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Abstract— Aggregators have an influential intermediary role to 

exploit the flexibility of prosumers like smart homes for 

procuring the required capacity of ancillary services to support 

power systems. Local generation and consumption uncertainties 

of prosumers affect their cost reduction objectives which in turn 

have a significant impact on the flexibility capacity provided by 

them. So, towards boosting the operational flexibility capacity in 

the market, the aggregator’s bidding and remuneration 

frameworks should devise a valuing scheme of prosumers 

considering this impact to induce positive incentives relieving 

capacity uncertainties. This scheme, simultaneously, should 

observe data privacy concerns. To this end, this paper proposes a 

day-ahead distributed bidding strategy framework for an 

aggregator to participate in regulation and energy markets using 

a new rewarding scheme derived from a flexibility certainty 

valuing approach. This framework is developed within the 

Benders decomposition method, in which the aggregator 

performs valuing of prosumers in the master problem through 

their implicit information extracted from home energy 

management systems modeled in the subproblems. The 

performance of the framework to appropriately reward 

prosumers is presented through numerical results for an 

illustrative case study. 

Index Terms— Aggregator, Bidding strategy, Distributed 

optimization, Regulation market, Remuneration of prosumers. 

I. INTRODUCTION

The proliferation of renewable energies in power systems 
increases the need for ancillary services procured by electricity 
markets to support system frequency against generation 
variability [1]-[2]. Satisfying this growing need requires 
engaging demand-side flexibility resources provided by 
prosumers like smart homes, electric vehicles, and distributed 
generations [3]. In the nowadays deregulated power systems, 
aggregators as the intermediary agents between prosumers and 
the electricity market play an important role in the procurement 
of ancillary services [4]. These agents facilitate profitable 
participation in the markets, establish adequate capacity being 
allowed by the market regulations, and handle uncertainties 
caused by the market prices and available flexibility of 

prosumers. These important tasks are aimed by the bidding 
strategy of the aggregator in the markets [5]. Regarding 
different ancillary services, in this work, we focus on the 
regulation service (i.e, automatic frequency regulation). 

The uncertainties of prosumers’ resources and market prices 
highly impact the efficient exploitation of the prosumers' 
flexibility and the economic profit from participating in the 
regulation market [6]. Modeling of these uncertainties has been 
addressed in the bidding strategy of the aggregator in the 
literature [7]-[11]. Scenario-based stochastic bidding strategies 
have been introduced based on nonlinear and linear 
optimization models by the authors in [7]-[8]. They studied the 
impact of uncertainties of generation and consumption patterns 
of Photovoltaic (PV) and residential loads on bided power and 
revenues in the regulation market. To relieve the adverse impact 
of resource uncertainties on the economic revenues of 
prosumers in the regulation market, the complementary energy 
storage capability of devices like Energy Storage Systems 
(ESSs) and electric vehicles with uncertain prosumers has been 
employed in [9]-[11]. The decision-making of the developed 
frameworks, besides optimizing bidding strategy, aims at 
optimizing the local objective function of prosumers like 
operation cost in the energy market and comfort level against 
their resource uncertainties. So, the flexibility capacity of 
prosumers, and therefore obtained revenues in the regulation 
market are affected by these local objectives. These objectives 
are impacted by different uncertainty levels of different 
prosumers. On the other hand, the aggregator optimization 
model rewards all prosumers, uniformly, based on the allocated 
capacity shares at the same market price. This optimization 
approach discriminates in favor of high-uncertain prosumers 
who despite inflicting higher uncertainty on the whole 
optimization problem due to their local objectives, they are 
unfairly rewarded at the same regulation market price as low-
uncertain prosumers. This causes negative incentives for low-
uncertain prosumers in keeping to provide better flexibility 
capacity. Because this capacity is used with the same price for 
resolving the adverse impact of high-uncertain prosumers, who 
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try to optimize their local objectives, on the total flexibility 
capacity and bided power. Thus, it lacks positive incentives for 
high-uncertain prosumers to alleviate the uncertainty of their 
flexibility capacity in the long term. 

