, but at the cost of losing morphological information [153].

ML and DL techniques can be also used for exploratory analysis
and to determine morphological differences in brain structures. Lever-
aging a relationship to morphological analysis and inference maps is
addressed by a DL architecture based on siamese networks to evaluate
functional differences between brain regions to discern between HC and
PD [190]. In summary, this methodology consists of the union of two
identical neural networks sharing common weights that are updated
simultaneously through an error back-propagation process. The key
feature of this framework is that the outputs of both subnetworks
(i.e., the embeddings) are compared according to a distance measure
that represents the asymmetry between brain regions. Fig. 25 depicts
the architecture of the siamese network proposed.

Following this schema, the embeddings extracted from the outputs
of the siamese network are used as input of a linear Support Vector



Information Fusion 100 (2023) 101945J.M. Górriz et al.
Fig. 26. Projection over the first two dimensions of the embeddings associated with
controls (blue) andPD (red).

Machine (SVM) classifier. Fig. 26 includes a two-dimensional represen-
tation of the embeddings when comparing subjects from HC and PD
classes.

7.2. AI supports automatic and early diagnosis/prognosis

One of the diseases with the highest number of proposals for CAD
systems is present in PD. These systems are not only based on image
data but also on clinical information or speech signals. An example of
these CAD systems is [28], which combines multiple input data sources
that individually would lead to poor classification rates and high vari-
ability. Nevertheless, on the basis of information extracted from FP-CIT
SPECT and MRI images, this work preserves the performance of the
CAD system and minimizes its variability.

Although the use of FP-CIT SPECT scans is one of the most reliable
clinical tests for PD, it would be interesting to detect the disease using
other less expensive alternatives such as MRI. With this in mind, [189]
proposed the statistical analysis of significance maps by means of
parametric and non-parametric approaches. Experimentally, MRI and
FP-CIT SPECT scans from 40 HC and 40 PD participants have been
compared by means of parametric maps obtained using the Statisti-
cal Parametric Mapping (SPM) and non-parametric maps using the
Statistical Agnostic Mapping (SAM) [185].

Another prominent application of ML is the prediction of a dis-
ease progression. This provides a personalized prognostic for a patient
result, which is essential for clinical practice and can be seen as a
prediction of clinical markers over time. For example, [192] addresses
this for PD using a non-linear decomposition of FP-CIT SPECT scans
and an unsupervised ML schema. The authors model the compos-
ite variables with SVM to perform two different tasks: a differential
diagnosis (i.e. classification) and a disease progression analysis (i.e. re-
gression) using a longitudinal dataset. Whilst their Isometric Mapping
(ISOMAP) approach decomposes the input dataset into a more uni-
formly distributed coordinate space, the results obtained are related
to the intensity in the tails of the striatum. A Principal Component
Analysis (PCA) approximates the asymmetry of the image.

Two works addressed the quest for new biomarkers for early di-
agnosis of PD using speech signals. In [193], formant measures were
combined with Convolutional Neural Networks (CNNs). The study used
sustained phonations of the vowel /a/ from two speech corpora (Patient
Voice Analysis dataset and Saarbrücken Voice Database) to train and
test a CNN. The input was composed of six normalized formant features,
and the CNN had 150,000 trainable parameters. The best results were
obtained using the 𝑒𝐹1–𝑒𝐹2 formant feature set for a speech segment
of 1 second and the 𝑒𝐹2–𝑒𝐹3 set for a 2-second segment.
18
Fig. 27. Architecture of the CNN proposed in [194].

In [194], a new architecture based on a CNN with Auditory Re-
ceptive Fields (ARFs) in the convolutional layers was proposed (see
Fig. 27). The input was an 800 × 200 spectrogram based on a 9-pole
adaptive lattice-ladder linear prediction coding algorithm, calculated
for 2-second speech segments. The ARF-CNN approach was tested on a
small dataset of 6 PD participants and 6 healthy controls and showed
competitive results with handcrafted features.

Other disorders can also be tackled with AI. This is the case of the
Smith-Magenis syndrome (SMS), a rare disease with low prevalence
that involves intellectual deficits and motor and speech delay [195].
A study [196] evaluated the speech and language abilities of indi-
viduals with SMS using subharmonic components of the voice in the
cepstral domain and found that individuals with SMS have significant
delays in their speech and language development compared to typically
developing peers. AD is also addressed using speech as a biomarker
of the disease in [197]. The paper presented different rates related
to Automatic Speech Analysis (ASA) as a non-invasive, preclinical
discrimination between healthy aging and Mild Cognitive Impairment
(MCI) with around 90% accuracy for ASA evaluation of reading tasks.

Inspired by the biological attention mechanism, [29] proposes a
lightweight attention-based CNN (ConvNet-CA) for discriminating ab-
normal brains from healthy brains based on patients’ Magnetic Res-
onance Imaging (MRI) scans. Features are first extracted by convo-
lutional layers and summarized by max-pooling layers. An efficient
channel-wise attention mechanism is utilized to learn the importance
of each channel in feature maps. This process makes the model focus on
the features that are relevant to a given classification task. Compared
to the popular state-of-the-art CNNs, ConvNet-CA has proved efficient
and effective in learning meaningful features with a shallow network
architecture, achieving a multi-class classification accuracy of 94.88%±
3.64%. The model is evaluated on a dataset with only 197 scans in total,
demonstrating the powerful representation capability and the model
robustness to a small dataset.

Special attention should be given to assessing MCI [198–200] since
it is considered the stage between the mental changes that are seen
between normal aging and early stages of dementia. Indeed, MCI is
one of the main indicators of incipient AD among other neuropsy-
chological diseases [201]. Diverse types of tests have already been
developed, such as biological markers, different imaging modalities,
and neuropsychological tests [202]. While effective, biological markers
and imaging modalities are economically expensive, invasive in some
cases, and require time to get a result, making them unsuitable as a
population screening method. On the other hand, neuropsychological
tests have reliability comparable to biomarker tests and are cheaper
and quicker to interpret. Classical neuropsychological include graphic
tests (Rey-Osterrieth Complex Figure test, Clock test, Trail Making test,
etc.) [203–205] or tests based on oral production (categorical verbal
fluency test, phonetic production test) [206]. They require very few
resources for their application. However, the need for automation and
a more objective assessment are motivating the development of new
paradigms capable of monitoring daily behavior [207–209], or defin-
ing interactive applications through virtual reality [198,210]. Several
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tools for diagnosing and treating MCI that are inexpensive, minimally
invasive, and easy to administer are now reviewed.

One of the best-known methods for detecting MCI is the Clock
Drawing Test (CDT), which is an easy method for looking for dementia
symptoms, including those of AD, and is frequently used along with
other screening exams. As stated in Section 2, DL architectures have
demonstrated their usefulness in the extraction of visual patterns and
in the classification of image data. Thus, [211] analyzed an automatic
system for diagnosing Cognitive Impairment (CI) based on the paper-
and-pencil CDT. Two models are compared, one based on DL and
another on traditional ML. The architecture of the DL model is a Convo-
lutional Neural Network, whereas the traditional ML model uses Partial
Least Squares (PLS) as the feature extraction method and SVM with
a linear kernel to classify the extracted features. These experiments
yielded good performance based solely on the cognitive test, and its
accuracy is validated by means of an approach based on resubstitution
with upper bound correction. This demonstrates the effectiveness of ML
methods for CI diagnosis, especially in resource-poor areas.

Many studies introduce ML and other AI techniques for identifying
early cognitive deficits in adults in general [198], or for studying the
results of applying these tests in particular [198–200]. Even some spe-
cialize in particular types of tests, such as graphic tests (Rey-Osterrieth
Complex Figure test, Clock test, Trail Making test) [203–205] or tests
based on oral production (categorical verbal fluency test, phonetic pro-
duction test) [206]. Other works considered the automatic analysis of
the Rey-Osterrieth complex figure (ROCF). Fig. 28 shows two examples
of handmade drawings to show the complexity of the problem. [212]
presents a neural network based on a Siamese architecture to assess
the patient directly from the ROCF copy drawing. The results are not
extraordinary due to the complexity of the problem since they are
trying to diagnose from a single test when not all variants of MCI
are related to the executive functions assessed by this test. Therefore,
in [213], a more practical approach tries to obtain an automatic score
without entering into the final assessment. This task is also complex
because the final score is the sum of the partial contributions associated
with the ROCF’s different components. In addition, there is not a large
dataset to apply basic DL techniques, so they propose using Recursive
Cortical Networks, which require fewer examples for training and have
given excellent results in breaking captcha. This is a very early paper,
so only very initial results are reported.

