
International Conference on Adaptive Modeling and Simulation
ADMOS 2023

F.Larsson and P.Dı́ez
©CIMNE, Barcelona, 2023

ERROR ASSESSMENT FOR A FINITE ELEMENTS -
NEURAL NETWORKS APPROACH APPLIED TO

PARAMETRIC PDES. THE TRANSPORT EQUATION

ALEXANDRE CABOUSSAT1, MAUDE GIRARDIN1,2 AND MARCO
PICASSO2

1 Geneva School of Business Administration (HEG), University of Applied Sciences and Arts
Western Switzerland (HES-SO), alexandre.caboussat@hesge.ch, maude.girardin@hesge.ch

2 Institute of Mathematics, Ecole polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland, marco.picasso@epfl.ch, maude.girardin@epfl.ch

Key words: Error estimates; Parametric PDEs; Neural networks; Hybrid methods;
Transport equation.

Summary. We consider a hybrid approach for the approximation of the solution to
parametric partial differential equations based on finite elements and deep neural net-
works. Finite element simulations with adaptive mesh refinement are used to generate
input data for the training of a neural network. A deep feedforward neural network is
then used to approximate the solution of the partial differential equation. We aim at
balancing the numerical errors introduced by the finite element method and the neural
network approximation respectively. Numerical results are presented for the transport
equation.

1 INTRODUCTION

We consider a parametric partial differential equation

F(u(x, t;µ);µ) = 0 x ∈ Ω, t ∈ (0, T), µ ∈ P , (1)

where 0 < T < ∞ is the final time, Ω ⊆ R2 is the physical space, P ⊂ Rp (with p ≥ 1
possibly large) denotes the parameter space, and F is a differential operator. We consider
here a scalar function u : Ω× (0, T)× P → R.

Finite elements can be used to approximate the solution of (1) for a fixed µ ∈ P .
When solved repeatedly, several reduced order modeling approaches have been proposed
to overcome the increasing computational time, such as, e.g., reduced basis [9], proper
orthogonal decomposition [13] or polynomial chaos expansion [6]. Neural networks have
also been used to approximate solutions of parametric partial differential equations [3, 8,
10, 14], and offer a viable alternative in the many-query context.

The objective of this work is to build a neural network to approximate the solution
map (x, t;µ) 7→ u(x, t;µ), where u is the solution of (1). In order to do so, we use

A. Caboussat, M. Girardin and M. Picasso

a fully connected feedforward neural network and we generate training data with finite
element simulations. These are potentially time consuming but can be performed offline.
Moreover, in order to increase the efficiency and accuracy of the simulations, an adaptive
method is advocated. After training, the neural network approximation uN : Ω× (0, T)×
P → R can be efficiently evaluated online.

The error assessment of uN involves the norm defined by:

|||u− uN |||2 := 1

|P|

∫
P

1

T

∫ T

0

||u(·, t;µ)− uN (·, t;µ)||2dt dµ (2)

where

||u(·, t;µ)− uN (·, t;µ)||2 := 1

|Ω|

∫
Ω

|u(x, t;µ)− uN (x, t;µ)|2dx.

For any value of the parameter µ ∈ P , let us denote by uh(·, ·;µ) : Ω × (0, T) → R the
finite element approximation of u(·, ·;µ). The error (2) can thus be decomposed as

|||u− uN ||| ≤ |||u− uh|||+ |||uh − uN |||. (3)

In this article, we apply more specifically this framework to a 2D transport equation
with a given velocity field. The objective is to estimate the two terms on the right-hand
side of (3) and to investigate how to balance them. This article is organized as follows.
The finite element approximation framework is discussed in Section 2, and an adaptive
finite element method is briefly sketched. Section 3 details how the approximation uN
can be obtained using a fully connected neural network. Finally, Section 4 illustrates the
error assessment with one particular numerical experiment.