Preliminary studies have been performed to remunerate the 
prosumers taking into account their different levels of 
flexibility characteristics in the energy market. Two general 
types of remuneration schemes including price-based and 
incentive-based methods have been discussed in [12], which 
allocate power to prosumers in respect of their responsiveness 
level to demand response programs. The authors in [13] cluster 
prosumers and apply different tariffs for remuneration of them 
according to their elasticity and operation flexibility properties. 
A cluster-based approach, also, was introduced in [14] and 
integrated into the optimization model of bidding strategy. This 
study does not propose a remuneration mechanism, and only 
prosumers with better flexibility characteristics are more likely 
to be clustered in groups with higher exploitation of flexibility. 
The remuneration scheme proposed in [15] for storage-
equipped prosumers is based on their trustworthiness to provide 
flexibility but disregards the effect of prosumers’ uncertainties 
in its mathematical model to allocate flexibility capacity 
considering their uncertainty. The capability of adjusting power 
from baseline is modeled in [16] to specify the remuneration of 
prosumers regardless of their uncertainty. The scope of these 
studies is limited to the energy market, and lacks a fair 
mechanism to consider uncertainties impact on the flexibility 
capacity and remuneration as mentioned before.  

Regarding the aforementioned assessments, the need for a 
solution to resolve the drawback of remuneration issues for 
prosumers in the regulation market emerges. While the 
envisaged method must consider the uncertainty performance 
of prosumers, their data privacy concerns should also be 
observed. Distributed optimization methods have been 
employed to observe this concern in the bidding problem [17]-
[19]. In these studies, the same obstacle of previous methods in 
contemplating the prosumers' uncertainty impact still exists. 
Also, these methods are not compatible to viably integrate 
valuing schemes of prosumers and implicit information sharing 
mechanism between prosumers and the aggregator. 

In this paper, a new day-ahead (DA) distributed stochastic 
framework for the bidding strategy of an aggregator of smart 
homes is developed to participate in the regulation and energy 
markets. In this framework, the smart homes equipped with 
ESS and PV are valued based on their uncertainty 
characteristics affected by their local objectives. The developed 
distributed framework is linearly modeled based on Bender’s 
decomposition approach. This study contributes to the current 
research as follows: 
• Developing distributed bidding strategy for an aggregator

valuing smart homes based on Bender’s decomposition; 
• Developing remuneration and bided power sharing schemes

respecting the uncertainty characteristics of smart homes’
provided power

The rest of the paper is as follows: Section II presents the 
overall developed framework, mathematical formulation, and 
the new rewarding scheme. In section III the case studies are 
introduced, and the implementation results of the developed 
method through these case studies are discussed. Finally, 

section IV concludes the paper by unveiling remarks and 
proposing future approaches to develop the method. 

II. DEVELOPED FRAMEWORK: MATHEMATICAL FORMULATION

A. Overall Framework
The developed framework aims at modeling the optimal DA

strategy of an aggregator managing smart homes to participate 
in the regulation and energy markets. To implement the 
framework in a distributed manner, the Aggregator 
Management System that includes a model (ASM) 
communicates with Home Energy Management Systems 
(HEMSs) of smart homes to send bid power shares and to 
receive HEMSs’ contribution response in realizing these shares. 
The ASM and HEMSs are modeled within the master and 
subproblems as depicted in Fig. 1 and iteratively solved by 
Bender’s decomposition method introduced in [20], 
respectively. The HEMSs trying to reduce their operation cost, 
are responsible to tackle the uncertainty of their generation and 
consumption data. In each iteration, they calculate and send 
their optimality and feasibility cuts to the ASM. On the other 
hand, the ASM finds the optimal participation strategy in the 
markets and power bid shares of homes considering market 
price uncertainties and the received cuts from HEMSs. Also, to 
evaluate the flexibility performances of homes, ASM requests 
dual variables of the HEMSs’ regulation capacity constraints 
realized in different scenarios for optimizing local objective 
functions. This information, besides preserving the privacy of 
homes’ uncertainty characteristics, is employed to devise a 
valuing scheme. This scheme defines the fair remuneration 
mechanism for homes provided bid shares in the regulation up 
and down markets based on the standard deviation of the dual 
variables. So, the ASM using this valuing scheme can define 
the regulation revenue per provided power for the homes 
considering their uncertainty impact on local objectives. 

Subproblems 
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Fig. 1. Overall framework of the proposed method 

B. Mathematical Model

The overall objective function of the framework FWF
including participation revenue in energy and regulation 

markets ASMF and the sum of operation cost of homes Home
h

F

specified by h is modeled by Eq. (1). 
   Home

h
h

FW ASMMin F F F= +   (1) 

Eq. (1) is decomposed to ASM and HEMS problems which 
calculate the optimal solution of bidding strategy and operation 
cost of homes by the master problem and subproblems 
presented in the following subsections, respectively. 