For oral production analysis, [214] proposed transfer learning meth-
ods that address data scarcity and involve the least amount of cus-
tomization steps. They analyze language in two separate modalities:
speech and linguistic information. For the first modality, they employ
audio files, and for the second one, transcripts are extracted from
the audio files. The proposed methods consist of feature-based clas-
sifiers and pre-trained models such as ResNet152, HuBERT, BERT,
and RoBERTa. With this, the authors find that transfer learning ap-
proaches outperform conventional classifiers and the proposed baseline
model. In general, they improve important aspects of the process
without necessarily editing prepossessing steps, domain knowledge, or
transcripts.

The assessment of the cognitive aspect of spatial cognition is the
starting point of [215]. Spatial cognition is a function that strongly con-
tributes to adaptation and can be impaired by brain injury. Assessment
of these impairments is usually run with paper-and-pencil or behavioral
tasks: this paper introduces an enhanced version of the Baking Tray
Task, that generates new data, related to time, sequence, and so on.
The authors show how AI can be applied to the assessment of spatial
cognition, indicating that it can effectively analyze these new data thus
leading to a more comprehensive assessment of spatial cognition.

Due to this need for early diagnosis, or at least for evidence, using a
sufficiently inexpensive and non-invasive method for screening, other
types of techniques are also investigated. These techniques are not
based on neuropsychological tests but on sensing the human being
to detect characteristic signs or patterns of impairment (or, at least,
19
Fig. 28. Two ROCF copy drawings.

non-normality or suspicion of it). We include here work related to
the analysis of physiological signals (such as EEG [216], wearable
biometric devices [217,209], or even different NI modalities [218–221]
although we are looking for non-invasive and inexpensive tests), and
daily life behavior (such as patterns of activity at home [208,209] or
semantic and acoustic patterns of speech [222–224]). [225] addresses
a very impacting pathology: the AD that is one of the most common
forms of dementia. Authors propose to complement medical procedures
for AD diagnosis based on biochemical markers, medical images, and
psychological tests with the analysis of resting state EEG. It has the
advantage to be an inexpensive and non-invasive technique to collect
information on brain activity. Authors show how to elaborate these
signals to detect AD precociously.

Finally, there are many problems associated with working with
data taken from different populations and with different models [226].
One such problem, for example, is the absence of complete patient
data caused by a wide variety of reasons, which imputation algorithms
can alleviate. [227] work with an incomplete database of semantic
category test scores (and personal and socio-demographic data) that
is used to assess MCI, and attempt to complete it using imputation
mechanisms that follow two strategies: assuming that these individuals
would have scored poorly if they had taken the test, defining a ceiling
score, and multiple imputation by fully conditional specification. The
study concludes that, although ceiling imputation can be useful when
values are lost in a missing at random situation and the correlation
between values is clear, multiple imputation is completely unbiased in
all aspects analyzed.

7.3. AI and autism spectrum disorder technology

Autism Spectrum Disorder (ASD) also benefits from new techno-
logical advances. Finding markers for autism is one challenge that
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Fig. 29. ApEn: the stress-aware pen.

could be resolved by technological solutions, to allow objective tests for
diagnosis, classify disease severity, and indicate prognosis [228,229].
Moreover, information and communication technologies (ICTs) lead
to an improvement in the conditions of support and accompaniment
of the sufferers [230–233]. For example, an estimated 33% of people
with ASD better retain information presented through computers or
tablets [234]. Recent work on ASD device development, ML, voice
recording, and robot-supported education solutions is the stress-aware
pen (ApEn) [235]. It is shown in Fig. 29), and it is designed to detect
stress-related behaviors by sensing the handwriting and hand-holding
pressure, especially for Children with ASD.

Two Flexiforce sensors are embedded to detect pressure through the
pen lead and the pen body. To draw children’s attention to their stress-
related behaviors, three vibration motors and one LED light are used
to provide feedback, as shown in Fig. 30. Further study is expected
to personalize the stress measurement and the feedback mechanisms
of the pen as well as the communication of this stress to the children
and the parents via appropriate machine learning algorithms. It was
developed to study stress-related behaviors in the natural environment
and explore how to enhance everyday objects for stress detection and
regulation. Differently from the approach with physiological signals,
behavioral data are collected for immediate feedback. Although the
design focuses on children with ASD, ApEn can be applied to different
scenarios. Further research will establish the appropriate interaction
design and will explore how to make the pen a connected object to
better support stress detection and reduction.

One important topic in ASD management is monitoring the person’s
state. An acquisition platform especially developed for people with ASD
is presented in [236], which development is reported in [237,238].
Fig. 31 shows a picture of the different devices that make up the
platform: a soft wristband to measure heart rate, body temperature,
and motor activity; a system to acquire environmental stimuli such as
luminosity, environmental temperature, relative humidity, and atmo-
spheric pressure, and a device with a 360-degree camera that measures
the number of people and optical flow. Finally, an Android smartphone
that manages the platform shows relevant information in the interface
and also acts as a sound analysis sensor. All the information collected by
the platform is stored in a remote database. The heart rate (HR) values
remain similar in the four groups of activities. The project explores
the correlations of accelerometer values and body temperature with
the intensity of movements, by gross psychomotor tasks, such as obsta-
cle courses. These values are further correlated to the environmental
parameters to better support the engagement and enjoyment of these
special users.

An interesting trend in technology-supported research in ASD is
finding digital biomarkers present in the phonation of people with
Autistic Disorder and intellectual disability, with the purpose of better
understanding the syndrome and being able to develop specific tools
that contribute to improving their quality of life [161,239]. The mobile
App Biometrophon allows a longitudinal study extracting up to 72
20

features from each phonation segment, including perturbation features
as jitter, shimmer, and harmonic noise ratio, as well as a cepstral
description of the glottal source. The combination of Physiological
Tremor Amplitude, Neurological Tremor Frequency Flutter Tremor
Amplitude, and Global Tremor Amplitudes, summarizing mean square
root of tremor in all bands is the beneficial multimodal combination of
phonetic signals. The tremor features provide information on the pres-
ence of defects, instabilities, or feedback problems in the neuromotor
system linked to the activation of the musculus vocalis.

The results shown in Fig. 32 are based on three samples from par-
ticipant M1, corresponding to a male born in 1973 (48 years old at the
time the recordings took place), who presents an intellectual disability,
psychotic episodes, and epilepsy, with a CARS of 40 and a DEX of 29,
separated on a week interval. Valid utterances of a sustained [a:] lasting
more than 400 ms were selected from the recordings, corresponding to
12 valid segments during the two first sessions, and 18 valid segments
during the third session. These estimations were compared with the
normalized EDA value recorded by the wristband E4 using correlation.
The study described in [239] of sustained vowel utterances from an
ASD participant enables obtaining longitudinal estimations of vocal
fold tremor, potentially associated with neurological excitement in
performing vocalization tests. Relative relevant correlations have been
found between NTA and FTA band tremor and surface skin conduc-
tance. The apparently controversial correlation results from the three
recording sessions studied pose an important challenge in determining
the valence of increasing neurological excitement produced during test
performance.

7.4. Information fusion in NI using DL

Combining data obtained by different methods is one of the most
popular applications of DL. In the field of NI, different data sources
can be combined to generate a stylized version to fuse two images from
different sources. In this context, different data sources are sometimes
available that provide structural or functional information, which,
although they are usually analyzed separately, can be used together.
features extracted from structural and functional NI to improve classi-
fication performance in CAD tools.

