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Abstract The rationale behind the ever increasing combined adoption of Artifi-
cial Intelligence and Internet of Things (IoT) technologies in the industry lies in
its potential for improving resource efficiency of the manufacturing process, re-
ducing capital and operational expenditures while minimizing its carbon footprint.
Nonetheless, the synergetic application of these technologies is hampered by several
challenges related to the complexity, heterogeneity and dynamicity of industrial sce-
narios. Among these, a key issue is how to reliably deliver target levels of data qual-
ity and veracity, while effectively supporting a heterogeneous set of applications and
services, ensuring scalability and adaptability in dynamic settings. In this paper we
perform a first step towards addressing this issue. We outline ABIDI, an innovative
and comprehensive Industrial IoT reference architecture, enabling context-aware
and veracious data analytics, as well as automated knowledge discovery and rea-
soning. ABIDI is based on the dynamic selection of the most efficient IoT, network-
ing and cloud/edge technologies for different scenarios, and on an edge layer that
efficiently supports distributed learning, inference and decision making, enabling
the development of real-time analysis, monitoring and prediction applications. We
exemplify our approach on a smart building use case, outlining the key design and
implementation steps which our architecture implies.
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1 Introduction

In recent years, the automation of industrial processes has taken a step forward
towards a more fine-grained control and actuation with the widespread adoption of
technologies, such as Industrial Internet of Things (IIoT) and Artificial Intelligence,
that propel what is being called the fourth industrial revolution, or Industry 4.0 [1,
2]. The main idea underlying Industry 4.0 is to collect large amounts of data at every
stage of the production process, and to exploit them to make automated decisions
as informed as possible, in order to reach the production goals in the most efficient
way, while reducing or eliminating the need for human intervention. Such approach
opens up countless new challenges in IIoT. Among these, how to optimally deploy
sensors in a complex industrial machinery, in order to detect variations in the state
of the system and enable targeted, proactive interventions and maintenance; how to
transmit IIoT data in a reliable and energy-efficient way; how to effectively address
potential security and privacy issues of cloud computing; how to implement reliable
and real-time distributed decision making, moving the computing load to the edge
of the network and within IIoT systems; how to efficiently process IIoT data streams
with high variety, volume, and velocity; and how to flexibly support a heterogeneous
set of applications, services, prediction models and visualization tools that provide
information to stakeholders. The sheer amount and heterogeneity of data available in
large IIoT systems amplify these challenges, in terms of scalability and information
integration.

Some of these issues can be addressed by introducing computing nodes phys-
ically close to where data is produced [3, 4]. These devices, which form what is
called the edge layer, allow shifting the computing load away from the cloud, reduc-
ing latency of computing tasks, relieving IIoT systems from much of the computing
load due to data pre-processing, but also of more complex tasks such as anomaly
detection, or training and execution of machine learning models.

The modularity of this approach and the distribution of the computing load has
several advantages. Among these, it allows alleviating the burden on the centralized
part of the infrastructure, in particular for time-sensitive applications. Moreover, it
enables processing information closer to the source makes it possible to perform
computations without transmitting sensitive information throughout the entire net-
work. In general, moving the computation to the edge improves the computational
performance and the communication latency and robustness [5]. Edge nodes can
also add context to the data collected, thus enabling informed decisions pertaining
to the part of the network to which they are connected.

However, this novel paradigm also introduces several new challenges. First, there
is no clear consensus on how an heterogeneous edge-based architecture should be
structured, in order to efficiently support the above mentioned services in an IIoT
environment [6]. Edge nodes may be heterogeneous, and have limited resources,
making scalability and efficient real time orchestration a key issue in real scenar-
ios. The sensing, communication and computing infrastructure needs to be resilient
to different types of faults and service disruptions. Thus, it must be designed and
managed by taking into account reliability and service availability requirements, in
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order to deliver the target levels of service in case of hardware/software failures.
New learning paradigms, and in general new decentralized algorithmic patterns,
need to be developed and efficiently supported by the edge/cloud infrastructure to
fully exploit the possibilities offered by the availability of large data streams. To the
best of our knowledge, most IIoT architectures are not edge-based [7, 8], and very
few edge-based IoT architectures have been proposed so far. Debauche et al. pro-
pose an edge infrastructure to deploy microservices and AI applications at the edge
layer, which is used for IoT applications in agriculture [9]. Guimarães et al. propose
an edge-based IoT architecture to monitor industrial nodes [10]. These architectures
are however tailored for a narrow, specific application domain, and though they
demonstrate the potential of edge computing in IIoT, they do not specify how to
generalize their approaches to other domains and applications.