2 FINITE ELEMENT APPROXIMATION

We start by building finite element approximations uh of u to generate training data
for the neural network. To do so, we consider the adaptive finite element algorithm in
space and time presented in [5], in order to ensure that the finite element error at the
final time T is close to a preset tolerance TOL, for each parameter µ. More precisely, we
want to ensure that:

0.75 TOL ≤ ||u(·, T ;µ)− uh(·, T ;µ)||2L2(Ω) ≤ 1.25 TOL. (4)

Since the exact solution is not known in general, the error is replaced by an a posteriori
estimator η; we adapt the time steps and the corresponding meshes on which the finite
element solution is computed in such a way that

0.75 TOL ≤ η ≤ 1.25 TOL.

2

A. Caboussat, M. Girardin and M. Picasso

The meshes are adapted using the BL2D mesh generator [1]. The expression of the error
estimator η and a precise description of the adaptive algorithm are given in [5, Section
3.3] and [5, Section 4.2] respectively.

In order to estimate the finite element error |||u−uh|||, we use the Monte-Carlo method;
we draw M parameters {(tk,µk)}Mk=1 randomly according to a uniform distribution in
[0, T]× P and we approximate:

|||u− uh|||2 ≃ |||u− uh|||2M :=
1

M

M∑
k=1

||u(·, tk;µk)− uh(·, tk;µk)||2.

The error |||u− uh|||2M will be compared to the corresponding estimated error

η2M(uh) :=
1

M

1

|Ω|

M∑
k=1

η2(uh(·, tk;µk);µk),

where η has been introduced in (4).

3 NEURAL NETWORKS

A fully connected feedforward neural network – see, e.g., [11] – is made up of an input
layer, an output layer and L ≥ 1 hidden layers. We denote by nj the number of neurons
of the jth layer, j = 0, . . . , L+ 1, and by σj

i and zji the activation function and the value
associated to the ith neuron of the jth layer respectively, j = 0, . . . , L + 1, i = 1, . . . , nj.
Possible activation functions for neurons in hidden layers are the hyperbolic tangent, the
Rectified Linear Unit (ReLU(x) = max{x, 0}), or the softplus function (softplus(x) =
ln(1 + ex)). For neurons in the output layer, the activation function is the identity. The
value associated to a neuron is recursively given by

zji = σj
i

(nj−1∑
k=1

ajikz
j−1
k + bji

)
, j = 1, . . . L+ 1, i = 1, . . . , nj,

where ajik and bji are respectively the weights and the biases of the neural network. We
denote by θ the set of trainable parameters of the network, i.e. the set of all ajik and bji .
Similarly as in [4], we denote by ΥW,L(σ; din, dout) the set of fully-connected feedforward
neural networks with input dimension din, output dimension dout and L hidden layers,
each constituted of W neurons having σ as activation function.

To build feedforward neural networks that approximate the solution to (1), we consider
a neural network N ∈ ΥW,L(σ; 2+1+p, 1), for which (x, t;µ) is the input and uN (x, t;µ)
is the output. The full algorithm reads as follows:

1. Choose the training parameters {µj}
Nµ

j=1 ⊆ P .

2. For each µj, run the adaptive algorithm so that (4) is satisfied. Thus, the finite
element solution is known at times 0 < tnj < T , n = 1, . . . , NT

j . For every tnj , an

3

A. Caboussat, M. Girardin and M. Picasso

adapted mesh Tj,n of Ω with vertices {xi
j,n}

Nj,n

i=1 is available so that the finite element
approximation of u(x, tnj ;µj) then reads

uh(x, t
n
j ;µj) =

Nj,n∑
i=1

U i
j,nφ

i
j,n(x),

where {φi
j,n}

Nj,n

i=1 are the piecewise linear finite element basis functions associated
with the particular mesh Tj,n, and U i

j,n = uh(x
i
j,n, t

n
j ;µj) are the values at the nodes.

Note that, in practice, we keep in the training set only the data at every 100 time
steps of each finite element simulation.

