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A B S T R A C T

We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method
based on a temporal bi-partite network, which combines local and global indices through a Support Vector
Machine. We predict the appearance and disappearance of job openings from one to six months horizons.
We show that global indices yield the highest predictive power, although the local network does contribute
to long-term forecasts. At the one-month horizon, the ‘‘area under the curve’’ and the ‘‘average precision’’
are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our
study highlights the link between the skilled workforce and the digital revolution and the policy implications
regarding intellectual property and technology forecasting.
. Introduction

In 2005, the Swiss Economic Institute at ETH Zurich produced a
tudy on the importance of computerization on workplace organization,
killed labor, and firm productivity [1]. This study followed another
n the importance of skilled labor in information technologies to the
daptation of organizations and their competitiveness [2]. Twenty
ears onward, the digitalization of business processes has become a
ierce global battle between organizations [3] with great challenges of
usiness adaptation [4,5]. This battle involves the production of intel-
ectual property (IP) such as industry secrets, patents, and open source
oftware, as well as specific IP arrangements for the semiconductor
ndustry [6], and for the highly skilled labor required to produce it [7].
n the international context, developing human capital for producing
P is a high priority for national competitiveness [8]. Similarly, at an
ge of high cybersecurity concerns by companies and governments [9]
egarding the preservation of data privacy or the reliability [10,11] and

Abbreviations: IP, Intellectual Property; IPR, Intellectual Property Regime; PA, Preferential Attachment; HS, Hyperbolic Sine; SVM, Support Vector Machine;
PR, True Positive Rate; FPR, False Positive Rate; ARIMA, Autoregressive Integrated Moving Average; ROC, Receiver Operating Characteristic; AUC, Area Under
he Curve; PR, Precision-Recall; AP, Average Precision; TMM, Technology & Market Monitoring
✩ Our code is available at: https://github.com/technometrics-lab/6-Link_Prediction.
∗ Corresponding author at: University of Applied Sciences of Western Switzerland (HES-SO Valais-Wallis), Institute of Entrepreneurship & Management,

echno-Pôle 1, Sierre 3960, Switzerland.
E-mail address: dimitri.perciadavid@hevs.ch (D. Percia David).

the resilience of critical infrastructures to cyber attacks, the shortage of
skills is a priority in public policy [12].

Labor skills in digitalization remain a key topic globally. In this
context, Swiss companies seek to remain competitive while operating
in one of the most expensive countries in the world [13]. Yet, human
expertise in cybersecurity is in particularly short supply. This scarcity
leads to important opportunity costs for organizations [14–16], as they
evaluate which labor force to acquire and when. In cybersecurity, a
technological advantage can be obtained through the acquisition of
(i) material, (ii) human, and (iii) knowledge resources. Hiring human
expertise is one way to acquire knowledge and IP, which then turns
into a defense capability [17] to overcome digital threats [18]. While
knowledge production and IP closely relate to digitalization and cyber-
security to skills, we question how job openings in digital technologies
can be predicted, as they signal capacity building in the deployment of
a technology [19]. We question the predictability of job openings as an
input to the production of IP. We use a unique dataset of job openings
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highly related to the production of IP by organizations in Switzerland.
We use a graph machine-learning approach to predict job openings as
a bi-partite network of (i) Swiss organizations (e.g., UBS, Nestle, or
Roche) and (ii) IP-intensive software technologies (e.g., blockchain or
artificial intelligence).

The remainder of this paper proceeds as follows. Section 2 presents
the research background. Section 3 introduces our data and methods,
Section 4 details our results, Section 5 discusses their importance and
Section 6 concludes.

2. Related work

2.1. Intellectual property, labor, digitalization, and cybersecurity

Intellectual property regimes (IPRs) for software and hardware
include trade secrets, patents, and open source. Organizations aim to
keep their knowledge secret [20], protected [21], while ensuring the
production of non-rival, non-exclusive collective goods [22]. Regardless
of the IPRs, the production of knowledge proceeds from high-skilled
labor [2]. The relation between labor and IP production can be traced
back to John Locke (1690), in which he argues that person who labors
that are either unowned or held as a commons has a natural property right
to the fruits of her efforts. This idea is especially applicable to IP, for
which the raw material (knowledge) is held in common and where
labor contributes to the value of finished products [23,24].

Although technological advancements in all fields have evolved,
digitalization and cybersecurity technologies play a special role in
knowledge production and for organizations at the strategic level [25],
for their business models [4,5], and business processes [26] to compete
on global markets [3,27]. Some organizations face specific challenges
when they are located in countries with expensive labor [13]. For
instance, the semiconductor industry exhibits an increasing division
of labor, which foster a separation between knowledge and hard-
ware production [6]. More broadly, the digital industry is subject
to high specialization, and modularization [28,29]. This applies to
technological development and criminal activities [30]. As a result,
skill shortage impedes innovation for digitalization [12,31], and other
fields [1,2,32]. Skilled workers contribute to the production of IP re-
gardless of IPRs [24]. Finally, IP production preempts competitiveness,
warrants trade secrets, and ensures that organizations compete in the
knowledge-intensive industry of digitalization [13].