Thus, it is possible to take advantage of Positron Emission To-
mography (PET), generating a new image containing structural and
functional information. For instance, the principles of neural style
transfer to combine MRI and PET information, generating a new image
containing structural and functional information [240]. The usefulness
of this method has been evaluated with images from the Alzheimer
Disease Neuroimaging Initiative (ADNI), which is characterized by the
impairment of memory and one other superior cognitive function,
which is frequently the language function. AD is the most common
cause of dementia.

Using the combination of the above techniques generates a new
mixed-mode image (Fig. 33). Images from the ADNI have been used,
demonstrating that using the new mixed mode image outperforms the
classification accuracy obtained by individual MRI or PET images.

7.5. ML for neurophysiological biomarker analysis

In a similar way that ML provides new opportunities in the field
of NI processing, the analysis of neurophysiological signals is also
benefited by them. One of the most prominent examples is the pro-
cessing of Electroencephalography (EEG) signals. Neural oscillations
captured by EEG supply relevant information that helps to unravel the
neural mechanisms underlying cognitive events and neural disorders.
EEG and Magnetoencephalography (MEG) methods record these brain
fluctuations and provide priceless insight into both healthy and abnor-
mal brain functioning. In this case, ML techniques can be used along
with classical signal processing methods to expose complex patterns
in multichannel signals such as EEG or MEG. The exploration of these
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Fig. 30. The feedback (left) and feedforward (right) modes of the stress-aware ApEn.
Fig. 31. Picture of the monitoring platform’s devices.

complex patterns can reveal specific features, like a specific neurolog-
ical disorder, providing valuable information regarding the biological
origin.

This way, the search for brain activity patterns related to specific
disorders such as Developmental Dyslexia (DD) allowing an objective
diagnosis, has been a challenge. The diagnosis traditionally lies in
behavioral tests which are easily affected by human’s subjective nature.
Premature diagnosis of DD is difficult work, which makes it possible to
apply personalized treatment tasks to dyslexic infants in the beginning
phases of their development.

Atypical oscillatory sampling could potentially lead to the phono-
logical impairments characteristic of dyslexia in one or more temporal
rhythms; in this sense, EEG signal measurement can help to diagnose
DD early on. Thus, in [160], a One-Class Support Vector Machine
(OCSVM) is introduced to select representative channels and bands of
EEG recordings for both dyslexic and control groups. Based on the
selected significant channels, two classical ML classifiers (K-Nearest
Neighbours (KNN) and SVM) are separately trained to discriminate
subjects with developmental dyslexia from normal control groups. They
reported an average sensitivity even higher than the one obtained using
traditional, neuropsychological tests and using objective data such as
EEG.

Some studies take into account the LEEDUCA project, which carried
out a number of EEG experiments on children hearing Amplitude
Modulated (AM) noise at different frequencies with the aim of ex-
ploring brain patterns related to the low-level processing of language,
to detect discrepancies in the perception of oscillatory sampling that
might be associated with dyslexia. On the other hand, there is an
important work directed to explore the neural basis of DD, addressed
by studying Cross-Frequency Coupling (CFC) dynamics, such as Phase-
Amplitude Coupling (PAC), following previous works using complex
21
Fig. 32. Longitudinal evolution of tremor features and EDA from male participant M1:
(a) Session S1-2021.11.19; (b) Session S2-2021.11.26, 2021; (c) Session S3-2021.12.03.
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Fig. 33. Network architecture to generate the mixed mode image.

Fig. 34. Average Holo-Hilbert spectrums for the cross-correlation signals of EEG
channel T8 with each other EEG channel for dyslexic subjects.

network modeling of EEG using band coupling [241]. They apply a
recent emerging approach to infer CFC dynamics, Holo-Hilbert Spectral
Analysis (HHSA). This is the next step in addressing the constraints of
the current PAC approaches. They pursue HHSA on the above-described
EEG database of the LEEDUCA project. Next, Holo-Hilbert spectra are
used to examine the PAC changes and patterns in DD (Fig. 34). Finally,
the discriminative ability of the spectra is being validated using ML
approaches. These neuronal disorders, such as DD cause, in addition
to variations in PAC as has just been seen, alterations in connectivity
between different brain areas that can lead to facilitate early diagnosis.

A different approach to figuring out differential patterns for DD
relies on the causal relationships between brain areas, using the same
data from the aforementioned LEEDUCA project [242]. In this work, the
behavior of each EEG channel in the frequency domain was studied,
obtaining the analytical phase by means of the Hilbert transform.
Afterward, the cause–effect associations between the channels of each
participant were shown by means of Granger causality, resulting in
matrices that reflect the interaction between the various parts of the
human brain. Thus, each subject was categorized as being either in
the control group or in the experimental group. For this purpose, two
ensemble algorithms were analyzed, showing that both can reach an
acceptable classification efficiency in the delta band (AUC values up to
0.97) by applying the Gradient Boosting classifier.

This idea of a different connectivity network is something that can
be applied to other conditions, not just DD. Schizophrenia (SZ) is a
brain condition that jeopardizes the health of many people worldwide.
People with SZ always experience symptoms, including hallucinations
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and loss of sync of thoughts and feelings. Using DL and connectivity
capabilities, [32] presents a method to detect SZ from EEG signaling.
In this study, the dataset used for the experiments was provided by the
Institute of Psychiatry and Neurology in Warsaw (Poland). First, EEG
signals are split into 25-second time frames during the preprocessing
stage. Then, in the feature extraction pass, DL and Functional Connec-
tivity Features (FCF) are used concurrently. The DL model involves a
CNN-LSTM network, and the functional connectivity techniques include
the Synchronization Likelihood (SL), Fuzzy SL (FSL), and Simplified
Interval FSL (SIT2FSL) type 2 approaches. In this next step, the DL
features and the characteristics of each functional connectivity are com-
bined using a concatenation layer and eventually, to further evaluation
the performance, K-Fold with 𝐾 = 5 was used in the classification step.
The results show that the proposed method achieved an accuracy of
99.43%.

EEG signals are therefore useful to model brain diseases with DD
or SZ but also to study the medium-term consequences of other dis-
eases, such as respiratory diseases. Sleep apnea syndrome is one of the
prevalent sleep diseases and may affect brain function due to transient
breathing losses that occur during sleep. Accurate identification and
treatment of apnea by physicians can help guard against its long-term
disruptive impact. EEG records brain activity from different areas may
be an appropriate method to diagnose this problem. [243] propose a
CAD taking into account the complexity characteristics of EEG. With
this aim, EEG signals of 20 healthy people and 12 apneic patients
who suffered from different types of apnea were decomposed into
six frequency bands (delta, theta, alpha, sigma, beta, and gamma)
by using bandpass Finite Impulse Response (FIR) filters. Complexity
features such as fractals, Lempel–Ziv complexity (LZC), entropies, and
the generalized Hurst exponent, first used to detect sleep apnea from
EEG signals, were extracted from each frequency band. The Maximum
Relevance Minimum Redundancy (mRMR) algorithm was applied to
classify 120 features from three EEG channels. Finally, two popular
classifiers, SVM and KNN, were used to detect sleep apnea. An accuracy
of 99.33% was obtained with the SVM classifier, and the generalized
Hurst exponent effectively contributed to apnea detection.

Not only encephalography is relevant in the study of cognitive
processes, but also MRI has been of great interest in recent years,
and proof of this is the abundant literature that can be found in this
regard. In both cases, these are non-invasive techniques that can help
to see how the different cognitive processes that take place at the
brain level are encoded, either on a spatial or temporal scale. Recently,
combinations of different techniques that, through fusion methods, can
combine signals of different natures in a coherent manner are gaining
momentum. On the other hand, the library MVPAlab [244] makes a
preliminary step to EEG-MRI data fusion for Representational Similarity
Analysis (RSA) in EEG signals. This idea has been evaluated with a
data set from a prerecorded EEG experiment designed to study the
differences in priming between perceptual expectation and selective
attention. The strengths and versatility of this multivariate technique
and its potential applications in multimodal data fusion are discussed.
The complete source code is fully integrated into the MVPAlab toolbox,
which increases the wide number of analyses already implemented and
the versatility of the tool.