3. Choose the architecture of the neural network, i.e., the parameters L, W and σ.
Determine the optimal parameters θ of N ∈ ΥW,L(σ; 2 + 1 + p, 1) by minimizing:

Φ(θ) := LNµ(uN (·;θ);uh).

where

LNµ(uN (·;θ);uh) :=
1

Nµ∑
j=1

NT
j∑

n=1

Nj,n

Nµ∑
j=1

NT
j∑

n=1

Nj,n∑
i=1

|Ω(xi
j,n)|

3|Ω|
|uN (xi

j,n, t
n
j ;µj;θ)−uh(x

i
j,n, t

n
j ;µj)|2,

and |Ω(xi
j,n)| =

∑
K∈Th
xi
j,n∈K

|K|. Let θ∗ be the set of optimal parameters, obtained by

a gradient descent type algorithm and denote the optimal solution uN (x, t;µ;θ∗)
simply by uN (x, t;µ).

4. The map provided by the network

uN : R2 × R× Rp → R
(x, t;µ) 7→ uN (x, t;µ)

can then be used to approximate uh and u.

The neural networks are built and trained using the open source library Keras [2]. We
take σ = softplus as activation function and we initialize the weights of the networks
with the Glorot Normal initialization [7]. The neural networks are trained with the Nadam
optimizer [12], using an initial learning rate of 0.001, which is decreased when a plateau
is reached, batches of size bs = 1024 and early stopping. The training set (xi

j,n, t
n
j ;µj)

is normalized such that all the components have mean zero and standard deviation one;
this ensures that all data have the same magnitude [2].

4

A. Caboussat, M. Girardin and M. Picasso

To estimate the error of the neural network |||uN −uh|||, we again use the Monte-Carlo
method to approximate the integral over [0, T] × P , and then a quadrature formula of
(sufficiently) high order to compute the integrals over the domain Ω.

In the next section, a model problem based on a particular transport equation is
presented. Both the accuracy of the finite element method and of the neural network are
studied, in an attempt to balance both error contributions.

4 NUMERICAL EXPERIMENTS

As a model problem, we consider the parametric transport equation in two dimensions
of space and set p = 3. Given µ = (µ1, µ2, µ3) ∈ P , the problem consists in finding
u : Ω× [0, T] 7→ R satisfying:


∂u

∂t
(x, t;µ) + a(x, t;µ)∇u(x, t;µ) = 0 x ∈ Ω, t ∈ (0, T), µ ∈ P

u(x, 0;µ) = u0(x;µ) x ∈ Ω, µ ∈ P ,

(5)

with Ω = (0, 4) × (0, 4) and T = 2|µ1|−1. The vector field a is chosen such that there is
no inflow boundary and thus no boundary condition to enforce. We consider

µ1 ∈ [−2,−0.5] ∪ [2, 0.5], µ2 ∈ [0.15, 0.3], µ3 ∈ [50, 150],

and we set

a(x, t;µ) =
µ1π

2

(
2− x2

x1 − 2

)
u0(x;µ) = tanh

(
−µ3

√
(x1 − 2)2 + (x2 − 2.5)2 − µ2

)
.

In this particular case, µ1 is a parameter ruling the velocity, µ2 characterizes the size of
the support of the initial condition u0, and µ3 is a regularization parameter for the initial
condition. Note that, for this special case, the exact solution u is known and given by

u(x, t;µ) = u0(X(x, t;µ);µ),

with

X(x, t;µ) =

 cos
(µ1π

2
t(x1 − 2)

)
+ sin

(µ1π

2
t(x2 − 2)

)
+ 2

− sin
(µ1π

2
t(x1 − 2)

)
+ cos

(µ1π

2
t(x2 − 2)

)
+ 2

 .

Figure 1 shows an example of the finite element approximation uh(·, t;µ) and the
corresponding mesh at initial and final times, when the adaptive algorithm is performed
with TOL = 0.025.

5

A. Caboussat, M. Girardin and M. Picasso

(a) Adapted mesh at t = 0. (b) Cut along x1-axis, x2 = 2.5, t = 0.