Given the high cybersecurity concerns for companies [33], and
governments [9] regarding data privacy or the reliability of critical
infrastructures to cyber attacks, the shortage of skills is a major concern
in public policy [12,16]. Altogether, the importance of high-skilled
labor as the main input for producing IP, especially for digitalization
and cybersecurity, has received little attention. More broadly, the
understanding of labor needs by organizations to produce IP remains
limited in the literature, especially in that using technology mining
methods in science, technology, and innovation [34].

2.2. Bi-partite networks and graph learning

To understand the labor needs as input for the organizations’ IP in
digitalization, one may consider a dynamic network with two types
of nodes (organizations and digital technology). Literature on two-
node networks or bi-partite networks with machine learning includes
Benchettara et al. (2010), who adapt link-prediction metrics, to en-
hance forecasting performance over traditional metrics [35]. Taking
the bi-partite nature of the graph into account enhances the perfor-
mance of prediction models. Silva et al. (2012) and Tylenda et al.
(2009) explore time-dependent metrics using time-series within link-
prediction analysis and show a significant improvement over time-
independent methods [36,37]. Link-prediction methods also include
supervised learning. Mohammad et al. (2006) apply supervised learning
to a co-authoring network using nodal features for several classification
2

algorithms [38]. Deep-learning algorithms also help to predict network
links and exhibit improved performance [39,40]. The last strand of
the literature combines Markov processes and random walkers to link
node types [41–43]. However, these approaches converge slowly and
sometimes ambiguously [43,44].

Graph machine learning is powerful for analyzing large online social
networks, and their entities [45]. This approach permits prediction,
in a general context, of the appearance and disappearance of links in
networks [46]. Link prediction addresses challenges in several research
fields, such as healthcare and gene expression [47], business partner
search [48], and social network recommendations [49]. Accounting for
network structures and exogenous variables, link-prediction methods
extract metrics for the likelihood of links (dis)appearances through
time [50]. For instance, Kim et al. (2019) use link prediction to forecast
technology convergence using Wikipedia hyperlinks and obtain statis-
tically significant results for the 3D printing industry [51]. Lee et al.
(2021) use F-terms (a patent classification code) to build a technology
network and identify technology opportunities [52]. Kim and Geum
(2021) develop a data-driven technology roadmap using patent data
and market-trend publications to create a ‘‘keyword co-occurrence
network’’. They then use link predictions to detect new opportunities
in the road map [53]. Although these methods are well suited for large
networks, their performance is similar to classic supervised methods in
most cases [54].

3. Data and methods

3.1. Data

To predict the labor needs of organizations in digitalization and
cybersecurity, we collect job-openings data from Indeed.com from
March 2018 until December 2020 (i.e., 34 months) in Switzerland
(see Appendix for a detailed description) [55].1 These job opening
advertisements are sifted to identify predefined keywords related to 124
cybersecurity technologies. We generate a bi-partite network of 1805
organizations and 46 technologies. The link weights represent active
job postings by one organization for a given technology. Weights vary
over time. The average lifespan of a link is 2.8 months, meaning that
the average job opening gets filled or deleted after slightly less than
three months. Fig. 2 shows the network of job postings as of December
2020.

Cloud computing is the most linked technology throughout the
study period. In second place are generally technologies related to
data analysis, with a few exceptions in March and April 2018, where
machine learning came second. The third place is taken by one of
three technologies at each time step: machine learning, the Inter-
net of Things, or artificial intelligence. Fig. 2 shows the diversity of
technologies in job postings by organizations throughout the study
period.

Besides staffing companies, the most influential organizations in our
network are Roche, Novartis, and UBS, showing that large corporations
have turned into technology companies not only for developing their
core business but also for efficiently protecting it in cyberspace. We also
collect patent information for seven technologies. Fig. 1B shows the
relationship between job postings and patents per technology, which is
best captured by a scaling relationship, Patents ∼ Jobs𝜇 with 𝜇 = 0.7
(𝑝 < 0.01). At the aggregate level for Switzerland and despite the
very small sample (𝑛 = 7), this result suggests a relation between
technology jobs and patent production, hence motivating further the
investigation of highly skilled labor in the context of the production of
IP for digitalization.

1 https://ch.indeed.com/.

https://ch.indeed.com/
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Fig. 1. A. Evolution of job openings by technology. Only technologies with more than 200 job openings are represented. B. Scaling relation between job openings and patents.
Based on the evidence provided by our dataset, the Spearman rank correlation between job postings and patents in technologies is 𝜌 = 0.83 (𝑝 < 0.05). Given the limited sample
size (𝑛 = 7), the best relationship with could find is a scaling with Patents ∼ Jobs𝜇 with 𝜇 = 0.7 (𝑝 < 0.01).
Fig. 2. Job postings by technology (in decreasing order of overall job postings) and by organizations (in decreasing order of overall job postings). Only organizations with more
than 15 job openings are represented. Overall, organizations tend to post jobs in various technology fields, regardless of their size.
3.2. Method

Labor is a key economic input for the production of IP [24], and
even more so for digitalization and cybersecurity [4,26]. We thus
develop a graph machine learning method to forecast fine-grained labor
needs in Switzerland, a small yet IP-intensive country [1,13].