7.6. Neurorehabilitation

Computer graphics have always sought ways to make visual infor-
mation more realistic and accessible to the user. With this objective
in mind, its use in scientific research aims at providing accurate and
high-quality virtual feedback. Indeed, technological advances have in-
creased the power of processors and graphics, boosting computing and
rendering capacity. Likewise, auxiliary technological resources such
as motion-tracking devices have been improving in parallel, creating
branches of development with a substantial impact on today’s world,
such as VR and other related technologies.
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Fig. 35. Different presentations of chocolate corresponding to different music
articulations [247].

Researchers are currently verifying whether VR or optical hand
tracking modules can be considered systems capable of monitoring
future patients of neurodegenerative diseases such as PD, AD, and ALS,
among others [245]. The design methodology is based on an iterative
process of development and improvement of the exercises. Capturing
a set of features related to the locomotor capacity of the participant’s
upper and lower trunk, using two serious games developed for VR,
is the main objective. These features provide as much information as
possible that may allow determining the biometrical characteristics of
the user who performs each of the tasks and detecting small gestures,
details, or patterns [246]. However, VR and, more specifically, the
novel metaverse require a high level of immersion. Part of the immer-
sive process is made up of the sensations or emotions it provokes in
the player. For this reason, knowledge of how sound and sight evoke
different emotions in the subject can be considered a top priority for
the challenges ahead.

Other exploratory approaches based on fMRI try to assess how
the brain processes stimuli that are continuous/discontinuous in an
auditory and time dimension (different musical articulations) and in
a visual and spatial dimension (different presentations of food and
paintings) [247]. In particular, professional musician volunteers are
monitored through the use of fMRI while using a stimuli device (VisuaS-
tim Digital) for presenting a set of activation blocks consisting of one
image (depicting different presentations of food and paintings as shown
in Fig. 35) and one musical piece (with either legato or martellato
articulation). They explore coherence between the two stimuli (the
number of elements shared by the stimuli when the temporal and
spatial dimensions are simultaneously confronted).

Moreover, other technologies or devices in this context have flour-
ished in recent decades, e.g. robots (see Section 5). In fact, cognitive
assistance and communication robots are becoming more and more
famous (Nao, Moxie, Milo, etc.). Researchers from all over the world
see in these small devices a communication support system for chil-
dren with autism [248]. Indeed, pedagogical rehabilitation of autistic
children through the design of a game using cyber–physical systems is a
reality today. The hypothesis is that the following elements are learned
with the game: directions, distance, color, teamwork, and socialization.
Moreover, the scenario stimulates the three main therapy tasks in cases
of autism: imitation, joint attention, and turn-taking.

The experimentation of all the studies is based on small exercises
that aspire to contrast the previous hypotheses. For example, hyper-
realistic scenarios based on medieval games such as archery and javelin
throwing, managing to capture up to 60 different features (see Fig. 36)
can be properly designed [245]. Likewise, a questionnaire may be
elaborated taking into account some of the most important points in the
development of VR simulators such as level design, font size, listening
to music while using VR goggles, lighting, and texturing. All these
questions were directed to avoid the symptoms of motion sickness in
the participants. On the other hand, other questions about usability,
user-friendliness, and entertainment were also asked of the participants.
Finally, the participants had the opportunity to rate the scenarios with
a Likert scale.

Three of the exercises that neurologists perform with Parkinson’s pa-
tients in their consultations can be emulated using VR but in a gamified
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Fig. 36. Representation of movement and gathering of main indices collected in
archery video game.

and funny way. To carry out this task, three calibration tests, focusing
on biometric values of hands, are developed [245]. In other contexts,
small 3D-printed non-humanoid mobile robots can be employed for the
design of an educational game scenario. Two children and one teacher
participate in a game where the robot does not physically interact with
the children [248]. A simple scene is created with several positions
in the shape of hexagonal holes. Two children take part in the game
as the robot operator and the goal setter. The goal setter uses colored
hexagrams which s/he puts in the target position. The robot operator
controls the walking robot by means of a laptop or a tablet in order
to reach the goal. During the game, the teacher observes the children’s
actions and, if necessary, mentors or helps them. At the discretion of
the teacher, the two children change roles. The robot can automatically
detect the completion of the task (through the use of a color sensor) and
measure time. In the pilot study, children with high-functioning autism
(ASC) and neurotypical (NT) children participate in playing the same
game.

7.7. Precision medicine through sensor-based technology

Precision Medicine is a relatively new concept where its core
premise is to build a personalized profile for each individual and
provide insights into diagnosis, management, and treatment accord-
ingly via the genetic, environmental, and lifestyle characteristics. Smart
devices allow for the construction of such a profile in a real-time
scenario and its subsequent study and analysis. The aim is to adapt
already existing powerful resources widely employed in other areas
such as data mining, ontological linking, medical expert systems, and
DL, among others to construct such intricate and specific profiles. This
would allow providing healthcare solutions that were not feasible to
implement some years ago. This concept has been gaining increasing
media attention and brought to the forefront of political actions such
as the Precision Medicine Initiative [249].

Actigraphy, the tracking of sleep/activity cycles, plays an impor-
tant role in the Precision Medicine setting, as it is a strong pre-
dictor of multiple disorders both physical and mental [250]. It has
the potential to provide clinically important insights into physical
activity, sleep, and circadian variability over long periods, particu-
larly since commercial research-graded devices can record continuous
passive data for months [251]. Many disorders arise due to pertur-
bations of the metabolic system resulting from poor or inadequate
daily physical activity or sleep [252]. Actigraphy is especially suited
to provide insights into physio-mechanical activity and metabolic disor-
ders through continuous monitoring of biophysical activity and indirect
energy consumption.

Since ancient times it has been a well-known fact that there exists
a relationship between breathing and heart rate, several forms of
meditation and relaxation use breathing as a way to control anxiety
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and reduce heart rate [253]. The vagus nerve plays a crucial role
in controlling digestive, cardiovascular, respiratory, urinary, and en-
docrine functions, among others [250]. It connects the primary brain
complex with the structures responsible for controlling the intestines
and their environment, and the absorption of food, hormone, and
neurotransmitter production. Aligned with this sympathovagal activity
which may be controlled through respiration, the work of Posteguillo
and Bonomini [254] proposed a methodology to study the interaction
between heart rate variability and normal, fast, and slow breathing
rates. Specifically, they selected twenty-three young health subjects
(34.4±7.2 years, 12 male, 11 female) submitted to 12 breaths/min (nor-
mal), 20 breaths/min (fast), and 6 breaths/min (slow). Blood volume
pulse was estimated by photoplethysmography with an Empatica E4
and had to pass a 2-Back test [255]. The results demonstrate the role
of slow breathing as a down-regulator of emotional states, and that of
fast breathing as a potential up-regulator, helping to understand how
training based on respiratory maneuvers may modify cognitive load to
cope with stressful situations.

Nowadays, implanted cortical visual prostheses to replicate the
perceptual sensation are highly demanded [256]. These devices provide
visual cues to blind people so they can navigate their environment
better. The original implant is composed of a system of an image
acquisition camera, a VR headset, an eye-tracking system, an intracor-
tical array, and a stimulus generator to capture the environment and
the transitions between objects. The implant stimulates visual areas to
generate phosphene triggers, which by training can provide the user
with a contour map of the objects in view of the camera, by seeing
the actual phosphene-composed map. The device takes as input visual
images and applies algorithmic transformations to the images to map
the different transitions and uses deep brain stimulation to train the
interface between the machine and live tissue to provide impulses that
generate the map. To study the effects of the visual stimulation and
the perceptual sensations of the implanted system, a rig for researchers
was set up to have a perception of the device’s workings using an
identical setting except that the cues were visual instead of using deep
brain stimulation. The device takes as input visual images through the
camera and applies algorithmic transformations to the images to map
the different transitions. This new setup was tested on scenery that
would emulate a real setting (see Fig. 37). A set of tests assessed the
mobility and orientation of five volunteers to check on adaptability.
The average walking time in seconds and the number of collisions were
compared between completely blind participants (with a walking cane)
and those using the simulated prosthetic vision aid. Whereas the use
of the walking cane allowed easy detection of obstacles by completely
blind participants, the simulated prosthetic vision system required some
adaptation before achieving the same performance level, which allowed
setting up a processing strategy as the starting point to meet real-time
constraints reconfigurability.

