
An Evaluation of the Generalization Capabilities of
Machine Learning Models for Vine Line Detection
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Abstract—Precision agriculture can optimize the production
of agricultural crops by analyzing aerial images with varying
resolutions and acquired from different sources. It is widely
accepted that machine learning (ML) model, especially deep
neural networks (DNN), are very efficient for image segmentation.
DNNs have been used to segment complex texture and planting
structures, such as vine lines, due to their variations in shape,
color and orientation. However existing DNNs reach their limits
to segment aerial images with varying resolution and multiple
instance of vine lines crossing a entire image. In this paper, we
present an improvement of the generalization capabilities of ML
models to segment vine lines in satellite images. An approach
from a previous works that combine neural networks and other
classifiers allow us to improve the classification and generalize
the models that increase the f-score by 17%.

Index Terms—Machine Learning, Neural Network, Deep Neu-
ral Network, Decision Tree Ensemble, Image Analysis, Vine Line
Detection, Vineyards, Image Segmentation, Transfer Learning,
Precision Agriculture

I. INTRODUCTION

According to the report of the World Government Summit
[1] and confirmed by the Food and Agriculture Organization
of the United Nations (FAO) [2], food production must be
increased by 70% by 2050. The estimated food shortage is
due to high population growth, excessive demands on natural
resources, declining productivity due to climate change and
food waste. To address these issues, precision agriculture has
emerged and is integrating new technologies such as drones
and Artificial Intelligence (AI) [1]. The combination of these
technologies enables, among other things, the detection of
agricultural areas and objects as well as autonomous navi-
gation by detecting obstacles.

Image segmentation is an image analysis task that assigns
each pixel of an image to a class and produces an output
with the detected segments [3]. It has been recently applied
to precision agriculture, mainly to spot farming areas on
aerial images acquired with a drone [4] and to determine the
location of the crop to treat with products (e.g. fertilizers or
pesticides) [5]. However, aerial images collection is not limited
to drones; many sources provide satellite images with different
resolution. Therefore, machine learning (ML) models should
have the ability to be generalized so that they are insensitive to
resolution variation. Among the numerous techniques used for
image segmentation, Convolutional Neural Network (CNN)

such as AlexNet [6], VGG-16 [7] or U-Net [8], have obtained
high performance for this task.

Vine lines detection combines the complexity of line de-
tection in images with varying natural conditions [9], such
as variation of their orientation and shape and the change of
color due to season and lighting [10]. Therefore, vineyards are
considered as a difficult plantation structure to analyze with
ML models.

Existing state-of-the-art ML models are not able to segment
a difficult plantation structure or objects crossing an entire
image, such as vine lines. Furthermore, existing models for
precision agriculture are often trained on specific dataset and
are not able to be generalized [11]–[13].

This paper presents an evaluation of the models’ abilities to
analyze images with different resolution. Two types of images
used : aerial images acquired with a drone and satellite images
from swisstopo1. The detailed experiments are based on a
model trained to detect vine lines using the drone dataset.
They are evaluated to segment vine lines in satellite images
from swisstopo dataset. The original task of the model is
the same; but the input is varying. The work is based on
two previous researches [14], [15] that developed original
approaches to segment vine lines in aerial images. The first
approach [14] combines a U-Net that segment an image with
a Decision Tree Ensemble (DTE) that determines the class
of the segments. The second approach [15] improves the
previous one by combining an asymmetrical architecture of
a U-Net and a Random Forest (RF). Finally, an evaluation
of generalization improvement is presented with classifiers re-
training. The performance of the models are evaluated with
the precision, recall and f-score.

The rest of this paper presents the state-of-the-art related
to our field of study, the dataset and the data processing used
during the experiments , the methodology and the metrics, the
experiments and their results and finally the conclusion.

II. STATE-OF-THE-ART

Among existing CNNs, we present the U-Net [8] that is
often used for image segmentation and one of the most used
for aerial image analysis. Furthermore, this CNN can be used

1Swiss Federal Office of Topography (https://www.swisstopo.admin.ch)



with transfer learning reducing the amount of data necessary
to retrain the network for a new task [16].