We consider a prediction based on the network topology rather
than by including additional features on nodes. Two reasons underly
this choice. First, it remains unclear which features we could reliably
gather on organizations in the context of labor and digitalization.
Second, many organizations in our dataset are staffing companies (e.g.,
Manpower, or Adecco Group), acting as proxies for other organizations
and, as such, display labor needs at an aggregate level. Our contribution
lies in the robustness and wide range of applications of our method that
can be used in any technology mining context.

We rely on the similarity between entities in the graph and as-
sign a score mapping each organization with technologies (proximity).
We consider proximity indices because our network nodes do not
carry additional variables. Proximity scores can be classified into three
categories: (i) local, (ii) global, and (iii) quasi-global [46,50]. Quasi-
global indices are simplified versions of global indices which do not
significantly decrease computation time and that we do not consider.
Instead, we adapt and combine local and global similarity indices to
match the constraints of the bi-partite network [35], which is defined
as 𝐺 = (𝑉 ,𝐸). 𝑉 is any finite set called the node set and 𝐸 ⊆ 𝑉 × 𝑉 ,
corresponds to links between elements of 𝑉 called the link set. Let
𝑥, 𝑦 ∈ 𝑉 , such as:

– the neighborhood of 𝑥 is 𝛤 (𝑥) = {𝑦 ∈ 𝑉 𝑠.𝑡. (𝑥, 𝑦) ∈ 𝐸};
3

– the degree of 𝑥 is 𝛿𝑥 = |𝛤 (𝑥)|;
– there is a path between 𝑥 and 𝑦 if there exists (𝑥0, 𝑥1,… , 𝑥𝑛) such

that 𝑥0 = 𝑥, 𝑥𝑛 = 𝑦 and (𝑥𝑖, 𝑥𝑖+1) ∈ 𝐸 ∀ 0 ≤ 𝑖 ≤ 𝑛 − 1;
– a graph 𝐺 is said to be bi-partite if there exists 𝐴,𝐵 ⊂ 𝑉 such that

if (𝑥, 𝑦) ∈ 𝐸 then 𝑥 and 𝑦 are not in the same subset 𝐴,𝐵;
– Let |𝑉 | = 𝑛, 𝐴 ∈ 𝐑𝑛×𝑛 is an adjacency matrix of G if and only if

∀𝑥, 𝑦 ∈ 𝑉 𝐴𝑥,𝑦 = 1 implies (𝑥, 𝑦) ∈ 𝐸 and 𝐴𝑥,𝑦 = 0 otherwise.

𝑉 corresponds to organizations and technologies and 𝐸 to links
between them. As our model focuses on the relationships between
organizations and technologies, the links can only link one organization
to a technology. We define 𝐆 as the set containing all the graphs
modeled on the time dimension: 𝐆0,𝐆33 ∈ 𝐆 are graphs representative
of the network in March 2018, and December 2020, respectively. We
define 𝐆𝐢−𝐣 with 𝑖 < 𝑗 ∈ 0, 1,… , 32 as the subset of 𝐆 that contains
all graphs starting at 𝐆𝑖 and ending 𝐆𝑗 (both ends included). In the
following sections, 𝐆𝑖−𝑗 will also be referred to as a set of training
graphs.

3.2.1. Local indices
We build local indices on the immediate neighborhood of two

nodes. Local indices do not carry information on the global structure
of the graph to make them more tractable. We consider the following
local indices: Common Neighbors, Jaccard index, Sorensen index, Adamic–
Adar coefficient, Preferential Attachment index, Resources Allocation index,
and Salton index. Unfortunately, most of these indices depend on the
intersection of the neighborhood of two network nodes. the bi-partite
network formalism imposes that the neighborhood between two entities
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(an organization and a technology) is always empty. To avoid a signif-
icant loss of graph structural information, we depart from Benchettera
et al. (2010) [35] who project the bi-partite network on two mono-
partite networks of (i) organizations and (ii) technologies. Thus, the
local index, which does not depend on the neighborhood intersection, is
the Preferential Attachment (PA) index and depends on the node degree
(i.e., the number of neighbors).

3.2.2. Global indices
Global indices rely on the entire network structure, i.e., the en-

semble of paths between two entities. Two entities connected through
several paths will likely connect directly in the future. However, long
paths (many internodes between two nodes of interest) are less influ-
ential than shorter paths. The computation time for these indices is
an exponential function of network size. We consider the following
global indices: Katz, Leicht–Holme–Newman, Average Commute, Hy-
perbolic Sine, and Simrank. Besides Katz and Hyperbolic Sine (HS),
these indices rely on randomization algorithms to reduce computation
time. In the literature [46,50], Katz performs better than the other
indices on several networks. We also test these indices on our data set
and find results on par with the literature. Although Katz is theoret-
ically computationally intensive, we reduce the computing cost with
linear algebra algorithms optimized for sparse matrices implemented
in Phython [56]. The Hyperbolic Sine index is specifically designed
for considering only paths of an odd size, which are the only possible
paths between two nodes of the same type on a bi-partite network.

