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Abstract: The use of collaborative robots, or cobots, is nowadays continually increasing, especially in the small- 
and medium-sized manufacturing sector. For each particular use case, the integration and deployment of a cobot 
into a collaborative workspace faces a certain number of challenges. Programming industrial robots, for example, 
can be a relatively complex and time-consuming task. In this paper we report an accurate method to robot 
programming by using an optimized “learning from demonstration” technique. The operator/programmer 
performs in real-time the corresponding task to be automatized, and by means of a tracker sensor the programmer’s 
motions are captured and transmitted to the robot; the robot registers the trajectories and is now able to reproduce 
the human movements with high accuracy. Another fundamental issue for cobot deployment is safety. In this 
paper, we also present a virtual/augmented reality (VR/AR) environment to facilitate the design and operation of 
cobots in order to maximize human safety. The virtual reality environment operates as an aide tool during the 
design phase. The human operator and the robot’s digital twin work side-by-side while executing a collaborative 
task in a virtual reality space. Their movements are controlled and registered, and after a given period of test time, 
the data is analyzed to suggest modifications to ensure a safe workspace (collision free) and to increase 
productivity. For the regular real-time cobot operation, an augmented reality environment was developed, again, 
with the purpose of assuring a safe human-robot collaboration. The augmented reality environment keeps tracking 
permanently the cobot and the human manipulations. This system produces audio and visual alarm signals in 
unsafe situations and is also able to take actions, such as slowing down or stopping the robot, to preserve the 
physical integrity of the human operator.  
 
Keywords: Cobot, Human-robot collaboration, Virtual- and augmented reality, Learning from demonstration, 
Machine learning, Digital twin, Sensors, Smart glasses. 
 
 
 
1. Introduction 
 

Collaborative robots represent an effective  
strategy for promoting human-machine interaction to 
increase productivity in the manufacturing room. 

Cobots relieve humans of repetitive, dangerous,  
non-ergonomic or heavy-load tasks. The goal is that  
cobots and humans collaborate side-by-side  
sharing the same workspace in a safe and efficient 
manner. 

http://www.sensorsportal.com/HTML/DIGEST/P_3294.htm
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Depending on the use case, the design and 
deployment of a cobot faces a certain number of 
challenges. In this paper we address some of those 
challenges.  

This paper is an extended version of the conference 
publication [1] in which we presented a solution to the 
complex task of programming robots. In this paper we 
report the general context and additional research on 
the development of both a virtual- reality and an 
augmented-reality environment. The objective of 
these two systems is to design and operate safer 
workspaces (e.g., zero collisions) in industrial human-
robot collaboration. The virtual reality environment is 
used specifically for the human-cobot workspace 
design while the augmented reality environment is 
rather used during the operation phase (real-time, real-
world human-robot collaboration). 

 
 

2. Related Works 
 

The LfD (Learning from Demonstration) robot-
programming approach has attracted a lot of interest in 
the field of human-robot interaction [2, 3]. This topic 
encompasses several disciplines and scientific fields. 

In general, there are two main approaches for LfD. 
The first one is based on observational learning which 
usually exploits a vision system for the perception of 
movements and gestures, by using for example, 
cameras. The second approach is based on kinesthetic 
guidance which refers to the manual movements of the 
robot by interaction through haptic sensors.   

It should be noted that the second approach 
simplifies the corresponding learning task, but the 
movements remain spatially limited. Moreover, it is 
not possible to perform kinesthetic guidance on all 
types of robots. Therefore, in this study we favored the 
vision-based learning approach. We note that there are 
several important phases in this workflow, namely: 

 
data capture and fusion > learning phase > 
reproduction by the robot of the learned movement or 
action. 

 
Relevant existing work in this area is reported 

below. 
In the framework of the European project PRACE 

(Productive Robot ApprentiCE), whose aim is the 
development of a mobile robotic platform for the 
automation of assembly operations, a system based on 
several Kinect-type cameras to calculate 3D positions 
has been investigated. In this work [4], the author 
adopted a top-down approach: first, an estimation of 
the positions was made, and then, a refinement of the 
data captured by each sensor was performed. 

In the LfD domain, there are other approaches [5] 
that are based on the fusion of data recorded with 
gloves and video cameras. The work in [6] up to a 
certain point inspired our approach of fusing data from 
Microsoft's Kinect V2 to get the 3D data in skeletal 
form and supplementing it with data from Intel's 
RealSense sensor to refine the depth. 