The possibility of using limited-resolution visual prostheses to per-
form everyday tasks was studied in the work of
Waclawczyk et al. [257], to assess the impact of limited vision restora-
tion, assuming one-eye implants of low spatial resolution, and lack of
stereoscopic depth perception. The goal was to quantify the improve-
ments in everyday life activity. The study determined that the degree to
which the participants can effectively use artificial vision in everyday
life might be the determining factor in the successful use of visual
prostheses. Adaptation and learning periods are also important aspects
to be considered, the most recommended strategy being a hierarchical
approach from the simplest to the most complex tasks, such as motion
detection, object recognition, and navigation.

8. Discussion

8.1. DL

The fact that trained DL systems are black boxes raises suspicion
in users from many application areas, foremost in medical image in-
terpretation or assisted diagnostic systems. XAI is getting increasingly
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Fig. 37. (a) Raw image from the camera attached to the headset. (b) Monocular Depth
Estimation processed image. (c) Augmented Reality using ’ssd-mobilenet-v1’ Object
Detection DL model. (d) SPV image.

more attention in order to provide representations of the working of
the said black box that can be followed by human reasoning in order to
justify decisions made on the basis of DL recommendations. A preferred
representation is that of propositional rules, while some authors pro-
pose explanations in terms of attention mechanisms. Specifically, [37]
exploited the discrete cosine transform (DCT) of the feature maps
generated in the hidden layers in order to extract rule representations
of the functioning of the CNN.

In Section 2, a variant of SDAEs was proposed to characterize
whether greater capabilities of feature representation can be obtained
when two layers are introduced in the stacking process instead of a
single one. The results showed a reduction of the computational cost
of 15–20%. Therefore, a question arising in this context is whether
with three la yers the performance could still increase in terms of
computational cost and predictive accuracy.

Regarding explainability, propositional rules were extracted from
aggregated DIMLPs that learned CNN feature maps related to an MNIST
benchmark classification problem. From the rules, it was found that
varying a single antecedent in the frequency domain impacted several
pixel intensities in the luminosity domain. An important objective is
to determine whether the proposed approach is also valid for other
classification problems.

DRL has shown its power in some quite difficult problems, such
as learning to play the game of Go or to predict the spatial folding
of proteins. An interesting objective would be to apply explainability
through symbolic rule extraction to problems in which the outputs of
the deep networks would correspond to actions, which in turn would
represent classifications (e.g. jumping; running; etc.). In this way, it
would be possible to determine at any point in the reinforcement
learning process what knowledge an agent has acquired. However, the
critical issue of reward generation from external agents remains open.
How to include a human in the loop without undesired interference
in the learning process is more often considered an economical way
to close the reward loop, and it is showing advantages in specific case
demonstrations [36].

8.1.1. Limits and challenges
One of the strong limits of current DL approaches comes from its

dependence on reliable and sound data. The need of data augmentation
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techniques is paramount when data is scarce (i.e. the number of sam-
ples is small relative to the population, even if each data sample is large,
such as it is the case in medical image applications) [258]. Transference
of data augmentation between domains, for instance, using image-
based data augmentation for speech signals [39], provides additional
resources to tackle this difficult issue. But even with the help of data
augmentation, there is a strong need for well-curated and annotated
data [259]. Such need is extensive to DRL applications where the
recourse to simulation is commonplace [260].

An increasingly noted limitation of DL-reported results is their low
level of statistical confidence assessment [261]. For instance, it is very
rare that the authors report results of permutation tests as in [262,263],
due to the colossal computational requirements. However, as the DL
based systems are pervading all areas of critical decision-making, a
strong requirement for their deployment should be a thorough confi-
dence analysis [264], and the ability to pose refutability tests and the
exigence of reproducibility of the results [265].

Very sparse reward problems still represent a major challenge in
DRL. Here, the problem was solved by introducing intermediate re-
wards representing intuitive heuristics, depending on a particular case.
It would be an advantage if in the future it were possible to automat-
ically determine intermediate rewards or at least for certain classes of
problems.

Regarding SDAE a clear challenge for the future is to determine
whether the use of multi-layer based design of SDAEs can represent
an advantage in more complex problems in terms of augmenting the
predictive accuracy.

The approach to rule extraction over feature map-based CNNs using
transfer learning to simpler models is general. However, with many
more convolutional layers and a higher number of kernels, the current
technique will take much longer to run and is unlikely to be usable, un-
less higher compression ratios are applied with DCT. Another approach
could be to transfer each feature map to a single DIMLP network and
then aggregate all DIMLPs into a higher layer. The rules would then be
generated in two successive steps, first from the aggregation layer and
then back to the lower layers (at the level of the feature maps).

8.2. Bio-inspired systems

The objectives in the field are to find the best combinations of
metaheuristics in each fitness landscape, as well as to define suitable
memetic combinations between metaheuristics with local searches.
These local strategies often incorporate application-specific knowledge,
thus integrating domain knowledge into the global search inherent in
population-based search methods. Papers [78,79] of the BICA session
present examples of such memetic combinations in two different ap-
plication areas. Also, the incorporation of self-adaptation mechanisms
in the defining parameters of a metaheuristic, as opposed to their
experimental adjustment, continues to be another line of research in
this field.

The Bacteria algorithm goes a step further in the sense that all
previous algorithms based on bacteria are focused on bacteria foraging,
which is different from bacteria survival. The introduction of common
behavior mechanisms such as conjugation offers a new field of research
with interesting potential. The proposal for predicting emotions starting
from a lexicon associated with a specific target population, which
considers geographical and social parameters, offers a great opportu-
nity to develop new mechanisms for dealing with emotions. Dealing
with the problem of assessing the performance of the generator of
generative adversarial networks, the authors present a novel approach
to reinforce a proposal of a new metric based on the Fourier spectrum.
This approach may be used for classification problems.

Finally, there has also been an effort to use hyperheuristics (heuris-
tics to choose heuristics) [266]. The goal of a hyperheuristic is to
define a combination of low-level heuristics to efficiently explore a
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search space. The goal in mind with these hyperheuristics is that they
can tailor the combination or selection of low-level heuristics to each
particular search space. This goal requires an appropriate and usually
large set of low-level heuristics, as well as automatically obtaining the
selection/combination mechanisms for them (i.e., by an evolutionary
algorithm). But the scope of hyperheuristics also includes efforts made
to automatically define new heuristics, i.e., applying an evolutionary
algorithm to refine or combine a set of heuristics to obtain new heuris-
tic strategies optimized for the problem at hand. In both aspects of
hyperheuristic research, especially in the latter, GP is used primarily
because it provides naturally evolved programs for selection or as new
heuristics. [82,83] includes examples of this use of hyperheuristics.

These objectives will continue to guide the field of bio-inspired
algorithms, promoting new ideas for the field itself or for other related
fields, and will undoubtedly continue to be one of the research lines in
the future.

8.2.1. Limits and challenges
In every area of interest, it is necessary to take a careful point

of view. In a rapid diffusion (and probably misunderstanding) of the
concepts behind AI, it is possible to find in non-expert population
expectations that are far from realistic developments. AI is not a magic
concept, though a compilation of techniques, that usually require the
support of non-artificial disciplines. For example, currently, there is
a global discussion on when an image can be considered an artistic
creation. It is possible to look at a particular image for which it
is possible to argue if it corresponds to an artificial creation or a
real-world representation. This is the case presented in [267], which
requires metrics for a precise evaluation, based on Fourier spectrum
image analysis. The use of neural networks is then supported by an
additional metric called CSD (Circular Spectrum Distance) to evaluate
generative adversarial network images.