3.2.3. Combining information from local and global indices
We consider that information from local and global indices matters

for job openings prediction by organizations in digital technologies.
We, therefore, explore how to combine these indices as features in
several supervised learning models. We consider the following algo-
rithms: Logistic Regression, Decision Trees, and Support Vector Ma-
chine (SVM). Logistic regression does not allow non-linear features
and was discarded. Decision trees and SVM are more appropriate for
handling non-linear features. However, the ‘‘kernel trick’’ offered by
SVM brings more flexibility and allows more nuanced results because
similarity indices are easily separable in a vector space [57].2 They
also provide better diagnostic capabilities on the relative importance
of features in the prediction. Moreover, decision trees are often used
for categorical features, which is not the case here. We test our design
assumptions with these two models. SVM with Radial Basis Function
brings significantly better results than a decision tree. We subsequently
test a random forest to match SVM predictions. However, the size of
the resulting random forest grows too large and introduces a significant
over-fitting risk.

We thus select PA as the local index. We also select the Katz and HS
as global indices. We define these three indices as,
(1) Preferential Attachment Index [58] is a local index that assumes
that the higher the degree of the two nodes, the higher the likelihood
of them connecting. It is defined as,

𝑆𝑃𝐴
𝑥𝑦 = 𝛿𝑥 ⋅ 𝛿𝑦, (1)

where 𝛿𝑥 and 𝛿𝑦 are the degrees of respectively 𝑥 and 𝑦, respectively,
rganization and technology nodes (see Appendix).
2) Katz Index [59]: Given 𝑥, 𝑦 ∈ 𝑉 , this global index counts the
umber of paths between 𝑥 and 𝑦. The Katz Index is defined as,

𝐾𝑎𝑡𝑧
𝑥𝑦 =

∞
∑

𝑙=1
𝛽𝑙 ⋅ |𝑝𝑎𝑡ℎ𝑠⟨𝑙⟩𝑥𝑦 | = 𝛽𝐴𝑥𝑦 + 𝛽2(𝐴2)𝑥𝑦 + 𝛽3(𝐴3)𝑥𝑦 +⋯ , (2)

where 𝛽 is the damping coefficient in [0, 1], 𝑝𝑎𝑡ℎ𝑠⟨𝑙⟩𝑥𝑦 is the set of all paths
with length 𝑙 connecting 𝑥 and 𝑦, and 𝐴 is the adjacency matrix of the

2 The kernel trick allows to project data in a different space, in which they
xhibit statistical behaviors closer to linearity.
4

graph (see Fig. 2). It should be noted that 𝛽 should be smaller than
1

𝜆𝑚𝑎𝑥
for the series to converge where 𝜆𝑚𝑎𝑥 is the largest eigenvalue of

𝐴. The Katz index is a weighted sum of the number of paths of different
lengths, with the weights decreasing exponentially for longer paths.
(3) Hyperbolic Sine Index [60] is similar to the Katz Index, but with
its weights are related to the exponential weights. In matrix form, it is
defined as,

𝑆𝐻𝑆 = sinh (𝛼𝐴) =
∞
∑

𝑙=0

𝛼1+2𝑖

(1 + 2𝑖)!
𝐴1+2𝑖, (3)

with 𝛼 being a parameter weighting the influence of long-range paths
versus short-range paths. We set 𝛼 to 0.01, which does not evolve
significantly through optimization.

3.2.4. Graph learning pipeline
Link prediction is a highly unbalanced classification problem, with

non-existing links far outnumbering existing ones in the overall net-
work structure. We implement a graph learning pipeline, which is
robust to this major constraint. Fig. 3 shows the supervised learning
pipeline, with the training set, which first embeds the network mea-
sures: (i) PA index, (ii) Katz Index (Katz), and (iii) HS index. The
probabilities of link appearance through each measure can either be (i)
validated separately on the graph or be combined and used as features
in the SVM to generate an aggregate prediction, which can be validated
in turn on the graph.

Given a set of training graphs 𝐆𝑖−𝑗 and a forecast range 𝑡 (in our
ase 1 < 𝑡 < 6 for 𝑡 months), the algorithm predicts the existence or
on-existence of a link between each organization and each technology
n 𝐆𝑗+𝑡. We use the graphs in a certain time range to predict the
tate of the graph 𝑡 months later. One constraint is that 𝑗 + 𝑡 must
e smaller than 33, as our dataset is limited to a time series of 33
bservations (see Section 3.1). Each pair of nodes 𝑥 and 𝑦 is given a
core 𝑠𝑥𝑦, which is defined as the similarity between the nodes. The
reater 𝑠𝑥𝑦 is, the higher the likelihood of an existing link between
and 𝑦. Given scores 𝑠𝑥𝑦 for 𝑥, 𝑦 ∈ 𝑉 and a threshold 𝜃, we predict

he existence of a link between the two nodes if 𝑠𝑥𝑦 ≥ 𝜃. If 𝑠𝑥𝑦 < 𝜃,
his link does not exist between two nodes. We obtain the threshold 𝜃
y maximizing a simple function of the True Positive Rate (TPR) and
alse Positive Rate (FPR). We optimize the difference between TPR and
PR, using the standard Youden’s J statistic [61], which is similar to
ther threshold-moving techniques [62], such as the geometric mean
f sensitivity and specificity, as well as the F-score of precision and
ecall [62]. We compute the similarities for each graph present within
𝑖−𝑗 and use this data to forecast the similarities for the graph 𝐆𝑗+𝑡
sing several forecasting models, such as PA, Katz, HS on the one
and (three models) and on the other hand PA, Katz and HS together
s input features for SVM (one model) see Fig. 3. In the latter case,
e use these three indices as additional features for our supervised

lassification algorithm. Each link is represented as a feature vector
onsisting of four values: the three indices presented above and the
umber of job openings linking each pair of nodes consisting of an
rganization and a technology. We use all possible links in the graphs
resent in 𝐆𝑖−𝑗 as training sets for the SVM using the computed scores
nd job-openings data. We have a series of score matrices 𝑆𝑖𝑛𝑑