One example of this approach is also reported in 
[7], where the robot must perform assembly tasks in 
the industrial Peg-in-Hole (PiH) domain. Here, a 
learning phase and a reproduction phase reinforced by 
a kinesthetic guidance phase are listed. With a camera 
on the robot's wrist, the object is detected, located and 
captured. The objects are labelled, and the detection 
algorithms are based on conventional computer vision 
algorithms such as SIFT (Scale-Invariant Feature 
Transform) and KNN (K-Nearest-Neighbors) for 
classification. 

We note that in [8] the human arm and the robot 
arm are physically attached for learning. The 
trajectory of each action is followed by the robot arm 
giving a representation of the trajectory in space. For 
the demonstration, the authors used the 3D coordinates 
of the three joints (shoulder, elbow, and wrist) for the 
tracking. They also used the procedure named 
Gaussian Process Latent Variable Model (GPLVM) 
and RANSAC (RANdom SAmple Consensus) to map 
the motion behavior.  

In [18] the imitation is done by decomposing the 
main task into hierarchical subtasks, based on an  
RNN neural network to predict the next task to be 
performed. This will of course depend on the observed 
input of the current state with the control of a closed 
loop. 

The work reported in [19] is carried out by using 
the ABB YuMi robot which is the same robot we used 
to develop our approach. The aim of the experiment 
was to test the effects of reusing non-expert 
programming parameters and skills for assembly tasks 
on industrial robots.  

Our approach of course leveraged the results from 
previously reported studies. Our objective nonetheless 
was to increase accuracy (a recurrent problem in the 
cited works) either by using multi-channel vision 
systems for the data captures (unlike [3, 8]), or to 
obtain finer resolution movements (unlike [4, 5, 6]). 

 
 

3. Demonstration-based Robot Learning 
 

Efficient robot programming is one of the 
challenges faced during the deployment of cobots. 
Demonstration-based robot learning [9] is an active 
research area which studies robot programming. In 
this area, capturing and replicating the motion with 
high accuracy remains a recurrent issue. Our approach 
[1] to tackle the accuracy problem was to use a system 
composed of multiple sensors [10] and then to extract 
a trajectory from the motions and the (programmer’s) 
fingers’ positions using machine learning.  

We tested different sensors including gloves and 
cameras. Due to accuracy and occlusion problems, we 
opted for a solution which uses an HTC Vive Tracker 
sensor [17], which is indeed accurate enough for 
robotic applications [11]. In our workflow, the HTC 
VIVE Tracker sensor is attached to the application-
dependent tool which is used by the operator “to 
demonstrate” the motion. The Tracker sensor can then 
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track the movement of the tool in three dimensions by 
locating its position relative to a VIVE Base Station.  

Since the tool position and rotation is directly 
tracked, it is not necessary to interpret (or to process) 
the intent and gestures of the user, which would have 
required more complex machine learning models. 
Moreover, our solution is coupled with AR smart 
glasses which allows the user to have immediate 
feedback. The used AR glasses (the Microsoft 
HoloLens 2) also provide tools to correct, in an 
intuitive way, possible recording errors.  

 
 

3.1. Safe Human-robot Collaboration Testing 
 

Robotic Task Planning, which is a sub-category of 
automated planning and scheduling, aims at solving 
complex robot use-case scenarios [12]. While some 
problem solvers such as STRIPS [13] can integrate 
human safety (as described in [14]) we cannot 
integrate such a system when a task is learned from 
demonstration. As an alternative, we approached this 
issue by testing the learned tasks in a high-fidelity 
virtual reality environment, where the human operator 
does not risk any harm. In our safe testing environment 
multiple digital twins can be placed in the scene along 
with a real human operator. The digital twins can be 
connected either to an alternative real simulator or to 
real robots located in a separate room. 

 
 

4. VR and AR Environments  
for Safe Cobotics  
 
Safety is a non-negotiable requirement for any 

human-robot collaboration in the workplace. One of 
the main challenges for a wide deployment of 

robots/cobots is related to safety issues. To unlock the 
full potential of collaborative robotics in industry and 
society, human safety must be guaranteed. At the same 
time, investment in the safety of human-robot 
collaboration must not reduce the promised return on 
investment. 

Below we report the current status of the 
development of a VR/AR system intended for 
achieving safer workspaces (e.g., zero collisions) and 
increased productivity in industrial human-robot 
collaborations. 