The U-Net is an auto-encoder based CNN [8]. The encoder
aims at detecting objects in image by applying convolutions.
The decoder aims to locate objects in image by applying
transposed convolutions. The U-Net has been successfully
used in numerous fields such as rice detection in image [17]
and satellite image analysis [18].

Lu D. et al. [19] demonstrate the impact of image resolution
on image analysis, in this case, bamboo detection. The perfor-
mance of the models decreases in proportion to the resolution.
The paper by Sozzi et al. [20] demonstrates the difficulty of
detecting vineyard areas smaller than 0.5 hectares in satellite
images. This paper highlights the problem of generalization of
the models when the resolution of the images varies.

Various studies focuses on vine lines detection in aerial
images. The first study of Comba L. et al. [21] presents a
precision of 59.8%, a recall of 70.6% and a f-score of 32.4%.
We note in this study a large number of false detection. Two
more studies focus on ML models for image segmentation,
more specifically for disease detection in vineyards. The result
is the segmentation of vine lines with disease. Their models
achieve an accuracy of 92% [13]. But they include infrared
images and depth (e.g. the difference in height between the
vine and the ground) to train the models which do not allow
to generalize the models to other images from various open
access aerial image databases.

Transfer learning is used to retrain an existing model for
a new task [16]. With Transfer learning, the knowledge from
a model is used to retrain a model for a related task. It is
often used for image analysis [22], by fine-tuning a pre-trained
CNNs. The amount of data needed to retrain a model using
transfer learning is drastically reduced.

III. DATASET AND DATA PROCESSING

A. Dataset

The first dataset used in this research is composed by images
acquired with a drone. We refer to this dataset as drone dataset.
It is used to train the original models from [14] and [15]. It is
composed of RGB aerial images with a resolution between 60
and 80 pixels per meter. The number of vine lines per images
is between 29 and 191. The width of a vine line in average
is between 30 and 75 pixels. The size of an image is 4000 x
3000 pixels.

The second dataset used in this research is composed by
images acquired on the platform Swisstopo. We refer to this
dataset as Swisstopo dataset. It is composed of RGB images
acquired with a plane every three years. The images have
different colors due to the variation of light conditions and
seasons. The images have a resolution between 5 and 15 pixels
per meter and a varying size. The width of a vine line in
average is between 2 and 30 pixels. The size of an image is
10000 x 10000 pixels.

Figure 1 shows an example of an image from the drone et
Swisstopo datasets. Figure 2 is a zoom on two images of these
two datasets, highlighting the variation of the resolution.

Fig. 1. Images from our dataset extracted from each of the two data
sources, drone image (left) and swisstopo image (right), representing the same
geographical location.

Fig. 2. Difference in resolution between an image taken with a drone at a
distance of 50m from the ground (left) and an image extracted from Swisstopo
(right). This figure shows also shadow between the vine lines.

B. Data Processing

Our models are trained based on a supervised learning [23],
that needs labeled samples. Therefore, we applied a manual
per-pixel labeling to each image. Labeled images are used as
the ground truth to evaluate the ML models performance. Each
dataset are split in three subsets : train set, validation set and
test set. A summary of the reference name for each dataset is
presented in Table I.

TABLE I
THIS TABLE SUMMARIZES THE THE DATA SPLITTING AND THE NAMES TO

REFER TO EACH SET.

Train set Validation set Test set

Drone Drone train set Drone validation set Drone test setdataset

Swisstopo Swiss train set Swiss validation set Swiss test setdataset

We then applied data augmentation [24], due to the small
amount of images available, to the images of the train sets.
We applied 2 types of augmentations to the images and
their ground truth: (1) horizontal and vertical flips, and (2)
a rotation between −90◦ to 90◦ every 10◦. We also applied
a downsampling to the images and ground truth of the train
set from the drone dataset to obtain a generalized dataset.
This data augmentation increases the variation of vine lines
orientation and therefore will match the ground variability.



