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Abstract 

Background  The collection and annotation of medical images are hindered by data scarcity, privacy, and ethical rea-
sons or limited resources, negatively affecting deep learning approaches. Data augmentation is often used to mitigate 
this problem, by generating synthetic images from training sets to improve the efficiency and generalization of deep 
learning models.

Methods  We propose the novel use of statistical shape and intensity models (SSIM) to generate augmented images 
with variety in both shape and intensity of imaged structures and surroundings. The SSIM uses segmentations 
from training images to create co-registered tetrahedral meshes of the structures and to efficiently encode image 
intensity in their interior with Bernstein polynomials. In the context of segmentation of hip joint (pathological) bones 
from retrospective computed tomography images of 232 patients, we compared the impact of SSIM-based and basic 
augmentations on the performance of a U-Net model.

Results  In a fivefold cross-validation, the SSIM augmentation improved segmentation robustness and accuracy. In 
particular, the combination of basic and SSIM augmentation outperformed trained models not using any augmen-
tation, or relying exclusively on a simple form of augmentation, achieving Dice similarity coefficient and Hausdorff 
distance of 0.95 [0.93–0.96] and 6.16 [4.90–8.08] mm (median [25th–75th percentiles]), comparable to previous work 
on pathological hip segmentation.

Conclusions  We proposed a novel augmentation varying both the shape and appearance of structures in generated 
images. Tested on bone segmentation, our approach is generalizable to other structures or tasks such as classification, 
as long as SSIM can be built from training data.

Relevance statement  Our data augmentation approach produces realistic shape and appearance variations 
of structures in generated images, which supports the clinical adoption of AI in radiology by alleviating the collection 
of clinical imaging data and by improving the performance of AI applications.

Key points       • Data augmentation generally improves the accuracy and generalization of deep learning models.

• Traditional data augmentation does not consider the appearance of imaged structures.
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• Statistical shape and intensity models (SSIM) synthetically generate variations of imaged structures.

• SSIM support novel augmentation approaches, demonstrated with computed tomography bone segmentation.

Keywords  Deep learning, Bone and bones, Hip joint, Tomography (x-ray, Computed), Total hip arthroplasty

Graphical abstract

Background
Like in many fields, deep learning has enabled major 
advances in radiology, thanks to modern computing capa-
bilities and access to big data. Data is particularly critical 
for deep learning performance. In medical imaging, access 
to data is hindered by several factors such as low preva-
lence of pathologies, effort required for data annotation, 
patient privacy, and ethical concerns [1], representing one 
of the main obstacles to the application of efficient deep 
learning-based algorithms. To overcome the limited num-
ber of images available, several strategies have been inves-
tigated such as shallower neural networks (often with loss 
of performance), transfer and zero-shot learning, or data 
augmentation [1–4]. Data augmentation focuses on the 
root of the data problem and aims at increasing the size and 
diversity of the training set by synthetically creating new 
data samples. Data augmentation is often seen as a type of 
regularization to improve the generalization of deep learn-
ing models [5] by avoiding overfitting and countering data 

imbalance [3]. While several works are still investigating 
the complex theoretical foundations of data augmentation 
[6, 7], there is a general consensus that data augmentation 
is beneficial, especially with small datasets [1].

Many different taxonomies of data augmenta-
tion have been proposed [1–4]; we can mainly clas-
sify augmentation techniques in terms of complexity 
(basic versus advanced approaches) or targeted image 
domains (geometrical or photometric). For instance, 
basic approaches include geometrical transforma-
tions (rotations, flipping, etc.) or intensity modifica-
tion (noise injection, edge enhancement, smoothing, 
etc.). Advanced approaches include deep learning 
approaches, especially based on generative adversarial 
networks (GAN) [8], as well as approaches based on 
statistical models [9–12]. GAN-based data augmen-
tation creates samples with variations in both shape 
and intensity of generated structures, while augmen-
tation using statistical models will alter the geometry 
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of existing images. In fact, these models mainly rely 
on statistical shape models (SSM), where generated 
instances by the SSM provide spatial deformations [9, 
10] or mesh representations [11, 12] that can be used to 
geometrically deforms a training image — resulting in 
an augmented image. While this concept can generate 
many new training images, the resulting image intensi-
ties are restricted by the initial training images.