𝑡 𝑖 <
< 𝑗 and 𝑖𝑛𝑑 ∈ {𝐾𝑎𝑡𝑧, 𝑃𝐴,𝐻𝑆} for each similarity measure presented
bove, as well as a trained SVM model. With the series of scores for
ach link 𝑆𝑡

𝑥𝑦, we can train a time-series model to forecast the score
steps (i.e., months) ahead [63].3 This approach has proven more

obust for graphs than linear regression and Autoregressive Integrated
oving Average (ARIMA) models [36]. With the forecast measures and
baseline obtained by the final 𝐆𝑗 in 𝐆𝑖−𝑗 , we establish the confusion
atrix for the prediction of 𝐆𝑗+𝑡 for the four graph machine learning
odels.

3 We omit the 𝑖𝑛𝑑 for clarity, but we do this for each similarity measure.
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.2.5. Block cross-validation
To overcome the problem of unbalanced data, we use an under-

ampling method to pick the negative class (no job opening) compared
o the positive class (job opening or closing) to ensure a balanced
ataset. We implement blocked cross-validation with different training
et sizes and forecast ranges among our different models [64]. Given a
lock size 𝑖, i.e., the number of months used for training, and a forecast

range 𝑗. We partition our dataset in 𝑡𝑟𝑢𝑛𝑐(34∕(𝑖− 𝑗), 0) distinct sets. The
first block contains the 𝑖 graphs used for training and the validation
graph 𝑖 + 𝑗. The indices (Katz, PA, HS) are computed for each graph
in the training set, and the parameters are optimized for this block
(Young statistics). We obtain scores associated with the graph 𝑖 + 𝑗 by
inear regression using the scores obtained during training. We then
ptimize parameters and the scores to compute performance on graph
+ 𝑗, namely Receiver Operating Characteristic (ROC), Area Under the
urve (AUC), and Precision-Recall (PR), which can be measured as a
calar through the Average Precision (AP) (see Appendix, and [65,66]).
or SVM, all indices are used as parameters, and the model is trained
n all graphs of the training block. We subsequently use the indices to
redict graph 𝑖+𝑗 and compute the precision. We iterate this process on
ll blocks and average the results computed over the 𝑡𝑟𝑢𝑛𝑐(34∕(𝑖− 𝑗), 0)

blocks. We repeat the procedure for values 𝑖 = {2, 3, 4, 5, 6} and 𝑗 =
{1, 2, 3, 4, 5, 6}. The main tools used were Phython and its associated
ackages such as NetworkX [67], and scikit-learn.

. Results

Over a 34 month period, we predict job openings for one-month
o six-month horizons. We perform prediction using blocked cross-
alidation for training sizes of 2, 3, 4 and 6 months. Additionally, we
redict using the maximum available training set, given the forecasting
ange. Fig. 4A shows the mean area under the ROC Curve (AUC) for
A, Katz, and HS indices as well as for the SVM approach combining
he local (PA) and global (Katz, HS) indices for the prediction of the
ast month of our dataset (𝐆33) from 𝐆0−32. AUC is high >0.95 for

all models, albeit slightly worse for PA. Fig. 4B shows the PR curve
of the same models. The AP of the SVM (= 0.905) is superior to that
of HS (𝐴𝑃 = 0.846), and Katz (𝐾𝑎𝑡𝑧 = 0.835) models. However, in
terms of PR, PA performs badly (𝐴𝑃 = 0.364). Fig. 4C shows the results
for predictions of the last month in the dataset (𝐆33) from 𝐆0−27 (i.e.,
prediction of job-openings six months ahead). AUC is almost equal for
5

HS (𝐴𝑈𝐶 = 0.863), Katz (𝐴𝑈𝐶 = 0.863) and SVM (𝐴𝑈𝐶 = 0.864) and
slightly worse for PA (𝐴𝑈𝐶 = 0.848).

Fig. 4D shows the PR curve. In this case, the SVM performs much
better than the other models (𝐴𝑃 = 0.543 for SVM versus 𝐴𝑃 = 0.356
or Katz and HS and 𝐴𝑃 = 237 for PA), suggesting that combining
ocal and global network indices is relevant for long forecast ranges.
ig. 5 shows the evolution of mean AUC as a function of forecast ranges.
he AUC remains consistent across models as a function of the forecast
ange. We provide a detailed account of AUC for all forecasting ranges
n Appendix, Table 3.