IV. METHODOLOGY AND METRICS

A. Methdology

Our methodology aims at dividing an image into tiles, using
a U-Net to segment each tile, combining the segmented tiles
to obtain the segmentation of the original image, extracting
each vine line and defining their class with a classifier: vine
or other. This methodology is summarized in Figure 5.

We evaluate the performances of our models on the number
of correctly detected vine lines. We first create groups of pixels
of the same class (e.g. vine pixels), commonly referred to as
connected component. For each connected component, we find
its minimal rectangle area, called bounding box, characterized
by a center, an angle, a height and a length. Figure 3 shows
an example of a connected component and its bounding box.

Fig. 3. Example of a bounding box for a vine line. the bounding box is the
green rectangle, with a center, a angle (α), a height and a width.

We then use these bounding boxes to determine if a detected
vine line corresponds to its ground truth. For each bounding
box on the segmented image, we compute the Intersection over
Union (IoU) with all the bounding boxes of the ground truth.
A detected bounding box that is included within a ground
truth bounding box is considered as correctly detected as it
is a part of the vine line. For all other bounding boxes, we
set the threshold for the IoU to consider a vine line correctly
detected to 0.75. This threshold is the optimum value obtained
in previous detection experiments [14]. A detected bounding
box with all the computed IoU under 0.75 is a false positive.
A ground truth bounding box with no corresponding detection
is a false negative.

B. Metrics

We used three of the most used metrics for object detection,
described below, to evaluate the performance of our models
[25]. These metrics can be computed using a confusion matrix
that helps to interpret the quality of a classification (see Figure
4).

The first metric is the precision, also called Positive Predic-
tive Value (PPV), which is the proportion of object correctly
identified compared to all positive objects [25]. The precision
returns a value between 0.0 and 1.0. A perfect precision score
of 1.0 means that all objects predicted as positive are positive
in the ground truth. Precision is computed as

Predicted values

Positive (PP)Total values
= P + N

Positive (P)

Negative (N)

True Positive
(TP)

False Negative
(FN)

True Negative
(TN)

False Positive
(FP)

Actual values
(Ground truth)

Negative (PN)

Fig. 4. Confusion matrix for two classes.

Precision =
TP

TP + FP
. (1)

The second metric is the recall, also called True Positive
Rate (TPR), which is the proportion of object correctly iden-
tified compared to the total of positive objects in the ground
truth [25]. The recall returns a value between 0.0 and 1.0. A
recall of 1.0 means that all positive values from the ground
truth were predicted as positive. Recall is computed as

Recall =
TP

TP + FN
. (2)

The false positive rate (FPR) is the probability of false
rejection of a negative value. Precision and recall depend on
a threshold corresponding to the probability of the prediction
[26]. The threshold can be the Equal Error Rate (EER), that
reflects the equality of the TPR and FPR [27], or determined
based on the result of the probability density function [28].

The third metric is the f-score (F1) that is the harmonic
mean of the precision and the recall [25]. The f-score returns
a value between 0.0 and 1.0. A F1 of 1.0 indicates a perfect
precision and recall. We compute the f-score as follow :

F1 = 2× PPV × TPR

PPV + TPR
. (3)

Finally, to determine if the models are significantly different,
we computed the Standard Error (SE). To compute the SE, we
use the following Equation [15] :

SE = Zα

√
p(1− p)

n
, (4)

where Zα is the confidence level, p is the precision and n
is the number of data.

V. EXPERIMENTS

We conducted four experiments to evaluate the ability of
our models to be generalized to new images. The first two
experiments are conducted with the approach using a U-Net
and a DTE [14], the next two experiments are conducted with
the approach using an asymmetrical architecture of the U-Net
and a RF [15].
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Fig. 5. Our original methodology for vine line detection. (1) Original image is divided into tiles. (2) Segmentation of vine lines with the U-Net. (3) Connected
component and minimum rectangle area. (4) Extraction of the vine lines and their features to train a DTE. (5) Result produced by the DTE.