1) Subproblems: HEMSs

The HEMSs find the optimal DA operation scheduling of 
home h to reduce their operation cost according to Eq. (2) 
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The subproblem takes into account the uncertain load and 

generation data with the probability of ,
H
h v

ω  over scenarios of 

v V∈ in time t T∈  as well as received fixed variables of power 

bid shares set { }, , , ,
ˆ ˆ ˆ ˆ ˆ, , , BuyRGUH RGDH Sell

h t h t h t h tP P P PΚ =  allocated by ASM. 

In Eq. (2), 
, ,
g

h v tP and deg
,h vC calculated by equations (3)-(4) 

present the power bought from the grid at Time of Use (ToU) 
price of g

tρ and the degradation cost of the ESS of home h at 

time t in scenario v, respectively. Eq. (5) models the power 
balance at each time interval t in scenario v. 

, ,
PV

h v t
P , 

, ,
L

h v t
P , 

, ,
ESC

h v t
P , 

and 
, ,
ESD

h v t
P  stand for the power of PV, load, ESS charging, and 

ESS discharging, respectively. The capacity constraints of PV 
and the coupling point of the home with the grid are modeled 
by equations (6)-(8). The stored energy in ESS is calculated 
according to Eq. (9). The ESS capacity limitations on the state 
of energy, discharging power, and charging power are modeled 
by equations (10)-(12), respectively. Finally, the binding 
constraints of the regulation up and down power shares are 
denoted by equations (13) and (14), respectively. Regarding all 
of the constraints of a subproblem, the dual variables of 
constraints are denoted in front of that, which are used to 
generate feasibility and optimality cuts required by the master 
problem. These cuts are sent back to the ASM problem. Two 
key dual variables of regulation capacity constraints, 

, ,
RGU
h v tπ  and 

, ,
RGD
h v tπ  , are utilized by ASM to perform valuing scheme based 

on the uncertainty characteristics of homes, which is presented 
in section B.3.   

2) Master problem: ASM

The ASM aims at finding the optimal bidding strategy to
participate in the regulation up and down as well as energy 
markets. Solving the ASM problem gives the power bid shares 
set  { }, , , ,, , , BuyRGUH RGDH Sell

h t h t h t h tP P P PΚ =  to be sent to the HEMSs.
The objective function of the ASM is denoted in Eq. (15). Eq. 
(16) relates the master problem objective function to the
bidding objective function in Eq. (17). In Eq. (17), EM

sR  and 
RGM
sR stand for revenue obtained in the energy and regulation 

markets in the price scenario s with an associated probability 

of M
sω . The revenue of energy and regulation markets are 

modeled by equations (18) and (19), respectively. In these 
equations EMS

tP , EMB
tP , RGU

tP  and RGD
tP  present the power bids 

for energy selling, energy buying, regulation up, and regulation 
down at time t, respectively;  where the 

,
EM
s tρ , 

,
RGU
s tρ , and 

,
RGD
s tρ

are the uncertain market prices of energy, regulation up, and 
regulation down over the scenario s S∈  at time t, respectively. 
If ASM provides regulation up and down power at time t, the 
associated binary variables RGU

tγ  and RGD
tγ should be activated 

which enforce the bids to obey the market minimum bid rules 

min
RGUP and min

RGDP . This mechanism is modeled by equations 
(20)-(23). In these equations, M is a big number. Equations 
(24)-(27) denote that the power bids in the regulation and 
energy markets should be equal to the capacity provided by the 
homes. The power share of energy bids allocated to homes 
should be either selling or buying, which is modeled by 
equations (28) and (29), respectively. The equation sets (30) 
and (31) construct the optimality and feasibility cuts using the 
dual variables set , ,h v tπ  found by subproblems, respectively. 
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The developed framework allocates revenues in the 
regulation market for the homes based on their uncertainty 
characteristics. So, the new rewarding scheme is presented in 
the following which should be included in the ASM problem.  

3) Rewarding Scheme

To attain an indication expressing the impact of homes’ 
uncertainties imposed by the HEMSs local decision, on the 
capacity limitations for regulation power bid shares, the 
normalized inverse of the standard deviation of the regulation 
capacity constraints over scenarios v is considered. In order to 
calculate uncertainty valuing constants 

,
RGU
h tu  and 

,
RGD
h tu the



normalized inverse of the standard deviation of the dual 
variables 

, ,
RGU
h v t

π  and 
, ,

RGD
h v t

π  (derived from Eq. (13)-(14)), is used 
as formulated in Eq. (32) and (33) for regulation up and down, 
respectively. According to these equations, the lower the 
standard deviation of regulation capacity constraint over the 
scenarios, the higher uncertainty valuing constant. 
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To find the uncertainty valuing constants, the decomposed 
problems of sections B.1 and B.2 are executed. Then, these 
constants are calculated by the resultant dual variables of 
regulation capacity constraints of subproblems. 