We find that global network indices (Katz and HS) capture remark-
bly well job-opening predictions for short-term horizons. However, the
ocal index (PA) does not perform well and improves only marginally
he model for short-term horizons. For long-term horizons, the SVM
odel that combines local (PA) and global (Katz, HS) indices perform
uch better than models with individual indices, in particular in terms

f AP (PR curve).
Lastly, we want to test if the results (i.e., the median AUC) of

ur different machine-learning classifiers display statistically signifi-
ant differences. To reach this purpose, we can use a non-parametric
tatistical test, such as the Kruskal–Wallis test, to compare the mean
UC of multiple classifiers [68]. This test is a non-parametric version
f one-way ANOVA, and it can be used to test the Null hypothesis (H0)
hat the population medians (in our case, AUCs) of all models are equal.
he Kruskal–Wallis test is appropriate for comparing more than two
roups when the dependent variable is continuous and the distributions
re not normal. Hence,

ull hypothesis, H0: The population medians of the AUC values for all
odels are equal.

lternative hypothesis, Ha: At least two population medians of the AUC
alues are different.

The respective median AUCs are obtained by extracting the results
f each cross-validation iteration. Then, we perform the Kruskal–Wallis
est for each training size and forecast range. Table 5 shows the
esults (𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠) for each combination of training size and forecast
ange. Overall, we notice that the more we increase the training size
nd forecast range, the more the Null Hypothesis (H0) is rejected.
s a conclusion, we can say that the differences in results of our
achine-learning classifiers are indeed statistically significant.
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Fig. 4. A ROC curve for prediction the last month 𝐆33 with data from 𝐆0−32. The AUC is high for all individual indices (PA, Katz, and HS) and for the combined SVM model. B
Corresponding PR curves for one-month forecast range. SVM performs much better than the models based on individual indices. C ROC curve for predicting the last month 𝐆33
with data from 𝐆0−27. The AUC is high for all individual indices (PA, Katz, and HS) and for the combined SVM model. D Corresponding PR curves for six months forecast range.
SVM performs much better than the models based on individual indices.

Fig. 5. A. Mean AUC as a function of forecast range, obtained through block cross-validation using training sets of size 6. The standard deviation is between 0.03 and 0.07. B.
Mean AP as a function of forecast range, obtained through block cross-validation using training sets of size 6. The standard deviation is between 0.02 and 0.08 and the threshold
of significance for AP is 0.01.
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5. Discussion

High-skilled workers are the main source of IP. For digital tech-
nologies and cybersecurity, labor forces have been in scarce supply
for decades, impeding the sustainable progress of digital technologies
globally. This scarcity of talent calls for better management. To address
this issue, we propose a graph machine-learning approach to predict
labor needs in digital technologies. The robustness of our approach
lies in the bi-partite representation of the network [35], which has
yielded significant results for investigating productive capabilities at
the country level [41,42] as well as for the production of open source
knowledge [43]. To capture best the evolution of the bi-partite network
of 1805 organizations opening (resp. closing) job-openings in 124 dig-
ital technologies (second node type) over a 2.5 years period, we select
local (PA) and global (Katz and HS) network metrics. We use these
metrics to predict job openings, individually or in combination, using
SVM. Our results show that global indices capture job openings the
best, while the local index significantly under-performs. This supports
the view that the network’s global properties are essential for the
prediction. Our model learns primarily from the job openings of all
organizations to predict those of individual ones. The network structure
supports the evidence that organizations face similar labor needs in
terms of digitalization (see Fig. 2). However, when considering long-
term horizons (i.e., six months), combining global indices with a local
ndex (i.e., PA, Katz, HS indices combined with SVM) yields the best

predictions. This result suggests that the organizations’ peculiarities
must be considered when envisioning the longer-term evolution of
digital skills.

These results are important for management and policy-making as
high-skilled labor has become crucial for the IP production [12], and
as organizations and countries heavily compete in digitalization [1,
6,8,12]. Although our data do not allow us to infer any causal link
between job openings and IP, we do contribute with a preliminary
identification of their commonalities. Moreover, our approach permits
prediction at a resolution including each organization and technology,
and at a monthly frequency. In the business context, predicting labor
needs in a specific technology at the aggregate level or anticipating
the competitors’ next move provides invaluable information to adapt
business strategies. Furthermore, in countries with an endemic labor
shortage of highly skilled workers, such as Switzerland, knowing in
advance job openings by competitors may provide organizations with
a first-mover advantage and facilitate talent recruitment. Conversely,
talents could use prediction of job openings to adapt their job market
strategies, e.g., by adopting ‘‘option to wait for’’ strategy [69].

Finally, the competitiveness of nearly all countries relies on the
mastery of digital technologies. It is the responsibility of policymakers
to ensure that the labor is adequately supplied. Thus, our approach
would help them to set higher incentives for people to up-skill their
profile and adapt to the demand [70]. Along with the monetary policy,
labor is one of the most important macroeconomic variables for devel-
oping economies. With more complete data across industrial sectors,
our research contribution could be extended to develop labor market
forecasts enabling targeted interventions, which predicted effects could,
in turn, be measured.

