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Abstract— Panoramic cameras are now available to a 

large audience. They provide good results on photogrammetry 

application, but they are still limited by their positioning. This 

project aims to geolocate a commercial 360° camera in an urban 

environment, by extracting points in fisheye images and match 

them with reference from a LiDAR (Light Detection and 

Ranging) dataset. Such reference points are located on the 

horizon line, visible from the camera point of view. Matching 

points are then introduced as Ground Control Points to improve 

the camera positioning accuracy. A fully automatic solution for 

position refinement, based on LiDAR data is proposed in this 

paper. 
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I. INTRODUCTION 

It is possible for photogrammetric survey to produce a 
high-quality measurement of a scene with mainstream 
cameras (e.g GoPro). Their biggest dilemma is to achieve a 
high precision geolocation, especially in dense urban 
environments where GNSS (Global Navigation Satellite 
System) data give poor accuracy. 

Terrestrial photogrammetry can reproduce a highly 
detailed scene in a short amount of time. An example is the 
update of underground networks maps because pipes can be 
intertwined. [1] choose to combine photogrammetry with 
deep learning segmentation framework on the images to 
automate the detection of each piece. After a scene 
reconstruction, the model is referenced thanks to a Real Time 
Kinematics (RTK) GPS associated with the camera. A 
limitation of using RTK GNSS [2] is the masking and 
multipath effects on the GPS signals. Surrounding buildings 
and construction mask part of the sky, which is not favorable 
to obtain precise GNSS measurements [3]. 

In this article, the main goal is to refine the camera 
geolocation with enough “clues” visible in the images 
captured that can be found on an already georeferenced 
dataset. Such “clues” can be introduced as Ground Control 
Points (GCPs) in a bundle adjustment method. For this 
purpose, panoramic cameras have an advantage for their 
capacity to record at 360°. Several existing datasets may be 
useful for our project, such as official surveys, 
OpenStreetMap or LiDAR data. The target accuracy for the 
camera positioning after refinement is about 10 to 20 cm. We 
chose to use the high-density LiDAR data from swissTopo 
[4] (> 20 pts/m²) as reference.

Our method, detailed in this paper, is the following. To
find GCPs, similar points of view are made inside the points 
cloud, by reading EXIF data and intrinsic lens properties, 
creating “simulated” images. The first object of interest is the 
Horizon Line Contour (HLC) in both real and simulated. It 
can be extracted by doing a semantic segmentation of the sky 

pixels. Then, two HLCs can be matched with the Dynamic 
Time Warping (DTW) [5] pairing the corresponding indices 
of both lists and thus, create GCPs needed for a new position 
estimation. It highlights a way to compare a 2D image data 
and a 3D DEM or LiDAR data. 

II. STATE OF THE ART

Many works on the geolocation of an image exist, as 
shown by [6], for each type of spatial information and degree 
of automation. 

The first method is bundle adjustment, with GCPs or 
already referenced cameras [7]. One of the limitations is that 
the existing set of photographs is heterogeneously distributed 
over the territory. To make GCPs, the pixel and terrain 
coordinates must be known. For pixel coordinates, manual 
selection, or automatic detection thanks to targets can be 
used. They must be well distributed in the area of interest and 
be measured by a topographic method (GNSS or total station 
for example). This solution is already applicable, but it is 
difficult to set up and time consuming. Meanwhile, GCPs 
may be automatically extracted from other references. 

The desired solution must be autonomous to be usable in 
practice. [8], inspired by the game Geoguessr, try to estimate 
the localization of an image with the help of machine 
learning. The training was done all over the United States, 
but the neural networks had difficulties to find the correct 
location, due to images similarity and repartition (mostly on 
road). Google VPS (Visual Positioning System) [9] combines 
Google Street View with the camera's observations, which is 
promising in dense urban areas. Its principle is to detect 
stable features overtime (such as building, contrary to 
vegetation) as GCPs. This work shows the benefit of 
“classified” GCPs. 

Other similar studies [10], [11], [12] use the Horizon Line 
Contour as a location describer. In vast zones, such as 
Switzerland [10], [11], they benefit from characteristic 
mountain ranges. Here, the idea is to extract the HLC of 
urban objects and compare it to a HLC extracted from a 
Digital Elevation Model (DEM). With the help of DTW [5], 
2D and 3D coordinates can be linked to create a reference 
point. 