As a result, we propose in this work to enhance SSM-
based augmentation by investigating the use of a statistical 
shape and intensity model (SSIM) modeling both shape and 
intensities of imaged structures. To our best knowledge, 
no previous work has exploited statistical intensity models 
(SIM) to directly generate augmented samples, despite the 
long existence of SIM in medical image analysis, often under 
the name of appearance models[13].1 The closest work [14] 
created an active contour model encompassing shape con-
tours with intensity information to guide an image-to-image 
conditional GAN for data augmentation, in the context of 
cell segmentation from optics retinal imaging.

Assessing the efficiency and impact of a new data augmen-
tation technique is usually done in the context of a specific 
application. In this work, we chose the task of segmenting 
bones from computed tomography (CT) images for total 
hip arthroplasty (THA) planning. Most works that relied on 
deep learning to segment (some) bones of the hip from CT 
in the context of THA [15, 16] used basic geometric aug-
mentations such as rotation, translation, scaling, cropping, 
and left–right flipping. This was also observed with other 
studies that did not focus on THA but also segmented bones 
of the hip joint from CT [17] and sometimes included sim-
ple intensity augmentations such as intensity scaling [18]. 
Except for the work of Noguchi et  al. [19] that exploited 
more advanced augmentation (e.g., mix-up and patching) for 
whole-body bone segmentation in CT, most previous works 

were thus based on simple augmentation techniques. As a 
result, our more advanced augmentation approach brings 
further novelty with respect to these previous works.

Methods
Overview of the augmentation pipeline
The aim of the augmentation method is to generate 
diversified and realistic images to train a machine learn-
ing approach. In standard augmentation for supervised 
learning, we generate new image samples from a collec-
tion of training images with corresponding labels, i.e., in 
our application segmentation masks for our four bones 
(left/right proximal femurs and hip bones). For a given 
structure, a new image is created as follows (Fig. 1):

a.	 Constrained random sampling of a tetrahedral mesh 
with embedded image intensities using the SSIM 
(Fig. 1a)

b.	 Selection of the closest image in the training set 
based on an affine distance criterion between the 
sampled mesh and the corresponding mesh of the 
closest image (Fig. 1b)

c.	 Cleaning of the closest image by “removing” the 
intensities of the corresponding bone (Fig. 1c)

d.	 Warping of the cleaned image using thin-plate spline 
(TPS) and rigid transformations along with the “paint-
ing” of the sampled synthetic image intensities (Fig. 1d)

For the sake of clarity, we assume in the following sec-
tions that we have a single structure to segment the over-
all approach being simply replicated for other structures.

Instance generation based on SSIM
Given a series of images with the segmented structure, 
we non-rigidly registered a reference triangular mesh 
to the segmented structure of each training image — 
establishing a point correspondence between the regis-
tered meshes. The reference model was then converted 
to a volumetric tetrahedral mesh [20] that was warped 

Fig. 1  The main steps of a new computed tomography image generation exemplified with the left proximal femur. Random sampling of instance 
using a statistical shape and intensity model (SSIM) (a). Selection of closest image based on shape affine similarity (b). Cleaning of corresponding 
structure in the closest image (c). Geometrical transform of cleaned image with painting of instance intensities (d)

1  While some authors use the umbrella term “SSM” to include models con-
sidering shape and/or appearance, we prefer to clearly distinguish models  
using SSM, SIM, and SSIM acronyms for shape, intensity, and hybrid models.
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to each image space using a thin-plate spline transform 
(computed with a subset of the mesh surface vertices). 
Given co-registered tetrahedral meshes with a point cor-
respondence of their vertices, we eventually built a sta-
tistical shape model with rigid Procrustes alignment, 
modeled as a point distribution model. To express image 
intensities in the interior of meshes, we exploited the 
compact representation of CT intensities within a tet-
rahedron as a continuous density function, proposed by 
Yao [21]. Using Bernstein polynomials, the density func-
tion models within a tetrahedron the image intensity 
D(p) at a position p = (px, py, pz , pw

) defined in a local 
barycentric coordinates space:

D(p) =
i+j+k+l=d

Ci,j,k ,l .B
d
i,j,k ,l(p)

where Bd
i,j,k ,l is the barycentric Bernstein function of 

degree d and Ci,j,k ,l are the Bernstein coefficients, com-
puted by solving a system of equations. The larger the 
degree d is, the better will be the fidelity of the encoded 
intensities but at the expense of large memory/storage 
requirements — since the number of Bernstein coeffi-
cients m per tetrahedron quickly increases ( m = (d+3)!