The enormous amount of data in this field requires every day an
increasing processing capability, in particular, in training and classi-
fication processes. Fortunately, these capabilities are quite achievable
today, but it will take a while to confirm that the approaches un-
der development are proven useful. This is a challenge for each of
the aforementioned techniques: neural networks, lexical availability
methodology, and bacteria behavior.

8.3. Affective computing

One of the main current goals regarding VR and emotion recog-
nition is to reach reliable conclusions when studying the differences
between using virtual humans on a computer screen (desktop VR)
and a head-mounted display (immersive VR). In this regard, the re-
alism of virtual characters for the different target participants needs
to be studied, especially when focusing on people with facial emotion
recognition deficits. Moreover, a fair comparison between VR and
augmented reality in emotion-based scenarios is a hot topic to be
exploited in future research. Furthermore, the relationship between
motion sickness symptoms and VR, as well as other difficulties that
participants may experience with these new technologies, needs to be
further investigated [268].

Another broad objective is the extraction and classification of psy-
chophysiological features to determine the associations between brain
connectivity and emotional processing [269]. Any proposal related to
emotion induction/detection/recognition/classification must rely heav-
ily on ML techniques for the massive processing and classification of
data acquired by a variety of biosensor types. The use of models based
on support vector machines and neural networks opens up a wide range
of possibilities for improved detection of physiological, perceptual,
and behavioral responses, as well as the creation and implementation
of neurocognitive and emotional rehabilitation therapies. Emphasis
should also be placed on new DL techniques such as CNN, deep belief

networks, and capsular networks, among others [270].
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Apparently, recent research results in the area of AfC suggest that
in order to develop working solutions more vertical than horizontal
approaches are preferred. In fact, AfC research has been more goal-
oriented and application-focused. In this way, constraints regarding
AfC-based systems appear naturally. For example, in emotion detection,
they might have an impact on the selection of sensors, signals, types of
data, and very often models to interpret them. As a wide spectrum of
emotion-related signals usually is not available, or cannot be efficiently
analyzed, narrowing it in a proper and goal-relevant manner might be
a key to success.

Another important research objective is the personalization of mod-
els [18]. Developing general models does not seem to be practically
feasible or might not even be conceptually possible. As the personaliza-
tion of computer systems with the use of AI methods is an important
trend, it also impacts the development of emotion processing systems.

8.3.1. Limits and challenges
Interest in the evaluation of different physiological and biological

traits for emotion recognition has increased markedly in recent times.
The motivation is that emotions elicit a series of measurable and
quantifiable physiological reactions that, in contrast to the traditional
methods of speech and facial gestures, cannot be faked or hidden [271].
Approaches such as those presented in [129,130] have used EEG for
emotional processing. Actually, interest in brain activity detected from
EEG signals has grown markedly in recent years. EEG elucidates neural
dynamics in different mental conditions in a simpler and safer way than
other NI methods. As shown in Section 4, EEG recordings are able to
reveal relevant information about brain functioning during the mental
processes of perception and recognition.

However, other physiological signals can be used alone or com-
plementing EEG to cover the range of terms related to emotion or
affect. This would be possible by processing signals from biosensors
that measure heart rate, electrodermal activity (EDA), electromyogram
and skin temperature, among others. In this regard, EDA is an ex-
cellent biomarker, as it is able to capture activation changes very
efficiently [272]. In addition, near-infrared spectroscopy (NIRS), an
optical method for measuring changes in the concentration of oxy-
genated and deoxygenated hemoglobin in the microvascular system of
the cortex, is being used to understand neuronal behavior in the brain.
Its use in psychiatry has grown rapidly because it has better spatial
resolution than EEG and a much lower cost than MRI. Precisely, one of
the most interesting developments of fNIRS studies in schizophrenia is
on emotional recognition [273].

More than a mere technology, immersive VR is a growing set of
tools and techniques that create the psychological sensation of being in
an alternative space, allowing physical immersion in a 3D environment
and interaction with the virtual world as part of lifelike and authentic
experiences [274]. In contrast to traditional stimuli based on static
images, VR uses controlled dynamic avatars to represent different
emotional states [275,276]. In this respect, dynamic facial expressions
represented by avatars generate an intense emotional experience and
facilitate successful emotional recognition. Moreover, avatars may be
modeled with any combination of race, age, and gender, observed from
any angle, under any lighting conditions, and in any social context.
This enables the simulation of social interactions similar to reality,
allowing to control and manipulation of the behavior of avatars to
assess recognition skills [277].

The number of participants and trials for each subject is usually
limited in research work, which prevents the results from being rep-
resentative of the entire population. In this sense, it appears necessary
to conduct experiments with a larger number of participants. Another
major concern has to do with the correct setup of the experiments. The
duration of the experiments, the number of stimuli to show to each
participant, the time needed to induce a given emotional response, and
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the time to revert to a baseline state are just some of the pending issues.
Another typical limitation of current studies on emotions in the
healthcare setting has to do with therapists’ lack of participation in
practical sessions to evaluate real systems, thus experiencing them first-
hand. In addition, feedback from real patients is essential for improving
emotion induction and recognition systems [278].

8.4. Robotics

Robotics is an evolving field that through its coupling with AI has
exploded in terms of applications and possibilities. All of the new AI
developments, when projected onto the realm of robotics, have led
to evermore ambitious robotic applications, especially in terms of the
autonomy the robots may display and their capability to interact in a
natural manner with humans.

Despite the great advances that have been made in Computer Vision
thanks to DL in recent years and the large number of problems in which
unthinkable results are achieved, current methods are still very far from
extracting the desirable information from an image or video. Increasing
the information extraction capacity is a field of work in which there
is still much to be done, whether it be obtaining more information
from static images or obtaining better spatiotemporal relationships in
moving images. In addition, the advent of these methods into practical
use in society means that we need to consider problems arising from
exposure to humans who may want to take advantage of them. Thus,
increasing their reliability and understanding their trustworthiness is
another line of work that will increase.

Robots have been used successfully as interaction mediators in
behavioral treatments of autistic children. [230,149,147,148], where
in randomized controlled trials [147,148] and longitudinal studies
[233,148] have shown that children increased the communication
quality and quantity with their parents and caregivers because of the
robot [233,148]. At present, it is clear that the interaction between the
robot and the person with ASD is not the aim of the interaction but a
middle for care and psychoeducation. Future research will include the
addition of an expanding range of AI-interpreted physiological signals
to improve communication between people with ASD and caregivers
with the mediation of a robot, as many people with ASD may struggle
to express their levels of stress, pain, and overall emotional state. The
robot could be another advanced modality for behavioral expression
and can stimulate verbal disclosure [279].

8.4.1. Limits and challenges
In the near future, many of the studies on the improvement of

individual modules such as computer vision sensors, as well as the
research on lifelong open-ended learning architectures, will come to
fruition, opening up many new and exciting applications and creating
whole new markets.

DL has diversified by creating different strategies and architectures
to face different problems, but still, the general paradigm is to train
a model on a dataset, freeze the model and then use it. This learning
dynamic does not resemble the biological functioning artificial neural
networks are inspired by. [63] is a sign that continuous learning strate-
gies have lagged far behind the problems faced by neural networks
today and is a desirable capability in models so that small changes do
not degrade the results.

Regarding the field of clinical applications, the lack of standards,
large enough databases, and in-depth multidisciplinary studies on the
efficacy of the proposals create a barrier between the theoretical and
the real application. The mandatory rigor in medical fields implies
carrying out extensive studies with specialists in order to find out
whether AIs are actually modeling reality correctly. Such delicate and
complex fields as neurology impose the need to work together with
medical doctors and neuroscientists or the models produced will be of
no practical use. In this field, the economic and personnel limitation
to carrying out these studies are the most important. Until these are
solved, it will remain difficult for academic work to be translated into

a practical benefit for society.



Information Fusion 100 (2023) 101945J.M. Górriz et al.
8.5. Biomedical applications

It is generally believed that AI tools will facilitate and enhance
human abilities and not replace the work of physicians. AI is ready to
support healthcare personnel with a variety of tasks as image analysis,
medical device automation, patient monitoring, etc. A perfect combi-
nation of increased computer processing speed or architectures [280],
optimized data collection procedures and larger data libraries have
enabled rapid development of AI tools and technology, also within
healthcare. There are different opinions on the most beneficial appli-
cations of AI for healthcare purposes. Forbes stated in 2018 that the
most important areas would be image analysis, robotic surgery, virtual
assistants, and clinical decision support.