Regarding the previous methods, the chosen strategy is to 
build robust GCPs in fisheye images, from visible time-
robust features. It can be done by associating points easily 
recognizable in images and in a virtual camera, such as 
corners and edges of visible objects. To help corner 
detection, a sky segmentation creates a binary mask, 
facilitating the skyline (and so building edges) extraction. As 
a result, a new camera’s pose estimation is computed. 
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a) Front  b) Back 

Fig. 1: An example of a pair of fisheye images extracted from the 

GoPro 

Fig. 2: The aerial view of the LiDAR tile used for tests. The bottom left 

corner coordinates are 2540000 East, 1181000 North in the MN95 Swiss 

system coordinate. In white, the camera position from Fig. 1. In blue, the 

FOV (Field of view). 

a) Before  b) After 

Fig. 3: Result of the sky detection, the sky is masked by white pixels. 

Fig. 4: Horizon line contour extracted from the image, in blue. 

a) Mesh build from LiDAR b) Depth map 

Fig. 5: View captured from a virtual camera, placed in the mesh 

III. DATASETS

To test this strategy, the GoPro MAX 360 was chosen for 
its couple of wide-angle lenses and for being accessible. 30 
videos were taken between March and May 2022, around the 
main building of HEIG-VD. The video file “.360” produced 
by the GoPro, is regularly cut into two panoramic images, 
which are themselves transformed into a couple of front/back 
fisheye images. Figure 1 shows an example of such fisheye 
images obtained during the first month. The images dataset 
tested is composed of two videos from May 2022 of 10s, 
from which we extract about 30 images (see Figure 3).  

In addition, selected references were LiDAR data from 
LiDAR HD [13] and SwissSURFACE3D [4]. 
SwissSURFACE3D is organized in 1 km² tiles, classified in 
6 classes (ground in light green, building in red, vegetation in 
dark green, etc..), with an average density of 15-20 points per 
m². The average precision is 20 cm in planimetry and 10 cm 
in altimetry. The tile used, containing the HEIG-VD 

building, is depicted in Figure 2. 

Now that datasets are defined, our method can be tested, 
with a first approach consisting in HLC analysis. 

IV. PROPOSED METHOD

The first strategy consists in comparing the observation 
of the camera with a second virtual camera, placed and 
oriented in a 3D model according to sensor measurements. 
Then a pairing can be done with recognizable objects 
detected in both pictures, resulting in a series of Ground 
Control Points. RANSAC and Least Squares applied to 
collinearity equations on those GCPs enable a new location 
calculation, enriched by LiDAR data. 

A. Real camera image processing

With the neural network proposed by [14], a sky 
segmentation of every fisheye picture can be done, see 
Figure 3. Having only two classes makes the horizon easy to 
find by checking the color's variation position, column by 
column. The result is a list of pixel coordinates [I’, J’], see 
Figure 4. 

The next step is to find the corresponding coordinates 
[X, Y, Z] of those points. This sky segmentation algorithm, 
while very performant, is limited by the presence of long thin 
vertical objects, such as street lamps, antennas, or flag poles 
because they highly affect the horizon lines on the image 
while being almost invisible in the LiDAR data. 

B. Simulated camera image processing

    By applying the same extrinsic (location, orientation) 
and intrinsic (focal length, principal point) parameters to a 
virtual camera OpenCV can be used to render a view and a 

depth map, see Figure 5.a. and 5.b. 

The depth map can be used for the HLC detection since 
there is a clear separation between ground points, with finite 
distance D < 1 km and infinite for the sky. By applying the 



Fig. 6:  DTW applied on the two HLC 

Fig. 7:  Ground control points constructed. 

Fig. 8: GCPs extracted from the blue skyline, in red 

same method used in Figure 4, a second list of coordinates 
[I, J] is extracted, see Figure 5.b. 

 with the depth map, it is possible to associate a 3D point 
with a 2D pixel [I, J] if extrinsic and intrinsic parameters are 
known. From the equation of collinearity (1), where F is the 
focal length, R the rotation matrix of the camera, S the 
camera’s position, m a pixel and M the 3D points 
corresponding to the pixel.  
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 The result is a list of LiDAR points coordinates 
[I, J, X, Y, Z], to create GCPs in the fisheye view, the two 
preceding results need to be paired to get [I’, J’, X, Y, Z]. 