3!d!  ). 
Similarly to SSM that use vertex positions to build their 
point distribution model using principal component 
analysis (PCA), the SIM will use the Bernstein 
coefficients.

By unifying the two statistical models into a SSIM, we 
can generate shape and intensity instances by varying 
the model statistical parameters bi , as depicted in Fig. 2. 
Parameters bi follow a multivariate Gaussian distribution 
with variances equal to the eigenvalues �i of the PCA. As 

Fig. 2  Example of generated instances using a statistical shape and intensity model (SSIM). The statistical shape model produces different 
tetrahedral meshes of a proximal femur (a–d). The statistical intensity model yields different intensity appearance for the same hipbone tetrahedral 
mesh: top, axial view; bottom, sagittal view (e–h)
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a result, a random generation of a new instance is eas-
ily achieved by sampling the multivariate Gaussian dis-
tribution [12]. However, special care must be taken in 
constraining this sampling to avoid extreme unrealistic 
shape or intensities. Similarly to [11, 12], we restrict the 
bi to an interval 

[

−2.5
√
�i, 2.5

√
�i

]

 . We further scale the 
parameters so that 

∑ b2i
�i

≤ M , where M derives from the 
χ2 distribution [22].

Creation of augmented images
Given a shape-intensity instance generated by the SSIM, 
we find the image whose segmented structure is the clos-
est (in terms of Euclidean distance [11, 12]) to the shape 
of the instance after affine registration. Then we proceed 
to “clean” the structure in the closest image by erasing it 
(e.g., Fig. 1c). Using the segmentation mask, we compute 
a signed distance map which allows us to find for any 
voxel v in the interior of the structure the point w on the 
segmentation border that is the closest. Then, we replace 
the intensity of v by the intensity of the exterior point r at 
v + 2(w − v) , similarly to a mirror-like approach in image 
border extrapolation.

Using the TPS transforming the instance to the clos-
est segmented structure, we resample the cleaned image 
into the instance coordinate system as performed in pre-
vious works [9–12]. This produces some slight deforma-
tions of surrounding structures, achieving a first degree 
of augmentation. We go further by painting the intensi-
ties of the instance in the resampled image. Finally, we 
rigidly align the resampled image with the closest image 
to reduce some overall rigid motions caused by comput-
ing the TPS with small or not centered structure such as 
a femur.

The reason of doing the cleaning is to reduce the risk 
that some intensities of the original structure remain 
after painting of the instance intensities due to small 
errors of the TPS warping, especially in the vicinity of its 
border, causing some kind of “ghosting” effect.

Application of augmentation for CT bone segmentation
We evaluated the impact of our augmentation technique 
in the context of hip joint bone segmentation from THA 
preoperative CT images, which often presented patho-
logical structures. A partner provided a retrospective 
anonymized dataset including 232 patients (112 men and 
120 women, with average and median age of 74.4 and 
75.4  years) gathered from various clinical institutions. 
For each patient, were included a preoperative THA CT 
image with corresponding manual segmentation of hip 
bones and proximal femurs. Using a Likert scale from 1 
(low) to 3 (high), three radiographers analyzed the images 
and rated the overall image quality and noise level at 1.7 

and 0.75, respectively. They also spotted image artifacts 
in 25% of the images, mostly metallic artifacts commonly 
caused by the presence of previous hip implants (around 
23% of patients). Osteophytes were also observed on 
more than 65% of the patients’ hips to be operated.

Using the CT images and the segmentations, we 
trained a residual U-Net architecture [23] using a fivefold 
cross-validation. Given a fold, 4/5 of the patients were 
randomly chosen for training data, while the remaining 
images were used for testing. Within the training set, 10% 
of patients were reserved for the validation set. For each 
fold, we built a SSIM model with the fold training data. 
Based on the series of patient images in the training and 
validation datasets, different augmentation techniques 
were applied offline or on-the-fly to generate new images 
(i.e., new “samples”):

•	 “No-aug”: No augmentation was used, the number of 
samples was hence equal to the number of patients, 
in the training and validation datasets.