During the real-time cobot operation phase, the 
same digital twin used in Virtual Reality is used in 
Augmented Reality with AR smart glasses (in this 
case, the Microsoft HoloLens 2), while simultaneously 
calculating and displaying other kinds of metrics. One, 
for example, is the Safety Score metric. This score 
indicates to the operator the degree of safety of the 
current situation (or position). If the situation is 
deemed too risky, or when the operator crosses a 
dangerous zone, the smart glasses can send a signal to 
slow down or to stop the robot. 
 
 
4.1. System Architecture 
 

The system is composed of two main sub-systems 
as can be seen in Fig. 1. Each of the two main parts of 
this figure can operate independently on its own. They 
communicate together through robots and simulators 
by sharing programmed trajectories. 

The “Common Digital Twin Library” component 
(on the right side of Fig. 1) provides a generic way to 
define robots for Virtual Reality and Augmented 
Reality called Robot Components. Robot Components 
allow us to define an existing robot or to prototype a 
new one by using small re-usable parts. 

 
 

 
 

Fig. 1. Learning from demonstration and safe cobotics using digital twins. 
 
 
Robot Components can be very specific and 

accurate (e.g., an accurate 3D model of an existing 
robot) or very generic and re-usable (e.g., a robotic 

joint, a 3D collider, a generic gripper, etc.). They can 
then be combined, using a parent/child system to 
define a fully working robot. This allows us to add 
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support for many robots' features with minimal effort, 
as long as the simulator or the real robot provides an 
API for it. 

Robot Components can communicate to real 
robots and simulators through the “Robot / Simulator 
Adapter” component, which is a custom NodeJS 
server with an adapter system. 

Plugins can add new adapters, which permits to 
communicate with both real robots and simulators. 
Robot Components and the plugin system make it 
possible and easy to add support for new robots if they 
have a public API. 

Robots are stored in a modeled room (which 
represents a real-life industrial room), which can then 
be loaded in Virtual Reality to test the scenario, or in 
Augmented Reality (without furniture) to show to the 

operator where the robots are. Fig. 2 shows the class 
diagram of how robots are stored in a room. 

Our Learning from Demonstration system (on the 
left in Fig. 1) is composed of multiples modules and 
several physical sensors. Two sensor aggregator 
applications retrieve and merge data from the sensors. 
A communication bus exchanges data between the 
HoloLens 2 module, the web server, and the sensor 
aggregators. The server module stores the recorded 
trajectories. It is then accessed by the ROS (Robot 
Operating System) module, which converts the 
operator trajectories into robot trajectories, before 
sending them to the robot. The sensor aggregator is 
built in a way that makes it easy to add new sensors, 
by allowing each sensor to validate or improve the 
accuracy of previous sensors. 

 
 

 
 

Fig. 2. Room definition class diagram used in the VR and AR environments. 
 
 
4.2. Sensors 
 
4.2.1. Leap Motion and Deep Learning 

 
The goal of this part is to set up a system for the 

detection and classification of gestures performed by 
a human hand. The acquisition of gesture data is done 
using a Leap Motion, and the analysis and 
classification with a deep learning model (see Fig. 3). 
The process is carried out in three parts: The first one 
is the data acquisition, the second one is the creation 
and training of an MLP (Multilayer Perceptron) neural 
network, and the third part consists in importing the 
previously created model and making predictions on 

the fly with it. The features used are the relative 
distances between the fingers, which allows reducing 
the neural network complexity.  

The main objectives for this part were successfully 
attained. For example, the “pinch” and “thumb up” 
hand gestures were correctly recognized. Other hand 
signs can of course be added at the expense of longer 
training and slightly lower performance. One recurrent 
issue we had was the misinterpretation of gestures that 
are differentiated only by hand rotation. A 
straightforward solution to this problem and/or a 
possible improvement will be the inclusion of hand 
orientation as an additional feature for the neural 
networks training. 
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Fig. 3. Classification with the deep learning model. 
 

 
4.2.2. Camera 
 

In order to increase accuracy, we opted to use the 
RealSense D435 sensor (depth camera), which allows 
the detection of objects with high precision. 
Subsequently we merged the captured information 
with the Trackers’ data. The depth camera is placed 
above the workspace. An algorithm detects the plane 
of the table and then a threshold is applied to the depth 
of each pixel. This allows to detect items dimensions 
with accuracy (±3 mm delta error) on different types 
of boxes. See Fig. 4. 