Neuroprosthetics are devices that help or augment the subject’s own
nervous system, in both forms of input and output. This augmentation
often occurs in the form of electrical stimulation to overcome the
neurological deficiencies that patients experience. These debilitating
conditions can impair hearing, vision, cognitive, sensory, or motor
skills. Movement disorders such as multiple sclerosis or Parkinson’s are
target applications. The recent advances in brain-machine interfaces
(BMIs) have shown that a system can be employed where the subjects’
intended and voluntary goal-directed wishes (electroencephalogram,
EEG) can be stored and learned when a user ‘‘trains’’ an intelligent
controller (an AI). While in its infancy and very exploratory, this field
will be immensely helpful for patients with neurodegenerative diseases
who will increasingly rely on neuroprostheses.

Intelligent interpretation of data that appears in the form of ei-
ther signals, images, or a video can be a challenging task. Experts
in the field have to discern medical phenomena and on top of that
have to actively learn new content as more research and information
present themselves. There is therefore a need for AI approximations
to be the tool to fill this demand gap. Computer vision involves the
interpretation of images and videos by machines at or above human-
level capabilities including object and scene recognition. Areas in which
computer vision is making an important impact include image-based
diagnoses. Computer vision has mainly been based on statistical signal
processing but is now shifting more towards the application of artificial
neural networks as a learning method. For instance, DL may be used to
engineer computer vision algorithms for classifying images of lesions in
the skin and other tissues. Video analysis, as well, has great potential
for clinical decision support.

For a successful prognosis of cardiovascular diseases (CVD), an early
and quick diagnosis is essential. Heart disease and strokes are the
predominant causes and account for more than 80% of CVD deaths,
whilst one-third of these deaths occur prematurely. AI techniques can
radically improve and optimize CVD diagnosis. AI has the potential
to provide novel tools and techniques to collect and interpret data
and make faster and more accurate decisions. AI has also improved
medical knowledge by pointing to clinically relevant information from
the voluminous and complex data registered.

8.5.1. Limits and challenges
Wearable health devices are an upcoming technology that allows for

constant measurement of certain vital signs under various conditions.
The key to their early adoption and success is their application flex-
ibility. The users are now able to track their activity while running,
meditating, sleeping, or when underwater. The goal is to provide
individuals with a sense of power over their own health by allowing
them to analyze the data and manage their own health. At first look, a
wearable device might look like an ordinary band or watch; however,
these devices bridge the gap between multiple scientific disciplines
such as biomedical engineering, materials science, electronics, com-
puter programming, and data science, among many others. Remote
monitoring and picking up on early signs of disease could be immensely
beneficial for those who suffer from chronic conditions and the elderly.
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Here, by wearing a smart device or manual data entry for a prolonged
period, individuals will be able to communicate with their physicians
without the need of disrupting their daily lives.

AI is an enabling technology that when integrated into healthcare
applications and smart wearable devices can predict the occurrence
of health conditions in users by capturing and analyzing their health
data. The integration of AI and smart wearable devices has a range of
potential applications in the area of smart healthcare but there exists
a challenge in the black box operation of decisions made by AI models
that have produced a lack of accountability and trust in the decisions
made. XAI is a domain in which techniques are developed to explain
predictions made by AI systems. XAI is a technique that can be used in
the analysis and diagnosis of health data by AI-based systems providing
accountability, transparency, result tracing, and model improvement in
the domain of healthcare.

8.6. Neuroscience

In the field of medical imaging, the acquisition of image data and
high-quality labeling data is very expensive, and the existing medical
image data sets generally have two problems: scarce labeling and weak
labeling, which seriously limit the application of the algorithm in the
production environment. Therefore, improving the model performance
and robustness on small-sized datasets [29], and artificially creating
data [32], are two main trends in medical imaging in the future. Solving
the problem caused by the lack of data is beneficial to improving the
generalization of DL to the diagnosis of various diseases.

On the other hand, it has also been concluded the enormous useful-
ness of EEG as data acquisition, as well as MEG in the form of MRI and
others that can also be of use such as PET. It is interesting to see how
some papers propose as a promising strategy the fusion of data sources,
approaching a multivariate view of the problem that can enrich the
modeling. Such fusion is a challenge, and in this session, we have seen
proposals that can lead to this joint use. We can then conclude that the
main trends involve the application of techniques from other scientific
fields related to signal to process, the modeling of brain connectivity to
better understand the functioning of this organ, and on the other hand,
the taking of multi-source data and the challenge of merging all this
information.

Diagnosing neurological disorders with equivocal clinical presenta-
tions, such as multiple system atrophy, progressive supranuclear palsy,
dementia with Lewy bodies, and corticobasal syndrome, is challenging.
To enhance the accuracy of computer-aided diagnosis (CAD) models
for dementia, approaches like the siamese neural network [190] utilize
data transformations for comparisons between healthy subjects and
patients. The preservation of anatomical brain regions’ shape is em-
phasized in works such as [188,189], as it significantly influences CAD
system decisions. However, it is crucial to evaluate brain anatomy and
function alterations comprehensively rather than focusing on individual
regions alone. Image modality selection, preprocessing steps, and image
decomposition techniques [192] provide powerful methods to identify
subtle patterns and enhance the understanding of brain disorders.

Furthermore, efforts are being made to quantify the reliability of
classification decisions by utilizing uncertainty measures. Bayesian ap-
proaches make use of uncertainty as a measure of ambiguity of a
classifier decision in order to provide interpretable solutions. Previ-
ous studies have claimed the need of rejecting a prediction when
uncertainty is too high [281,282], in addition to providing theoretical
computations of uncertainty when used in combination with deep
and ML models. [283] demonstrated the mathematical equivalence
of applying dropout before every weight layer on a neural network
to a probabilistic deep Gaussian process [284]. Based on this, [285]
developed an uncertainty-driven ensembles of classifiers for image clas-
sification, leading to vital information for the diagnosis of pneumonia
and PD. [286] proposed a more general framework based on train-
ing a logistic regression model on the classifier outputs to transform

them into probabilities. Following their development, recent works
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have successfully designed probabilistic intelligent systems for imaging
classification [287–289].

The scope of NI analysis is to obtain reliable results at the lowest
computational cost. In the last years, many traditional CAD systems
for dementia have been replaced by more accurate neurological dis-
eases based on explainable tools that allow a better understanding of
the pathologies under study or models that try to use less invasive
biomarkers [290]. In this sense, though the algorithms that allow
the detection of subtle patterns have been usually based on highly
complex DL architectures [291,292], further work is needed to reduce
the complexity of the implemented models without compromising their
reliability. The use of statistical maps [185,293], and improvements in
data preprocessing are leading to clearer identification of informative
patterns guiding ML model decisions.

Moreover, the studies presented in this section demonstrate the
crucial contribution of AI to understanding non-structured data at
behavioral and neural levels. The automation of neuro-psychological
tests and the application of AI in everyday life activities for MCI as-
sessment offer inexpensive, minimally invasive, and easy-to-administer
diagnostic and treatment tools. As data collection continues to increase,
the challenge lies in effectively combining vast amounts of data to
achieve early understanding and prediction of disabling diseases and
pathological conditions. We imagine assessment as a network where
converging information may determine a diagnosis.

In the context of neurorehabilitation, it is important to develop
scenarios that gather diverse information about the locomotor system of
participants and conduct in-depth research on the collected indicators
and their potential for monitoring. Some promising findings will help
tailor biometric indicators for non-normative participants in future
works with hand-tracking technology. Motion pattern detection, includ-
ing involuntary tremors, can be achieved using devices like LMC, which
can monitor patients effectively. The activation patterns observed in the
brain for different stimuli suggest specialization of different areas of the
auditory and visual cortex in processing specific types of articulations.
Brain association of different coherent or incoherent stimuli is hardly
differentiated at this point, but brain activity is greater when coherent
stimuli are used.