•	 “Basic”: A basic augmentation was used based on 
standard intensity and geometrical transformations, 
which were randomly applied on-the-fly during the 
training with a probability p : vertical and horizontal 
flipping ( p = 0.1), 90° rotation ( p = 0.1), and intensity 
shifting of ± 10% ( p = 0.5).

•	 “SSIM”: Our SSIM-based augmentation was used 
offline to augment the training and validation datasets.

•	 “Basic + SSIM”: The SSIM-based augmented samples 
were also augmented on-the-fly with the basic aug-
mentation approach.

For the SSIM-based augmentations, we tried to balance 
the use of patients; otherwise, some patient images would 
have been never chosen based on the closest image cri-
terion, but we did not enforce perfect balance as the 
criterion is necessary to prevent excessive nonrealistic 
deformations caused by the TPS warping. For example, 
Fig. 3 depicts the resulting distribution for fold 0. Since 
for each patient we could augment based on each type of 
bone, this brought additional variety to the augmented 
samples.

We relied on the Dice similarity coefficient (DSC) 
and the Hausdorff distance (HD) to assess segmenta-
tion results against manual reference segmentation per-
formed by trained radiographers. By using the results of 
the folds testing, approaches were compared with two-
sided Mann–Whitney-Wilcoxon tests with Bonferroni 
correction [24] to account for multiple comparisons with 
a significance level at 0.05. The choice of the nonpara-
metric test was motivated by the non-normality of the 
data, verified with a Shapiro–Wilk test and visual assess-
ment of corresponding Q-Q plots.
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Implementation details
Our implementation relied on MONAI library [25] that 
is built on top of the PyTorch deep learning framework 
[26]. Our hardware was 4 × NVIDIA Tesla V100 SXM2 
with 32 GB of GPU RAM. During training in addition 
to possible subsequent on-the-fly augmentation, all 
loaded images were initially normalized by a spatial res-
ampling to an isotropic 1.5 mm3 voxel size and a rescal-
ing of image intensities to the interval [0, 1]. We relied 
on a smart cache mechanism of MONAI that exploits 
images (transformed for normalization or augmenta-
tion) located on GPU caches to keep GPUs busy at each 
epoch: 80 images were initially put in each GPU cache, 
and at each epoch, 75% of the images were replaced, 
for a distributed training over 50 epochs. The final 
model was the one producing the best DICE coefficient 
with the validation dataset, which was tested every 30 
images. We relied on MONAI library’s implementation 
of residual U-Net using default parameters with single-
channel images. We used a loss summing the contribu-
tions of the DICE metric and cross-entropy, along with 
an Adam optimizer with a learning rate of 0.0001.

Ensemble models were built using the trained model of 
each fold. When tested on a non-segmented image, the 
segmentation masks inferred by each fold model were 
then averaged with weights corresponding to the average 
DICE score of each model when tested on their test data-
sets (obtained during the cross-validation experiments).

Results
Statistical shape and intensity models
On average, proximal femur and hipbone tetrahedral 
meshes had 8,734/52,220 and 20,626/116,062 vertices/
tetrahedra, respectively. Statistical shape and inten-
sity models were both built by keeping 95% of the 
total variance, which resulted in different numbers of 
modes for the proximal femur (17 and 71 modes for 
SSM and SIM) and hipbone (50 and 151 modes for 
SSM and SIM).

When building the SIM, the degree d of Bernstein 
polynomials we decided to set to 3, resulting in m = 20 
Bernstein coefficients per tetrahedron. In fact, given the 
high number of coefficients and tetrahedra, resulting 
models are usually very large compared to SSM, so we 
had to balance the resolution of the mesh and the degree 
d to find a good compromise in terms of intensity fidelity 
and memory/storage constraints. To assess the impact of 
this choice of degree, we measured the absolute relative 
error in percentage between the CT intensities and 
those obtained by using the encoding with Bernstein 
polynomials. An error below 10% was obtained, with 
an excellent visual fidelity as depicted in Fig. 4.