A. U-Net and RF

The first two experiments are based on the approach of [14]
that combines a U-Net and a DTE. The model has an input of
145x145 pixels and an output of 145x145 pixels. Therefore,
we divided the images into tiles using a sliding window with
a size of 145x145 pixels and a stride of 145x145 pixels.

The U-Net first segments the tile. We then combine all
segmented tiles to reconstruct the original image. For each
bounding box, we extract its size (length and height) and five
First Order Statistics [29], described below, computed for each
RGB histogram from the portion of the original image.

• The mean describes the center of the histogram.
• The variance describes the distance of a value from the

mean.
• The standard deviation measures the dispersion of the

distribution.
• The skewness measures the symmetry of the distribution.
• The kurtosis measures the intensity of the peak of the

histogram.
We already used successfully these features during the

original experiment. These features are used with the DTE
to confirm the class of each bounding box.

1) Experiment 1: For the first experiment, we evaluated the
performance of a model trained with the images of the drone
train set to predict vine lines in the images of the swiss test
set.

2) Experiment 2: The second experiment aims to improve
the performance we obtained with the Experiment 1. We use
the first part of the model, the U-Net, trained with images of
the drone train set. We retrained the DTE using the images
from the swiss train set. A new DTE model is generated
using the newly extracted features.The overall approach, that
combines the pre-trained U-Net and the retrained DTE, is
evaluated using the images from the swiss test set.

B. Asymmetrical U-Net and RF

The last two experiments are based on the approach of [15]
that combines an asymmetrical architecture of a U-Net (see
Figure 6) and a RF. The asymmetry of the U-Net improves
the robustness of the model to the variation of the orientation
and colors of the vine lines [15]. The model has an input of
145x145 pixels and an output of 72x72 pixels. The output is
the center of the tiles. Therefore, we divided the images into
patches using a sliding window with a size of 145x145 pixels
and a stride of 72x72 pixels.

The asymmetrical U-Net segments the tile. We then com-
bine all segmented tiles to reconstruct the original image. For
each bounding box, we extract the same features as described
in the previous experiments.

1) Experiment 3: For the third experiment, we evaluated
the performance of the asymmatrical U-Net trained with the
images of the drone train set to predict vine lines in the images
of the swiss test set.

2) Experiment 4: With this last experiment, we improve the
performance of the model from the experiment 3. We use the
asymmetrical U-Net trained with images of the drone train set
for vine line detection. We retrained the RF with the images
from the swiss train set. A new model is generated using the
new extracted features. The overall approach, that combines a
pre-trained asymmetrical U-Net and a retrained RF is used to
predict vine lines in images from the swiss test set.

VI. RESULTS

In this Section, we present the results we obtained with our
four experiments. The results are summarized in Table II.

With the first experiment, using the U-Net trained on the
drone dataset, we obtained a precision of 30% ±3%, a recall
of 93% and a f-score of 45% ±3% using images from
the swisstopo dataset. We note that vines are generally well
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Fig. 6. Asymmetrical U-Net architecture. The input is a tile. The output is the segmentation of the center of the tile [15]
.

detected but numerous other objects are detected as vine (false
positive). The model is not generalized enough.

With the second experiment, using the same U-Net as in
the first experiment but with a retraining of the classifier using
images from the swisstopo dataset, we obtained a precision of
41% ±3%, a recall of 93% and a f-score of 57% ±3%. We
improved significantly the precision by around 37%. We note
that the recall remains unchanged as the DTE mainly acts as a
filter by removing false positives. Figure 7 highlights the false
positive and objects wrongly detected as vine.

With the third experiment based on an asymmetrical U-Net,
we obtained a precision of 42% ±3%, a recall of 95% and
a f-score of 58% ±4%. We slightly improved the precision,
the recall and the f-score compare to the first experiment.
Numerous other object are wrongly detected as vine.