Actigraphy tools may be useful in assessing respiratory patterns
known to have strong influence in modifying emotional states and
cardiovascular regulation. This specific methodology could benefit from
other multi-modal signal acquisition procedures, such as skin conduc-
tance and blood pressure, as well as combine with biofeedback in BCI.
The personalization capabilities of these platforms have the potential to
revolutionize Precision Medicine. On the other hand, the development
of strategies and scenarios to study the use of visual prostheses as
an actigraphy tool is a complex but rich task, which may involve
spatial concepts, as safest trajectory planning, prevention of falls or
injuries from surrounding obstacles, pattern recognition of common
tools, and helping tools for object handling, which might also be of
use in supporting persons with neuromotor or cognitive disorders.

In the context of Autism Spectrum Disorder (ASD), it is crucial
to identify the challenges faced by individuals with ASD and design
assistive technologies that promote inclusivity, and to increase research
towards the adult stage, as most studies focus on childhood [294].
There are three major unresolved issues in the field of psychoeduca-
tional intervention and adulthood. First, entry into the working world
requires technologies for training job skills; Access to housing calls
for support through home automation with domotic devices, cognitive
accessibility of environments, specialized psychological and therapeutic
support, etc.; and premature aging requires assistive technologies for
health care, fall prevention, support to internal medicine.

The development of personalized solutions that accommodate the
heterogeneity of ASD conditions is a current trend. Shortening the
validation cycle of technological interventions in the collaborative en-
vironment of all involved disciplines is necessary due to the rapid pace
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of technological advancements. Familiarization with new technologies
and considering sensory profiles are important factors in designing
ASD technologies [295]. Devices used for ASD should be lightweight,
non-intrusive, and minimize distractors to ensure user comfort and
acceptance [296]. Collaboration with specialized behavioral therapists
can aid in the familiarization process.

Additionally, privacy and confidentiality should be incorporated
into the design of ASD technologies to ensure the secure handling of
physiological data. The choice of physiological variables, their longitu-
dinal measurement, and appropriate treatment are areas that require
further study and improvement to derive meaningful insights from the
collected data [294].

Overall, the advancements in medical imaging, CAD models, fusion
of data sources, and personalized technologies hold immense potential
for improving diagnosis, understanding brain disorders, and developing
assistive technologies for various neurological conditions.

8.6.1. Limits and challenges
One of the main limitations associated with intelligent systems is

the massive computational burden that they usually entail [297]. This
is especially problematic when handling data with high dimensionality,
such as the three-dimensional images employed in the diagnosis of
brain diseases [298,299]. The recent increase in hardware specifica-
tions has partially, but not entirely alleviated this issue. Future research
needs to propose approaches that combine data from different sources,
including additional information to medical imaging, that strike a
balance between performance and computational load [300,292]. It is
therefore necessary to continue to improve the efficiency of prepro-
cessing of the data to continue to reduce computational cost [301].
Specifically, in NI the main limitation for providing reliable findings is
the sample size [302]. Many studies cannot be optimally performed for
this reason, reducing their impact in both technical and clinical fields.

The other challenge currently is to provide results that can be easily
understood and explained. This is especially important in the field of NI
where research is often conducted in close collaboration with clinicians.
This approach, referred to as XAI [303], is increasingly being observed
in a growing number of articles [304–306]. From an understanding of
human brain development [307] to analyzing biomarkers for AD [290],
most would agree that this approach is very useful for adding to the
knowledge accumulated so far. Nevertheless, while the solutions this
brings are promising, at present we are still a long way from achieving
them [308].

In ASD, most current research depends on small samples, mostly
including subjects without intellectual disabilities. Pervasive sensing
and efficient and transparent AI-based technologies could increase the
number of people evaluated in each study and account for personal
differences of these individuals caused by ASD and the comorbidities
with intellectual disabilities [309,310].

9. Conclusions

Big data and ML are having an impact on most aspects of modern
life, including commerce, engineering, and healthcare. There have been
a great number of technological advances within the field of AI and
data science in the past decade. Although research in AI for various
applications has been ongoing for several decades, the current wave of
AI hype is different from the previous ones.

Intelligent systems are usually considered black boxes. In other
words, in many cases, there is a lack of transparency about how
decisions are taken. It is clear that there is a current tendency in the
development of intelligent systems to provide additional information
other than just the result of the classification itself. In fact, it is much
more important to discover why a system makes the decisions it does
instead of just knowing that it performs well. The emergence of explain-
able models has provided a boost to the interpretability of classification
models. Most of them are based on attribution-based methods, trying to

locate the parts of the images that contribute most to the classification
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decision. For example, class activation mapping relies on gradients to
generate class-discriminative visualization in DL architectures.

The aforementioned methods and applications have demonstrated
the tremendous success of ML and AI techniques in the research areas
analyzed in this review paper. Among all branches of ML, DL, in
particular, has attracted the most attention from researchers due to
its powerful representation capability over the past decade [29]. As
an example, it has great potential in healthcare, assisting clinicians
to accelerate disease diagnosis and improve diagnostic accuracy. How-
ever, the interpretability of DL has long been one of the fundamental
problems in data science in general. It plays a key role in determining
whether users can trust these models, especially when it comes to
applications for important tasks related to human life and health.
Although DL has been shown to be very effective in a variety of
applications, users still need to understand the reasons for the decisions
and predictions made by DL from a more detailed and concrete perspec-
tive. Improving the interpretability of DL-based models has gradually
become a primary objective of the field.

The use of bio-inspired approaches to optimization and search
remains an intense line of research with many authors and groups
constantly presenting different ideas in the aspects related to bio-
inspiration and their reflection on search exploration/exploitation con-
trol, or simply in the use and adaptation of the broad set of these
methods for a particular application domain. However, as noted in
Section 3, one of the current goals in bioinspired search metaheuristics
is to elucidate, when defining a new metaheuristic with a particular
biological or physical inspiration, what new novel strategies different
metaheuristics bring with respect to well-established methods.

There has been a number of persisting challenges in AfCAI research.
Some of the most important ones include the limited availability of
data suitable for the training of emotion recognition models. Although
many new data sets are available [311], they are most often related
to specific experimental conditions and may not be suitable for all AfC
systems. This, in turn, contributes to the cold-start problem in emotion
recognition. Another important challenge is related to the way data
is acquired during system design and operation. Laboratory-based AfC
experiments have limited impact on the practical development of AfC
applications, as they are quite distant from real-life conditions and
sensitive to biased reactions of participants. Therefore, there is a clear
and urgent need for ecological data collection methods and ecological
datasets resulting from them [18].

Several major trends in ASD technologies were observed. First, in
addition to mobile and screen-based technologies, there is a clear trend
in using AI-empowered wearable and everyday objects that sense phys-
iological or behavioral signals for diagnosis, monitoring, and improved
interaction of people with ASD. Second, there is a clear trend in adding
a multitude of modalities that better can assess the condition of persons
with ASD, especially in cases when these individuals suffer intellectual
disabilities and cannot self-report. Together with the widely used sig-
nals as heart rate variability and electrodermal activity, phonological
signals, pressure modalities and environmental parameters are used to
gather more contextual and person-related information. Third, while
the use of social robots in ASD treatment is traditionally one of the
most successful applications for children with ASD, the new trend
is in combining robotics technologies with physiological sensing for
enhanced interaction and monitoring.

From the imaging studies that have been analyzed, it can be con-
cluded that there is an enormous variety of approaches to neurological
problems so that very different techniques are applied to a wide range
of diseases, such as PD or AD. Many of these techniques arose in
totally different fields, but they have demonstrated their potential when
applied to brain modeling, and in this sense, they have shown that
they can be of great efficiency for the early diagnosis of the ailment
in question. In this sense, both classical ML classifiers, as well as more
complex strategies such as DL, have proven successful, however, brain
functioning modeling techniques, such as connectivity models, allow us
to get closer to an explanation of the underlying models that can help
29

to a greater extent to define brain dynamics and its anomalies.
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