6. Conclusion

Intellectual property is mostly produced through the labor of highly
skilled people. This labor force has notoriously been a scarce resource
for decades [1,2] and has been the subject of an increasing rivalry
between organizations [6] and even Nation states [3–5]. Using a unique
dataset of job openings in Switzerland between 2018 and 2020 and by
developing a link prediction method in a bi-partite network of tech-
nologies and organizations, we find that job openings by organizations
in digital technologies are predictable up to the six-month horizon.
Although a horizon of a few months is surely not enough to adapt to the
7

highly skilled labor market of digitalization (e.g., through education),
aining labor market predictability helps to monitor the allocation of
uman capital in countries such as Switzerland, which increasingly rely
n the production of intellectual property, including patents, to ensure
heir global competitiveness.
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ppendix

etailed description of the dataset

We use a dataset that was collected to build a technology-mining
roject entitled Technology & Market Monitoring (TMM). TMM is devel-
ped by armasuisse Science and Technology (S + T), the Swiss Federal
ffice for Defence Procurement of Switzerland. TMM is designed to
ather automatically, process, and exploit open-source information
or intelligence purposes. The TMM system crawls and aggregates
nformation from different online resources such as commercial reg-
sters (Zefix4), websites (Wikipedia, and Indeed5) to obtain a list of
rganizations and job openings based in Switzerland.

TMM compiles job openings monthly from March 2018 to December
020. These job openings are sifted to identify keywords associated
ith certain technologies. A list of predefined keywords related to

ybersecurity technologies is used to compute word similarity with
he technologies coded in the TMM database. Such a list is defined
nd exploited by the TMM platform and uses a key-BERT approach.
or additional information, please get in touch with the authors. We
hen use the difflib6 library in Phython to obtain good matches with
he TMM data. We verify the obtained list afterward to delete any
rrelevant matches, and thus we obtain 124 keywords7 from TMM.
hese 124 keywords correspond to 46 technologies (see Appendix,
able 1). By using the organization list and job openings data, we link

4 https://www.zefix.ch.
5 https://indeed.com.
6 https://tinyurl.com/8wvkfha2.
7
 Keywords link https://tinyurl.com/jswtsmmn.

https://www.zefix.ch
https://indeed.com
https://tinyurl.com/8wvkfha2
https://tinyurl.com/jswtsmmn
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Table 1
Table with Job openings and patents by technology between March 2018 and December
2020.

Technology Job openings Patents

Cloud computing 4994 88
Data analysis 2921 43
Artificial intelligence 1283 54
Machine learning 1279 –
Internet of things 969 7
Trusted platform module 634 –
Blockchain 548 –
Virtual private network 313 –
Supercomputer 204 –
Proxy server 195 –
Intrusion detection system 179 –
Authentication 168 3
Cryptography 156 8
Wi-fi 118 –
Deep learning 116 –
Computer vision 114 –
Penetration test 85 –
Predictive analytics 63 –
Encryption 46 –
Quantum computing 43 –
Virtual private server 43 –
Bluetooth 43 3
Data security 39 –
Reinforcement learning 31 –
Feature (machine learning) 30 –
Padding (cryptography) 27 –
5g 27 –
Electronic signature 24 –
Digital signature 20 –
Strong authentication 15 –
Deep packet inspection 14 –
Internetworking 11 –
https 11 –
ntfs 11 –
Data fusion 8 –
File sharing 8 –
Network monitoring 8 –
mqtt 7 –
Adversarial machine learning 4 –
Distributed ledger 3 –
Distributed algorithm 2 –
Key (cryptography) 1 –
Federated search 1 –
Security token 1 –
Deep linking 1 –
Closed-loop authentication 1 –

organizations to certain technologies thanks to the keywords present in
the job postings. This results in a bi-partite network with 1712 nodes of
organization type and 46 nodes for technologies (see Fig. 2 for a partial
epresentation of the bi-partite network as a heatmap) consisting of
4,819 links over the study period. For each organization, we also sum
p the number of technologies mentioned in their posted job openings
nd use this metric as an additional link attribute in the created graph.
he average lifespan of a job opening is 2.8 months, meaning that
he average job opening gets filled or deleted after slightly less than
months. Cloud computing is the most linked technology throughout

he study period. In second place are generally technologies related to
ata analysis, with a few exceptions in March and April 2018, where
achine learning came second. The third place is taken by one of

hree technologies at each time step: machine learning, the Internet of
hings, or artificial intelligence. The most influential organizations in
ur network besides staffing companies (e.g., Universal-Job AG, Man-
ower SA, Adecco Group AG) are Roche, Novartis, and UBS, showing
hat large corporations have turned into technology companies, not
nly for developing digitalization for their core business through but
8

lso possibly for efficiently protecting their business in the cyberspace.
Table 2
Job openings and patents by the organization between March 2018 and December 2020.
All organizations with at least one patent are reported, whereas only organizations with
65 job openings are reported.

Organization Job openings Patents

Universal-Job AG 627 –
Manpower SA 613 –
Roche AG 400 –
Adecco Group AG 378 –
Quaker United Nations Office Geneva
Association

264 –

Careerplus SA 188 –
Novartis AG 186 –
Universitätsstiftung Basel 168 –
UBS AG 156 9
Arobase SA 151 –
Philip Morris International Management SA 151 –
yellowshark AG 145 –
ETH Zürich SEC AG 118 –
EPFL-WISH FOUNDATION 107 –
Marco R. Fuhrer Unternehmensberatung 105 –
Deloitte AG 105 –
BDO AG 105 –
myitjob GmbH 104 –
ABB Ltd 104 –
Honeywell AG 101 17
... ... ...
Accenture AG 65 4
... ... ...
Ericsson AG – 12
INGRAM MICRO GmbH – 10
Bayer Consumer Care AG – 9
Infosys Limited, Bangalore,
Zweigniederlassung ...