To devise a new rewarding scheme based on the uncertainty 
valuing constants, an assumption of allocating more revenue 
per power share to the low-uncertain home is adopted. To this 
end, for instance, the derivation of equations (34) and (35) for 
regulation up are considered. In these equations, a rewarding 
coefficient 

,
RGU
h tU  is added to the reward equation,

,
RGUH

h tR , for 

home h in time t. Considering the binding equation of (35), 
which enforces equality of total revenue obtained from 
regulation up market and total revenue paid to the homes, the 
constraint of Eq. (36) can be derived. Applying the rewarding 
mechanism using the uncertainty valuing constants, the 
relation among 

,
RGU

h tU  for different homes should satisfy the 

constraint of Eq. (37). A similar derivation can be also 
performed for the regulation down to conclude equations (39) 
and (40). Consequently, equations (36)-(37) and (39)-(40) are 
added as additional constraints to the master problem, ASM.  
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III. CASE STUDIES AND DISCUSSION

A. System Data

For illustrative purposes, the developed framework is 
implemented on a system of an aggregator and two clusters of 
homes namely HC1 and HC2. The market and home data are 
taken from the ERCOT market [21] and homes of Austin, 
Texas in the spring of 2021, respectively. Each home cluster 
includes 400 homes. Fig. 2 demonstrates the average market 
prices of energy and regulation for 10 scenarios. The available 
PV power and daily load profiles for home clusters are 
illustrated in figures 3 and 4 [22]-[23], which consider 5 
scenarios presented by hourly boxplot distributions. The 
scenarios were constructed through scenario generation and 
reduction processes based on Mont-Carlo and Fast-forward 

selection methods [24], respectively. Fig. 5 shows the TOU 
energy prices. TABLE I presents the specifications of the 
home clusters’ ESSs [25].  

Fig. 2. Daily average capacity prices in energy and regulation markets.  

Fig. 3. Available PV power of home clusters with hourly distribution. 

Fig. 4. Daily load profile of HCs with hourly distribution. 

Fig. 5. TOU energy prices. 
TABLE I.  SPECIFICATIONS OF ESSS 

Parameter Value Parameter Value 

Capacity (MWh) 4.5 Max. SOC 0.9 
Rating power (MW) 3 Min. SOC 0.1 

Capital cost (Q) ($/MWh) 300  Initial Energy (MWh) 1 
Life per cycle (m) (%) -0.003 ,ch d chξ ξ  0.95 

B. Case Studies and Results

To assess the performance of the developed framework and 
the rewarding scheme, two case studies are adopted as follows. 

Case1: Bidding strategy for the aggregator without new 
rewarding scheme (Equations (1)-(31)); 

Case2: Considering the new rewarding scheme in the 
proposed aggregator bidding strategy (Equations (1)-(31), 
(36)-(37), (39)-(40)) 

The developed framework was implemented on General 
Algebraic Modeling System (GAMS), and was solved by 
CPLEX 12.5 in a system with a Core i7 2.3GHz CPU. The 
results of the case studies are discussed in the following. 

Fig. 6. Power bids and HCs bid shares in regulation up (positive) and down 
(negative) markets in Case1. 

Fig. 7. HC1 power shares in Case1. 

Fig. 8. HC2 power shares in Case1. 
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The bidding strategy and power shares of HCs for regulation 
up and down are illustrated in Fig. 6 for Case1. Also, figures 7 
and 8 show local power shares among HC1 and HC2, 
respectively. According to these figures, the dependency of the 
regulation capacity provided by each HC to its local flexibility 
constraints realized by the HCs’ load, generation, charging, 
and discharging patterns of ESS can be seen. For instance, the 
morning peak load of HC2 and the needed discharging energy 
limit the regulation up the capacity of midday hours for this 
HC when the ASM allocates more capacity to HC1. However, 
due to the high daily energy consumption of HC2, more 
regulation up power share is daily assigned to this HC to 
reduce its higher total cost. The higher uncertainty of HC2’s 
load and generation in comparison with HC1, which can be 
seen in figures 3 and 4, is also involved in this cost reduction 
decision, constraining HC2's flexibility capacity more. So, 
HC1 contributes in these situations with lower uncertainty of 
flexibility capacity to increase whole aggregator profitability. 
TABLE II presents the numerical results of two cases. As it 
can be seen, the imposed standard deviation of HC2 on both 
regulation up and down capacity constraints is worse than HC1 
in Case1. While, despite the healing behavior of HC1, it is 
rewarded with the same price with HC2 as the current 
framework of aggregators modeled in Case1 works. This 
approach creates no positive incentives for low-performance 
prosumers to improve their available flexibility capacity 
characteristics. Also, it discourages high-performance 
prosumers that better follow the scheduling of their resources.  