(c) Adapted mesh at t = 1. (d) Cut along x1-axis, x2 = 1.5, t = 1.

Figure 1: Finite element solution uh(·, t;µ) for µ = (2, 0.2, 100) and TOL = 0.025. Left:
snapshot of the solution and corresponding adapted mesh. Right: Cut of the solution along
horizontal axes.

To approximate the solution of (5) and since p = 3, we consider here neural networks
belonging to ΥW,L(σ; 6, 1). We are interested in the convergence of the finite element error
|||u−uh|||2M , of the error estimator η2M and of the neural network error |||uN −uh|||2M with
respect to the tolerance TOL. Numerical results are reported in Figure 2 for Nµ = 100
and M = 100. We first note that both the finite element error |||u − uh|||2M and the
estimator η2M converge as O(TOL2), as required. Next, we observe that the accuracy of
the neural network also increases as TOL decreases. This can be expected since, as the
tolerance decreases, the number of times at which the finite element solution is computed
increases, as well as the number of vertices in each adapted mesh. Therefore, the number
of training data – for the same Nµ – increases as TOL decreases. Thanks to this fact,
we were able to balance the error of the neural network and of the finite element method
for Nµ = 100 and for the four tolerances tested here. Figure 3 illustrates the finite
element solution and the neural network approximation for various choices of parameters,
and shows similar accuracy, a good approximation of the boundary layers, and limited
overshoot/undershoot phenomena.

6

A. Caboussat, M. Girardin and M. Picasso

Figure 2: Convergence behaviour with respect to TOL of the finite element approximation,
the a posteriori error estimator, and several neural network approximations for Nµ = 100
and M = 100.

(a) Cut along x1-axis, x2 = 1.5,
µ = (2, 0.3, 50), t = 1.

(b) Cut along x1-axis, x2 = 1.5,
µ = (2, 0.15, 150), t = 1.

(c) Cut along x2-axis, x1 = 1.5,
µ = (5, 0.15, 150), t = 2.

Figure 3: Snapshots of uh and uN for N ∈ Υ200,4(6, 1, softplus), Nµ = 100 and TOL =
0.025.

REFERENCES

[1] H. Borouchaki and P. Laug. The BL2D mesh generator: Beginner’s guide, user’s and
programmer’s manual. 08 1996.

7

A. Caboussat, M. Girardin and M. Picasso

[2] F. Chollet et al. Keras. https://keras.io, 2015.

[3] N. Dal Santo, S. Deparis, and L. Pegolotti. Data driven approximation of
parametrized PDEs by reduced basis and neural networks. J. Comput. Phys.,
416:109550, 2020.

[4] R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numer-
ica, 30:327–444, 2021.

[5] S. Dubuis and M. Picasso. An adaptive algorithm for the time dependent transport
equation with anisotropic finite elements and the Crank–Nicolson scheme. J. Sci.
Comput., 75:350–375, 2018.

[6] Oliver G Ernst, Antje Mugler, Hans-Jörg Starkloff, and Elisabeth Ullmann. On
the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical
Modelling and Numerical Analysis, 46(2):317–339, 2012.

[7] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics, volume 9
of Proceedings of Machine Learning Research, pages 249–256, Sardinia, Italy, 13–15
May 2010. PMLR.

[8] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–
8510, aug 2018.

[9] J. S. Hesthaven, G. Rozza, B. Stamm, et al. Certified reduced basis methods for
parametrized partial differential equations, volume 590. Springer, 2016.

[10] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[11] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[12] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[13] S. Volkwein. Model reduction using proper orthogonal decomposition. Lecture
Notes, Institute of Mathematics and Scientific Computing, University of Graz. see
http://www. uni-graz. at/imawww/volkwein/POD. pdf, 1025, 2011.

[14] N. Yadav, A. Yadav, M. Kumar, et al. An introduction to neural network methods
for differential equations. Springer, 2015.

8