With this last experiment, we significantly improved the
precision and the f-score compared to the third experiment.
We obtained a precision of 53% ±4%, a recall of 95% and a
f-score of 68% ±3%. We improved significantly the precision
by around 26% and the f-score by around 17%. We note that
the recall remains unchanged as the RF mainly acts as a filter
by removing false positives. Figure 8 highlights the RF acting
as a filter by removing other objects such as a house (in
purple).

TABLE II
THIS TABLE COMPARES THE MODELS’ PERFORMANCES WE OBTAINED

DURING THE EXPERIMENTS.

Precision ±SE Recall F-score ±SE

Experiment 1 0.30 ±0.03 0.93 0.45 ±0.03

Experiment 2 0.41 ±0.03 0.93 0.57 ±0.03

Experiment 3 0.42 ±0.03 0.95 0.58 ±0.04

Experiment 4 0.53 ±0.04 0.95 0.68 ±0.03

Fig. 7. Result of the image segmentation with the model trained by [14]
applied on high-resolution images. Object detected as vine are in green. On
the bottom left of the image, numerous other objects are detected as vine.

VII. CONCLUSION

The detection of a complex plantation structure crossing
an entire image is a difficult task for ML models. Existing
models are sensitive to the variations of vine line orientation
and color, and to the variations of image resolution. With our
previous experiments [14], [15] we saw numerous examples
of wrong classification of objects with similar shape as vine
(e.g. bushes) or similar color as vine (e.g. trees).

In this paper, we present our original approach to detect
vine lines using two steps machine leaning models. We first
segment an image using a CNN and we then confirm or reject
each detection with a classifier. We delimit vine lines from
the segmented images by delimiting the minimum rectangle
area of the connected components. These bounding boxes are
used to determine if a detection matches a ground truth and to
extract features from the original image to feed the classifier.

With our research, we confirm the ability of our asymmet-
rical architecture of the U-Net to be generalized to detect vine



Fig. 8. Result of the image segmentation with the model trained by [14]
applied on high-resolution images. Objects detected as vine are in green.
Object originally segmented as vine and corrected by the RF is in purple.

lines in high-resolution satellite images. We evaluated models
trained using images from the drone train set with images
from the swiss test set (see Table I). We significantly improved
the f-score of the asymmetrical U-Net, compared to a U-Net,
by around 28%. By retraining the Random Forest (RF) with
images form the swiss train set, we further improved the f-
score by around 17% to obtain a f-score of 68% (see Table
II).

We note that the Random Forest acts as a filter by removing
false positives, such as other agricultural objects. Indeed, the
RF does not segment the image but confirms or rejects the
decision of the image segmentation model. For each segment,
features are used to define its class.

Our original approach could be generalized to other fields
of study or other types of agriculture, such as tree detection
in crops. There are many other practical use cases to evaluate
the generalization capabilities of our models.

REFERENCES

[1] M. De Clercq, A. Vats, and A. Biel, “Agriculture 4.0: The future of
farming technology,” Proceedings of the World Government Summit,
Dubai, UAE, pp. 11–13, 2018.

[2] G. Sylvester, E-agriculture in action: Drones for agriculture. Food and
Agriculture Organization ofn the United Nations and International . . . ,
2018.

[3] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,”
Computer vision, graphics, and image processing, vol. 29, no. 1, pp.
100–132, 1985.

[4] C. Anderson, “Growing use of drones poised to trans-
form agriculture,” Online, Mar. 2014. [Online]. Avail-
able: https://eu.usatoday.com/story/money/business/2014/03/23/drones-
agriculture-growth/6665561/

[5] S. Wolfert, L. Ge, C. Verdouw, and M.-J. Bogaardt, “Big data in smart
farming–a review,” Agricultural systems, vol. 153, pp. 69–80, 2017.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, pp. 1097–1105, 2012.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[9] R. Abdelfattah, X. Wang, and S. Wang, “Ttpla: An aerial-image dataset
for detection and segmentation of transmission towers and power lines,”
in Proceedings of the Asian Conference on Computer Vision, 2020.

[10] J. Llorens, E. Gil, J. Llop, and M. Queraltó, “Georeferenced lidar 3d
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