TABLE II.  COMPARATIVE NUMERICAL ANALYSIS OF CASE STUDIES 

Point of comparison 
Case 1 Case 2 

HC1 HC2 HC1 HC2 

Regulation 

up 

Standard deviation of capacity 8.4 10.66 8.25 9.43 
Capacity share (MWh) 23.96 44.53 24.86 41.00 

 Revenue ($) 401.6 458.2 436.7 407.5 
Mean revenue per capacity ($/MW) 16.76 10.3 17.56 9.9 

Mean rewarding Coeff. ratio (HC1/HC2) - 1.13 

Regulation 

down 

Standard deviation of capacity 18.92 18.94 14.07 17.50 
Capacity share (MWh) 36.00 21.29 29.48 25.10 

 Revenue ($) 280.5 164.5 261.6 167.7 
Mean revenue per capacity ($/MW) 7.8 7.7 8.87 6.67 

Mean rewarding Coeff. ratio (HC1/HC2) - 1.6 
Total regulation revenue of HC ($) 682.1 622.8 698.2 575.1 

Energy revenue of HC ($) -146.4 -134.5 -143.9 -134.1 
Total profit of HC ($) 535.64 488.21 554.37 441.01 

To remedy the incentivizing drawback in Case1, the 
developed rewarding scheme based on the obtained standard 
deviation of HCs’ capacity constraints is applied in Case2. 
According to TABLE II, higher rewarding coefficients are 
realized for HC1 which has better flexibility performance due 
to the lower uncertainty of load and generation. The capacity 
standard deviations in Case2 are decreased for both HCs in 
regulation up and down, resulting in a total reduction of 13.6%. 
Because of the low exploitation of HC2 flexibility capacity in 
this case, the impact of that is less sensed in Case2, showing a 
more reduced standard deviation value. Regarding the 
rewarding goal of the developed framework, the mean revenue 
per capacity for better prosumer, which is HC1, is enhanced in 
Case2 for both regulation up and down, while this value is 
lowered for HC2 (highlighted in blue). As a result, the total 
regulation revenue (highlighted in green) reveals that the 
revenue share streams to HC1 more than HC2. Figures 9-11 
demonstrate the illustrative results of Case2. For instance, 

higher rewarding coefficients make more revenue come from 
higher power shares for HC1 in peak-load time intervals with 
high prices of the regulation up capacity. Finally, preserving 
the energy procurement cost reduction objective for both HCs, 
in spite of decreasing total revenue for low-performance 
prosumer HC2, the corresponding value for HC1 as the high-
performance prosumer is proliferated. Hence, this approach 
causes positive incentives for prosumers providing better and 
weak flexibility performances to keep and amend their 
flexibility characteristics in long-term, respectively.   

Fig. 9. Power bids and HCs bid shares in regulation up (positive) and down 
(negative) markets in Case2. 

Fig. 10. HC1 power shares in Case2. 

Fig. 11. HC2 power shares in Case2. 

IV. CONCLUSION 

A distributed framework for bidding of an aggregator 
valuing the performance of smart homes’ flexibility 
uncertainty in energy and regulation markets was developed in 
this paper. This framework was linearly modeled based on the 
Benders decomposition method which, besides preserving the 
privacy of smart homes data, generates implicit information 
used to evaluate the flexibility capacity uncertainty of smart 
homes and to devise a new rewarding scheme. This rewarding 
scheme, evaluates the uncertainty impact arising from the local 
cost reduction objective of homes on provided flexibility 
capacity based on the standard deviation of capacity 
constraints. The numerical and illustrative analysis indicated 
that the new valuing and rewarding schemes induce positive 
incentives to improve flexibility capacity performance, 
resulting in higher revenue for high-performance prosumers 
and a lower uncertainty impact on the regulation bids share of 
all prosumers. To improve the developed method, it can be 
proposed to integrate valuing scheme based on the standard 
deviations of capacity constraints into a dynamic optimization 
process for finding rewarding coefficients instead of pre-
calculating them.  
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