To achieve the goal of designing a general edge-based IoT architecture, in this
work we outline ABIDI, a framework for context-aware and veracious data analytics
with automated knowledge discovery and reasoning for IIoT. The ABIDI framework
encompasses the entire IIoT stack, from the devices to the edge, and to the cloud or
central infrastructure, where the application performs the desired computation. The
goal of this framework is to enable the efficient and reliable collection of data and
the development of AI applications that can be seamlessly deployed on a variety of
IIoT scenarios. This is achieved by designing an IIoT architecture whose efficiency
depends on both the integration between its modules and the optimization within
each module.

In particular, we enable improvements of network performance and reliability by
designing a methodology to select the best communication technologies in differ-
ent contexts, and by proposing an IIoT network architecture which allows reduc-
ing latency and energy consumption while easing integration with upper layers. We
propose an edge architecture that enables the AI-based IIoT systems, distributing
the computation between the cloud/central infrastructure and edge nodes transpar-
ently to the application developers. We introduce new privacy-preserving, fully dis-
tributed and scalable learning schemes which do not need any parameter server and
benefit from node mobility. We further develop visualization tools for data quality
assessment that provide insight on the structure, contextual properties and depen-
dencies present in the data streams and thus assist in the development of case de-
pendent pre-processing methods, and we implement energy load prediction models
for real world use cases.

The paper is organized as follows. In Section 2 we outline the architecture of our
framework, we describe our approaches to the implementation of its main functional
components. In Section 3 we present an application of our framework to a real world
case. Finally, Section 4 discusses some of the key open research issues that our
approach implies, and Section 5 presents our main conclusions.
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2 The ABIDI framework

A schematic representation of the overall architecture of the ABIDI framework is
presented in Figure 1. It is divided into three main layers: 1) the IoT layer, encom-
passing the IoT devices and the communication network; 2) the edge layer, provid-
ing low-latency decision making for IIoT devices and end user devices; and 3) the
cloud layer, composed by a big data processing level, a data analysis level focusing
on prediction of future events and patterns, and an application level.
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Fig. 1 A high-level representation of the architecture of the ABIDI framework.

IoT layer. A first key component of the ABIDI framework at the IoT layer is
a methodology for the selection of the most appropriate wireless communication
technology (in terms of resource efficiency, but also of reliability and QoS support)
for each use case or final application. Another important element of the ABIDI
IoT layer is the use of energy harvesting techniques to power IIoT devices, taking
advantage of the many energy sources typically available at industrial facilities.

Edge layer. It is typically composed by an heterogeneous set of autonomous
computing and communication devices, such as gateways, industry robots, wireless
access points and cellular base stations. This layer is responsible for several func-
tionalities related to data quality: 1) collection, aggregation and contextualization of
the data coming from IIoT environments; 2) aggregation / real time monitoring and
collection of metrics about data quality, such as data integrity, consistency, accuracy,
completeness, validity, uniqueness and timeliness; 3) data creation (e.g. auto-filling
values in forms, automatic extraction of data) and data enrichment; 4) data main-
tenance (reactive: data correction; proactive: business rules) and data unification
(matching and deduplication); and 5) (in synergy with cloud) data protection (e.g.
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identification of sensitive data, detection of fraudulent behavior) and data retirement
(end of life).

Given the tight resource constraints of IoT devices, another key role of the edge
layer is the implementation of computation offloading services. Offloading compu-
tation (and power consumption) intensive tasks to the edge enables faster decision
making of applications running at the edge (thus improving capability to handle
latency-sensitive applications), and it saves energy in IoT devices, extending their
lifetime.