Segmentation results
Segmentation results are reported in Table  1 and Fig.  5, 
considering the data of all folds and for the 4 bones. In gen-
eral, the two augmentation approaches using SSIM yielded 

Fig. 3  Distribution of patients and generated samples by augmentation for fold 0 and each type of dataset
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better descriptive statistics (Table 1), although statistical sig-
nificance on both DSC and HD metrics was only observed 
with the fully augmented approach Basic + SSIM (Fig.  5). 
Despite the absence of statistical significance for the SSIM 
augmentation alone, Fig.  5 highlights that many outliers 
occurred with the other two approaches, especially the basic 
augmentation with the DSC measure, which depict some 
large global segmentation errors. As a consequence, we 
also report in Table 1 the median and interquartile interval 
to better appreciate the performance differences between 
methods. The use of the basic augmentation was positive 
in terms of HD for both the segmentation models trained 
on original data (median no-aug: 8.6 versus basic: 7.35 mm, 
p = 0.0004 or pre-augmented data with SSIM (median 
Basic + SSIM: 6.16 versus SSIM: 7.81 mm, p-value < 0.0001). 
For the DSC measure, no statistical difference could be 
proven between the basic and no-aug.

Discussion
According to Chlap et al. classification of medical imag-
ing augmentation techniques [3], our approach could be 
categorized as a deformable augmentation for its image 
deformation capabilities but also as a kind of intensity 

generative model more commonly offered by augmen-
tation approaches using GAN. As reported by several 
works [1–4], we found that augmentation was in gen-
eral beneficial. Indeed, the absence of any augmentation 
resulted in a significant decrease of performance com-
pared to the best augmentation approach “Basic + SSIM” 
as confirmed by the metrics (median DSC/HD: 0.93/8.06 
versus 0.95/6.16) and as illustrated in Fig. 6 with a noisy 
CT image including a metallic implant. Furthermore, 
the accurate augmentation “Basic + SSIM” approach 
was also the most robust as it resulted in less outliers, 
as shown in Fig. 5 and confirmed by smaller differences 
between median/mean and standard deviation/inter-
quartile ranges (equal to 75th–25th percentiles). The 
Basic + SSIM augmentation also outperformed the basic 
augmentation, highlighting the benefits of SSIM able to 
alter both spatial and intensity information. The use of 
basic augmentation was in appearance beneficial when 
applied to the original dataset but only in terms of HD 
which can be the consequence of highly localized large 
segmentation errors. However, the basic augmentation 
combined with our SSIM augmentation did boost the 
performances, showing that basic transformations can 

Fig. 4  Example of reconstructed intensities after encoding with Bernstein polynomials of degree 3 for a hipbone (a) and proximal femur (b). 
For each bone, the left subfigure corresponds to the computed tomography image, while the right is the reconstructed image using the encoded 
intensities

Table 1  Segmentation results reported as mean ± standard deviation and median (25th−75th percentiles) for the fivefold cross-
validation using the different augmentation approaches

Basic Basic augmentation, Basic + SSIM Basic augmentation coupled with augmentation using statistical shape and intensity model, DSC Dice similarity coefficient, HD 
Hausdorff distance, SSIM Augmentation using statistical shape and intensity model

No augmentation Basic SSIM Basic + SSIM

DSC (mean ± standard deviation) 0.91 ± 0.06 0.89 ± 0.14 0.92 ± 0.05 0.94 ± 0.03

DSC (median [25th–75th percentile]) 0.93 [0.90–0.95] 0.93 [0.90–0.95] 0.93 [0.91–0.95] 0.95 [0.93–0.96]

HD (mm) (mean ± standard deviation) 10.8 ± 11.5 9.9 ± 13.3 9.1 ± 7.7 7.0 ± 4.5

HD (mm) (median [25th–75th percentile]) 8.06 [5.83–11.36] 7.35 [5.48–9.90] 7.81 [5.83–10.36] 6.16 [4.90–8.08]
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Fig. 6  Comparison of segmentation results for a noisy computed tomography image with an implant in the left femur (a). Compared 
to the manual segmentation (b), the Basic + SSIM augmentation strategy (c) produced better results (DSC = 0.93, HD = 7.05 mm) than a network 
trained without any augmentation (d) (DSC = 0.88, HD = 12.4 mm)

Fig. 5  Box plots of the fivefold cross-validation results for the four augmentation methods. Approaches not using the statistical shape and intensity 
model (SSIM) augmentation generally present a high number of outliers (black diamonds). Statistical significance between methods is reported 
with “*” and “ns” standing for the absence of significance
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still provide some additional variety to improve segmen-
tation robustness and accuracy.