 
 

 
 

Fig. 4. Camera sensor and boundary detection algorithm. 
 
 

4.2.3. Hand Tracking with Gloves 
 

Multiple hand tracking sensors were tested, 
including the Hi5 Glove and the Senso Gloves before 
settling for the HTC VIVE Tracker. The main 
disadvantages of the non-selected ones were that they 
could be cumbersome to wear and that they featured a 
lower tracking accuracy. Additionally, their main 
purpose is to track the fingers and hand position of the 
operator, and for our application, it was not always 
possible to convert (post-process) the obtained data to 
accurately describe the motion of the tool. 

To solve this in a pragmatic way, we decided to 
attach the tool to the Tracker. Since we could not use 
the gripper of the robot directly, we 3D-printed a “pen” 
representing a gluing tool (see use-case in the next 
section). However, in future work, it will be possible 
to print custom tips, either to attach existing tools, or 
to print “smart” tools. For example, a gripper with a 
small electronic circuit could automatically track the 
opening of the clamp during the recording, which 

would be feasible via the HTC VIVE Trackers’ 
programmable pins. 
 
 
4.2.4. HTC VIVE Tracker and AR Smart 

Glasses 
 

A pair of Augmented-Reality/Mixed-Reality 
glasses were used in combination with two HTC VIVE 
Trackers. The selected AR/MR glasses were the 
Microsoft Hololens 2 glasses [20]. The system 
architecture is, all the same, open to the use of other 
types of glasses or models from other manufacturers.  

One of the HTC VIVE trackers was used to track 
the tool and the other to define the origin. A quick 
response QR code (see Fig. 5) was used to synchronize 
the origins of the Tracker and the HoloLens 2. The 
operator can view the limits of the workspace through 
the AR/MR smart glasses and use controls to start and 
stop recording (Fig. 5). 
 
 

 
 

Fig. 5. AR smart glasses screen capture. 
 
 

Once the task is recorded, it can be uploaded to a 
web server for future usage. The communication 
between the web server, the HoloLens 2, and the 
Trackers is done in a modular way. 

The accuracy of the Tracker with the pen was 
measured by touching with the tip of the pen at specific 
(known distance) points drawn on a sheet of paper. The 
results of the positions are summarized below  
in Fig. 6. 
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Fig. 6. Accuracy of the HTC Vive Tracker. 
 
 

The use case for our demonstration was a “gluing 
task”, which has the following sequence: the operator 
picks up an item, moves it, applies glue on it, and then 
glues the other half together. Fig. 7 shows the operator 
during the recording of the trajectory, which is 
displayed in orange color. While this figure displays a 
2D path, the path recorded is indeed three-
dimensional. 

For the reported use case, an ABB YuMi robot was 
used. This robot has two arms. The operator can decide 
which arm is used while in teaching mode by simply 
touching the arm of the robot with the pen. 
Technically, two Trackers could be used to record 
trajectories for both arms at the same time. 
 
 

 
 

Fig. 7. Recording the trajectory. 
 
 

4.3. VR environment for a Safe and Efficient 
Human-robot Workspace 

 
Once the trajectories are recorded using the method 

described in the previous sections, they are validated 
in a Virtual Reality environment. Contrary to 
traditional approaches that would try to test the 
trajectories in real conditions with a physically present 
robot, we opted to equip the operator with an HTC 
Vive Pro eye head mounted display [15] and use 
Unity’s Virtual Reality features [16] coupled with 
digital twins. Such a system reduces the injury risks of 
the human operator to practically zero when testing 
new trajectories. This riskless procedure also 
minimizes the overall testing time. Furthermore, a 
virtual environment permits to create new testing 
scenarios that would be complex and/or more 
expensive to set up in real life. The VR system also 
facilitates the testing of different or alternative 
configuration scenarios in search of increasing 
productivity.  

The following paragraphs describe the operation of 
the VR system in more detail: 

1) The operator can (virtually) observe both the 
robot and the surrounding environment.  

2) The operator can then at real-time speed 
interact with the robot and the environment as 
in a classic Virtual Reality application. The 
simulation is as close as possible to the real-
world case from the operator’s standpoint. A 
connection with the Robot Adapter allows the 
robot to mimic real-life robot trajectories. 