With respect to the IIoT layer, edge devices implement IIoT and network coordi-
nation functions in a self-organized and autonomous manner. This includes enabling
IoT integration by acting as gateways for local IoT systems, and joint management
of IoT, network and edge resources. Such coordinated control has as its main goals
to enable the delivery of the QoS required by the different verticals and applications
(such as the support for latency-sensitive applications), and to implement reactive
(and possibly proactive) schemes for ensuring service continuity in case of disrup-
tions.

For what concerns the use of ML and data intensive strategies (for the implemen-
tation of ABIDI platform applications as well as for the management of the platform
itself) the edge layer plays a double role. On one side, it implements mechanisms
for model training which are close to data and thus resource efficient and context
aware. In addition, it executes local machine learning prediction models. With this
respect, one of the key roles of the edge layer is to enable the implementation of
learning architectures which are able to provide high levels of data security and
privacy preservation, of scalability (with respect to both participating systems and
of applications) and of resiliency to infrastructure failures. Indeed these features
are critical in present day IIoT scenarios in which data (as well as computing re-
sources) are spread across an ever growing number of heterogeneous devices, and
in which harnessing locally available devices, even in an opportunistic manner, is
key to achieve high levels of QoS (e.g. in terms of latency of computing tasks) in a
resource efficient manner.

To perform efficient inference and learning at the edge, the ABIDI architecture
is designed to enable the communication not only of data, but also of models and
computational tasks. This increases the overall efficiency of the infrastructure, by
distributing the computation in an organic manner in the edge layer, and between
the centralized infrastructure and the edge. For example, in a classical IoT network,
sensors collect data and transmit it to the central server, which is in charge of all the
computation. In an edge infrastructure, the intermediate layers can instead manage
part of the operations, such as aggregating data or spotting malfunctioning devices,
transmitting to the central server only the correct, aggregated information. Edge
nodes can therefore relieve the central server of unnecessary operations, making
local decisions. This paradigm brings clear advantages in terms of computational
and transmission speed.

Cloud layer. The data collected by the IIoT devices and potentially the results
of the elaboration at the edge level are transferred to the cloud layer. The ABIDI
infrastructure relies on suitable database technologies to collect the data. Different
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applications may require different databases, or a pre-existing infrastructure could
be integrated in the ABIDI architecture. Regardless of how this infrastructure is
defined and which hardware and software are used, the storage of the data collected
remains a potential bottleneck in any data-centric pipeline. Therefore, the ABIDI
architecture adopts a flexible data infrastructure that can be optimized for different
tasks.

The data analysis level from the cloud layer includes automated and semi-
automated data cleaning, data visualization tools, and machine learning for predic-
tive and descriptive modeling. the successful operations of final applications, such
as evidence-based decision support tools, depends on the quality of the data, such
as their timeliness and reliability. In ABIDI architecture, automated data cleaning
methods are applied to solve any data quality deficiencies that are relatively simple
to treat, and to perform basic fault detection procedures. The adoption of automated
methods, when they are reliable, allows minimizing human effort, which is crucial
when operating with big data. As a solution for optimizing between reliability and
human effort, semi-supervised methods are applied in cases that cannot be reliably
solved using automated methods.

In the data analysis level, interactive exploratory data visualization tools are uti-
lized to enable effortless monitoring and inspection of the big data and of the data
quality. The visualization tool prepares the developers of automated data processing
system to improve the quality of their data to meet the contextual requirements, to
reflect the needs of decision-making process and to allow providing domain spe-
cific answers to the user. Through an effective visualization, the massive amount of
data becomes accessible and understandable, which makes it possible to both en-
sure the appropriateness of the automated pre-processing steps and to add use case
dependent methods above the automated ones. The combined application of these
two approaches allows achieving high quality standards for IIoT data, particularly
in those application contexts where it is often plagued by noise, or where it is often
incomplete and inaccurate.