This is exemplified in Fig. 7 where a model trained with 
an augmentation only using SSIM could not cope with 
a femur unconventionally oriented and presenting an 
implant causing metallic artifacts.

We did not attempt to optimize the segmentation 
approach (type of model architecture, training param-
eters, etc.) as we focused on the design of a new augmen-
tation approach. As long as statistical shape models can 
be built, using, e.g., (semi-)automatic approaches such 
as those described in the literature [12, 27], the other 
major steps (tetrahedralization, intensity encoding with 
Bernstein polynomials, etc.) can be applied, resulting 
in a generalizable augmentation approach. In general, 
for any body part, with possibly more complex (vary-
ing) anatomy compared to the hip, the most challenging 
part remains the creation of the statistical shape models. 
Thankfully, this area has been investigated in the past, 
with several previous works reporting successful statisti-
cal models for complex anatomies such as the (growing) 
maxillofacial region [28, 29] or the spine [30, 31].

As our dataset is being composed of acquisitions from 
several institutions with different patient population and 
scanners, we found that our best model (DSC 0.94 ± 0.03, 
HD 7.0 ± 4.5) performed reasonably well in case of segmen-
tation of pathological hips from CT images. In comparison, 
the recent work of Wu et al. [15] reported DSC and HD of 
0.936 ± 0.056 and 4.19 ± 1.04 mm for 282 pathological joints. 
However, on 30 healthy hips, the results reported by Wu 
et al. [15] were notably better (DSC 0.99 ± 0.014) than our 

results, like the work of Liu et al. [32] who reported simi-
lar metrics for hipbone segmentation on 221 metal-free CT 
images (DSC 0.99 and HD 3.30 mm). For comparison, we 
built an ensemble model composed of the fivefold mod-
els trained with Basic + SSIM augmentation and applied it 
on the 31 testing images of the subset “MSD_T 10” shared 
by Liu et al. in their CTPelvic1K public dataset [32]. This 
dataset provides some sort of external validation, although 
the corresponding CT images were only composed of hip 
bones without any particular bone pathology (femurs were 
not included as those were not segmented in the public 
dataset). We obtained an improved DSC of 0.95 ± 0.054 
and an HD of 7.0 ± 5.8 mm but far from the performances 
of tailor-made models for CT (hip) bone segmentation [15, 
18, 32]. As our THA training dataset contains several path-
ological cases with sometimes significant bone deforma-
tions and the presence of several implants, this distribution 
may have impacted the performance of the segmentation 
approach in the presence of healthy bones.

In conclusion, we proposed a novel augmentation varying 
both the shape and appearance of structures in generated 
images, which was successfully demonstrated with a deep 
learning approach to segment pathological hip bones 
from CT images.

As future work, it would be interesting to build other 
SSIM models from segmented public datasets and assess 
the impact of a SSIM-based augmentation in segmenta-
tion or classification tasks. It would be also valuable to 
compare our SSIM-based augmentation to other aug-
mentation techniques involving both spatial and intensity 
augmentation such as GAN models.

Fig. 7  Example where the statistical shape and intensity model (SSIM) augmentation was not sufficient. Computed tomography image with 
implant in the right femur and nonconventional leg position (a) as depicted in the reference manual segmentation (b). Despite not being excellent, 
the right femur segmentation with the Basic + SSIM augmentation (b) is clearly superior to the segmentation result when only SSIM augmentation 
was used for training (c)
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Abbreviations
DSC	� Dice similarity coefficient
GAN	� Generative adversarial network
HD	� Hausdorff distance
PCA	� Principal component analysis
SIM	� Statistical intensity model
SSIM	� Statistical shape and intensity model
SSM	� Statistical shape model
THA	� Total hip arthroplasty
TPS	� Thin-plate spline
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