C. Horizon lines matching

The two horizon lines may be affected by many 
parameters, such as measurement inaccuracies, fisheye 
distortions, or the difference of FOV (Field of view), which 
can lead to deformations and deviations between the two 
HLC. To find the correct pairing, the Dynamic Time 
Warping or DTW [5], [15] can be used here to associate 
indices of [I, J] points with corresponding [I’, J’] points. 
DTW takes two temporal signals and associates pairs of 
indices according to cost minimization of a cumulative 
distance matrix. It is used in word recognition in sentences 
for its robustness [5], which are subject to many deformation 
(stretching, compression, breaks). Because our horizon lines 
are continuous (from a pixel perspective), the ‘X’ axis can be 
used as a “Time” axis for the matching. To improve the 
result, DTW can perform open-ended alignments [16], [17] 
to minimize hFOV difference. In Figure 6, the pairings are 

visible. 

After the DTW, between 1500 to 2000 GCPs are made, 
as shown in Figure 7.  

To utilize them as GCPs in our lists of images, filtering is 
necessary to find for each extracted image, corresponding 
homologous points. 

D. GCPs extraction

Localizing one image fisheye with distortion was 
difficult for the Least Square algorithm applied on the 
collinearity equation to converge to a reasonable solution. 
Because of that, it was decided to take advantage of the 
whole video, and by extension, all fisheyes capture, to get a 
Structure-from-Motion (SfM). For this, we need GCPs that 
can be found and automatically associated in each image for 
the calculation of the SfM. It was decided to use points on 
building corners. The extraction is done with the Ramer-
Douglas-Peucker [18], consisting of keeping the farthest 
point C to a segment [AB], then by iteration, find the same 
point for segments [AC] and [CB]. To limit the number of 
iterations, there must be a minimum distance of 20 pixels 
between the segment and the point (empirically found).  It 
extracts points on the building corner, see Figure 8. 

Once the GCPs are extracted, they can be exported  
in an SfM software like Metashape [19], as GCPs, on every 
fisheye’s view to recalculate the positions of the cameras. 

E. Conclusion on the first method

This first approach, based on Horizon Lines Contour,
shows that it is possible to improve a panoramic camera 
localization automatically with visual information. While the 
result is better than a simple camera’s GNSS measure, it 
must be improved to be usable on actual surveying missions. 
A way to improve our result is to find homologue GCPs in 
each photo. GCPs showing the same element with close 
terrain coordinates could be assimilated as one GCP, helping 
the camera alignment. 

V. RESULTS

The previous method was applied to a set of 120 
fisheye images. The calculation time to extract the points 
from an image is 2 minutes on average, the most time 
consuming being to obtain the 3D coordinates. The quality 
of the position refinement of the camera’s GPS is estimated 
with a distance from the measurement of a GNSS antenna, 
considered as “True” value. A solid point was measured by 
a series of GNSS antenna observations, and a “control” 
video was taken, in making sure it ends on the same point. 
The difference between the ground truth and the GoPro’s 
GNSS in planimetry is 2m, before the introduction of GCPs, 
whereas the newly estimated pose had a deviation of 1.2 
meters from the antenna. As this result has been obtained 



under controlled environments, (clear sky, little sky 
obstruction, easily recognizable shape and away from 
walls), the current approach needs to be improved for more 
challenging scenes. Currently, our GCPs built from sky lines 
are not robust enough for precise photogrammetric survey 
but it can be improved by more options to experiment with, 
as presented in perspectives. 

A. Perspectives and current works

Other cameras must be tested to evaluate the robustness
of this method. To change the image geometry, an Insta 360 
Pro 2 was chosen. Having 6 fisheye lenses and the possibility 
to work on spherical images (equirectangular projection). 

Moreover, the neural networks used detect only the sky, 
but much information can be obtained with a finer 
classification. Panoptic segmentations of urban landscape are 
promising for our project since it allows us to use more 
references (such as OpenStreetMap, Information System of 
the Territory in Geneva, etc..) and to benefit from the Swiss 
LiDAR classification (Ground, Vegetation, building etc..). 
This should also be a homogeneous distribution of points on 
the images. 

In fact, knowing the class of the LiDAR allows the 
introduction of weighted measures in the compensation 
system. For example, a ground control point made from 
vegetation classified points is more affected by annual 
variations than a building GCP. 

Finally, the horizon visible from the photos may be 
farther than 1km, (e.g., mountains) because they have an 
impact on the ground / sky separation. To resolve this, 
LiDAR data can be visualized and used with a varying 
density, depending on the distance of observations.  This is a 
Potree architecture [20] that can be tested here, to benefit 
more information. 
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