Machine learning regression is applied in the analysis level for descriptive mod-
eling and for prediction of IIoT data streams. The descriptive models estimate the
value of a data variable at a certain moment, and the estimations are useful for
missing value imputation and anomaly detection. Predictive regression models dif-
fer from the descriptive ones in that they estimate values of the variables at a future
moment. The predictions can offer substantial profits when utilized in decision sup-
port tools. The ABIDI architecture includes a full automated pipeline for creating
baseline regression models for time series prediction.

Technology selection in IIoT network. Although in industrial environments,
traditionally, assets have been connected using wired communication technologies
(based on Field-bus or Industry Ethernet), recent advances on wireless communi-
cations have enabled the access to new elements and data, providing advantages in
terms of flexibility, mobility, installation, and cost, among others [11]. While wire-
less sensor networks (WSNs) have been largely used in building automation, smart
city or agriculture domains, the industrial environments differ from these due to
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their particular constraints, especially in terms of latency, environment, heterogene-
ity and mobility [12]. There are many wireless communication technologies and
protocols that may be named as Industrial IoT networks [13]. Regarding existing
literature that presents technical features, existing deployments, and future trends,
the ABIDI framework considers following IoT network technologies as the most
relevant: BLE, ZigBee, WiFi, WirelessHart, LoRaWAN, Sigfox, 6LoWPAN, NB-
IoT, LTE Cat-M1, and 5G.

Although there are many surveys and reviews on IIoT networks, such as [14],
few studies have considered factors beyond technical parameters, including the con-
straints of factories environments and its integration with the other layers of the IIoT
architecture [15]. Through reviewing literature and technical specifications, Table
1, which summarizes the main parameters of each technology, has been created to
assist technology selection. As it can be observed, the different IIoT network tech-
nologies have their strengths and weaknesses, and therefore cannot comply with all
the requirements of every use case or application.

The ABIDI framework is based on a two-step procedure for selecting the appro-
priate communication technology for a specific use case or application, as follows.

1. Determine the essential use case specific requirements set by the final applica-
tion. These requirements may be divided in the following categories:

• Technical factors: They include technical characteristics such as the trans-
mission capacity (data rate), the time taken from the instant the node transmits
the message until it arrives to the final application (latency), the communica-
tion coverage (range), the bi-directionality (duplex) and the loss of messages
(reliability).

• Implementation factors: They integrate those factors especially relevant dur-
ing the IoT network implementation phase. The most important one is cost,
which is the sum of the cost of IoT devices and nodes plus the cost of network
infrastructures (for those technologies that demand the deployment of private
network elements, such as 6LoWPAN, Zigbee, WiFi or LoRa), or the cost
of data plans (for those technologies that provide the network infrastructure,
such as Sigfox, 5G, or NB-IoT).

• Functional factors: They cover factors that affect everyday working of IoT
applications, including the autonomy of the devices (energy consumption),
which is determined by the time the IoT device is turned on and especially by
the energy consumption during the communication process.

2. Compare these requirements with Table 1, and select the most suitable technol-
ogy. This step is implemented via Machine Learning based algorithms, which
recommend the best communication technology based on use case requirements,
and on all system constraints.
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Table 1 Summary of the main parameters considered in ABIDI methodology for
IIoT technology selection.

Technology Data rate1Latency2Range3Duplex Reliability Consumption Cost

BLE Mbps 30 ms 100 m half low low low
ZigBee kbps 40 ms 100 m half high low low
WiFi Mbps 30 ms 100 m half med med low

WirelessHart kbps 10 ms 200 m half high med high
LoRaWAN kbps 300 ms 10 km half med med med

Sigfox bps 4 s 50 km limited4 high high med
6LoWPAN kbps 20 ms 100 m half med low low

NB-IoT kbps 2 s 10 km half high high high
LTE Cat-M1 kbps 2 s 10 km half high high high

5G Gbps 10 ms 10 km half high high high
1,2,3 Approximate values—in the order of magnitude.
4 Sigfox provides limited bidirectional capacity: the IoT device can upload up to

140 12-byte messages a day, but it can only receive four 8-byte messages.