– 7

Riverbed Technology AG – 6
salesforce.com Sàrl – 6
Bayer GmbH – 10
JPMorgan Chase Bank, National Association,
Columbus, Zurich Branch

– 5

Wipro Limited, Bangalore, succursale de
Genàve

– 4

Garrett Motion Sàrl – 3
Kudelski S.A. – 3
Dell SA – 3
Caterpillar SARL – 2
TOPREX AG – 2
Cyberlink AG – 2
Pharma Development AG – 1
Thales Suisse SA – 1
Box GmbH – 1

Similarly, we have used 206 patents released by Swiss organizations
in the same technology fields and compiled by TMM over the same
study period.

Job openings and patents by technology

See Table 1.

Job openings and patents by company

See Table 2.

Detailed results of AUC and PR

We use the ROC curve as a graphical representation of perfor-
mance [65,66]. The ROC curve plots the TPR against the FPR. The
metric we seek to optimize is the AUC. The AUC takes values between
0 and 1 and indicates how well a model can separate the two output
classes. The closer the AUC is to 1, the better the model predicts
both existing and non-existing links. Because the AUC measures the
performance of the model for both possible outputs, it is less affected
by unbalanced datasets. We also compute PR curves, where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
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Table 3
AUC. Mean AUC was obtained through blocked cross-validation, according to the
raining set size and forecasting ranges. The thresholds used to compute accuracy are
btained by optimizing Younden’s 𝐽𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐. The standard deviation of those means
s between 0.03 and 0.07. The best AUC for a given forecast range is highlighted in
ed.
Method Training

size
Forecast range

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

PA index

2 months 0.818 0.709 0.642 0.610 0.587 0.576
3 months 0.838 0.734 0.652 0.617 0.599 0.588
4 months 0.843 0.736 0.657 0.620 0.601 0.594
6 months 0.851 0.754 0.681 0.650 0.632 0.617

Katz index

2 months 0.832 0.731 0.638 0.618 0.595 0.596
3 months 0.837 0.732 0.655 0.617 0.601 0.598
4 months 0.844 0.728 0.649 0.615 0.601 0.587
6 months 0.852 0.753 0.671 0.633 0.617 0.604

HS index

2 months 0.832 0.738 0.669 0.644 0.629 0.627
3 months 0.837 0.734 0.663 0.633 0.625 0.618
4 months 0.844 0.727 0.65 0.623 0.615 0.606
6 months 0.854 0.758 0.688 0.627 0.62 0.61

SVM

2 months 0.836 0.740 0.674 0.650 0.635 0.629
3 months 0.838 0.740 0.667 0.638 0.629 0.621
4 months 0.849 0.733 0.657 0.628 0.618 0.609
6 months 0.856 0.760 0.710 0.640 0.624 0.617

Table 4
AP obtained through blocked cross-validation, according to the training set size and
forecasting ranges. The thresholds used to compute accuracy are obtained by optimizing
Younden’s 𝐽𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐. The standard deviation of those means is between 0.02 and 0.08.
The threshold of significance for 𝐴𝑃 is 0.01. The best AP for a given forecast range is
ighlighted in red.
Method Training

size
Forecast range

Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

PA index

2 months 0.214 0.135 0.078 0.063 0.052 0.047
3 months 0.230 0.140 0.088 0.070 0.060 0.055
4 months 0.220 0.137 0.090 0.073 0.065 0.061
6 months 0.212 0.139 0.102 0.086 0.081 0.075

Katz index

2 months 0.530 0.312 0.136 0.099 0.082 0.076
3 months 0.560 0.271 0.136 0.100 0.087 0.080
4 months 0.502 0.240 0.127 0.097 0.084 0.076
6 months 0.452 0.239 0.142 0.107 0.096 0.087

HS index

2 months 0.530 0.317 0.146 0.107 0.092 0.085
3 months 0.560 0.273 0.140 0.106 0.094 0.087
4 months 0.501 0.241 0.129 0.100 0.090 0.081
6 months 0.449 0.242 0.154 0.101 0.095 0.088

SVM

2 months 0.513 0.295 0.146 0.110 0.094 0.089
3 months 0.514 0.283 0.141 0.107 0.093 0.086
4 months 0.479 0.256 0.127 0.102 0.091 0.082
6 months 0.460 0.245 0.158 0.107 0.100 0.088

𝑡𝑝
𝑡𝑝+𝑓𝑝 and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝𝑟, as well as AP. The AP of a random classifier
hould, on average, be equal to 𝑃

𝑃+𝐹 and the AUC of such a classifier
should be around 0.5. The problem with AP as a performance measure
is that it is incompatible with cross-validation since the scale of AP
varies greatly depending on the distribution of the test set and, thus, is
sometimes hard to interpret. We compute the ROC Curve, TPR, FPR,
AUC, PR, and AP to the full test set, as well as to a randomized,
balanced test set. In all cases, we obtain a numerical result equal to
up to the third decimal place (see Table 4).
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