3) For post-analysis and optimization purposes, 
the VR system offers the capability of recording 
the scenario and all the involved actors (e.g., the 
robot(s), the operator in the room). 

4) Diagnostic tools and metrics are also constantly 
shown to the human operator. For example, we 
can display the minimum distance between the 
operator and the robot(s) for every timestamp 
during the execution of the use case scenario; or 
the number of occurred human-robot (virtual) 
collisions. Other metrics can be easily 
implemented and added in graphs to the 
displayed information. Fig. 8 shows the 
diagnostic view for a very simple use-case 
example. On the top left part of the display the 
number of collisions is reported.  On the right 
part, the minimum distances and robot speed 
plots are displayed. 

 
 

 
 

Fig. 8. Diagnostic view in a simple use case. 
 
 

4.3.1. Testing the System: Results 
 

In order to test our system on a practical 
application, a pick-and-place (robot-executed) task 
with an intermediate assembly task (human-executed) 
was successfully implemented. We used multiple 
sensors and a real (not a virtual one) ABB YuMi robot. 

During the tests, it was confirmed that the hand- 
tracking accuracy (by using the Microsoft HoloLens 2) 
was high enough to control the ABB YuMi robot. 
Our plugin-based system allows us to quickly add new 
robots and simulators. For example, we exercised this 
feature by providing multiple plugins for multiple 
entities: a) a plugin that can communicate with a real 
ABB YuMi, b) another plugin with a simulated ABB 
robot, and c) a third plugin with a modeled "dummy" 
(robot) which was used to simply test the feasibility 
with any prototyped robot. 

x y z x y z x y z

0 0 0 1 1 1 1 1 1
0 0 53 0 0 54 0 0 1
0 0 143 3 8 145 3 8 2

HTC Tracker Average :
Max : 

(More lines truncated...)
1.875 [mm]

8 [mm]

Expected Measured Absolute error
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Fig. 9. Screen capture of the AR smart glasses during regular human-robot operation. The human operator can visualize  
in real-time the danger zone, the safety score, and other valuable information. 

 
 
The developed modular Robot Components 

system was used to define an ABB Robot, which can 
be animated using data from real robots and 
simulators. These digital twins can be viewed in 
Virtual Reality and in Augmented Reality. 

The implemented solution allows managing tasks 
on a running robot. When the robot is stopped, it can 
be controlled in an intuitive manner.  

Safety features were implemented. For example, 
displaying a danger zone (the circular yellow strips in 
Fig. 9); or slowing or stopping the robot depending on 
the value of the safety score or on the distance of the 
operator to the robot. 

Furthermore, the robots can be visualized in the 
real world, in virtual reality or in a third-party 3D 
application. 

 
 

5. Conclusions 
 

In this paper we reported an accurate “Learning 
from Demonstration” robot programming method. By 
means of a series of sensors, the robot programmer’s 
movements are accurately captured and then 
transmitted to the robot, which is then able to exactly 
reproduce the learned movements.  

We also introduced current work on the 
development of a virtual- and an augmented-reality 
environments that facilitate cobots workspace design 
and robot real-time operation, in view of a maximum-
safety collaboration. Our system is still open for 
further developments, and we are adding new features 
on a periodic basis. For the real-time robot operation, 
the goal of our approach is not to replace traditional 
security measures such as safety switches and lasers. 
The purpose is rather to add an effective security layer 
for maximum operator safety and to reduce the need 
to interrupt the production.  

The developed system also includes the following 
features: 1) Hazardous areas are shown directly on the 

scene, as can be seen in Fig. 9. This should reduce the 
risks of the operator walking into a protected area. 2) 
A safety score, which is based on the combination of 
multiple inputs, such as: a) the operator’s distance to 
the robot, b) the safety level of the current robot’s task, 
c) the operator’s attention (e.g., tracking the operator’s 
eyes) relative to the robot, and d) the operator’s 
(next/imminent) movement prediction. The value of 
the safety score is used to warn the operator by using 
audio and visuals cues (when the score is too low). 
3) The system can also be equipped with a signal to 
communicate with the robot to slow it down or stop it 
when the operator gets too close. We consider that our 
solution may lead to increased productivity, as it 
provides a common User Interface (UI) directly in 
front of the robot, which allows the operator to manage 
tasks and eventually stop the robot. Additionally, 
when the robot is stopped, the operator can jog the 
robot from a safe distance, without touching it, simply 
by moving 3D spheres around in augmented reality. 
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