3 A building management use case

In order to assess the ABIDI framework, we implemented it in a smart building
testbed at CEDINT-UPM in Madrid, Spain, a three-story construction that hosts of-
fices, research labs, and other facilities. It is equipped with 30 IoT power meter
devices are installed at panel boards, allowing specific energy consumption mon-
itoring of 560 electrical lines; 40 IoT ambient sensor devices measuring temper-
ature, luminosity, humidity and presence detection—apart from battery level; and
30 HVAC controllers, which provide set-point temperature, fan speed, working
mode (cold/heat), state (on/off) and indoor temperature data. By means of an Elastic
Stack-based IoT Platform, data collected were distributed and replicated to provide
inputs for machine learning (ML) and visualization tools. The two main goals have
been: i) optimizing energy consumption by context-aware data analytics of energy
consumption patterns, taking into account energy measurements, ambient parame-
ters and user behaviour; and ii) ensuring data reliability and veracity, by improving
communications, and detecting and correcting missing or wrong measurements.
We applied the ABIDI framework methodology to select the optimal communi-
cation technology. The main technical requirements were low data rate, medium
reliability, non-critical latency, variable sending frequency (30 s - 15 min), and bi-
directionality. To this end, we performed an experimental characterization for com-
munication reliability and energy consumption.

Experimental results for reliability (latency and error rate) of the different tech-
nologies were obtained using an ad-hoc testbed (Table 2). Latency was measured
considering an end-to-end trip, from the Industrial IoT node to the application
server. For error rate, the same latency packets were used. Based on these results,
6LoWPAN outperformed alternative protocols with regards to communication la-
tency.
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Table 2 Experimental latency, error rate and consumption results

Technology 6LoWPAN LoRaWAN Sigfox BLE WiFi

Latency (ms) 20 290 3700 26 32
Error Rate (%) 0.01 0.6 0 0.03 0

Tx. Consumption (mAs) 0.8 6.3 804.8 1.0 3.4

As a second step, we experimentally measured the energy consumption of the
transmission process at 5 V (Table 2). These measurements were taken using a
Nordic Semiconductor Power Profiler Kit II. Then, the transmission current demand
per se was integrated during the time of packet transmission. Regarding power con-
sumption, 6LoWPAN outperformed again the other technologies, especially Sigfox,
which was expected to have a greater consumption as its on-air time is much longer.

Bottom line, considering the number on IoT nodes (100) and area of deployment
(50 m x 40 m), the variable sending frequency and the non-restrictive requirements
in terms of latency an reliability, BLE and 6LoWPAN seemed to be the best choices.
However, the features of 6LoWPAN mesh topology, which enables the utilization
of a single network coordinator or access point for the entire use case (together
with the fact that it implements IPv6 connectivity, allowing direct access from the
Internet), made 6LoWPAN the final choice. To infer energy consumption patterns,
we have combined temperature measurements of indoor ambient sensors and the
HVAC energy consumption measured with BatMeter smart meters, as the latter data
sources alone proved insufficient.

A baseline XGBoost regression model was built for short-term (one hour ahead)
HVAC energy consumption prediction. Error metrics CV-RMSE, RelRMSE and
MASE for the model were 0.292, 0.811, and 0.870, respectively. RelRMSE and
MASE measures include a built-in comparison to a naı̈ve time series prediction
model, and the value being less than one indicates the model is performing better
than the naı̈ve model. This showed that the suggested baseline model is capable of
providing useful outputs in short-term predictions.

In data pre-processing phase, it was possible to automatically detect a malfunc-
tioning sensor in the monitored area by inspecting the rate of data packages sent by
each sensor node. Semi-supervised methods, where IoT data streams were combined
with relevant metadata, allowed imputing missing temperature data by utilizing peer
sensors in the room. While a reasonably light approach was enough to meet the data
quality requirements of the desired application, a more thorough visual interface
was also developed for this setup (Fig. 2) for ease of inspection of data streams.

The layout of the final application is in Figure 3. The quality of data was en-
sured for each of the five parameters utilized in the final application. Gradients of
temperature data sources were inspected together with the gradient of the electricity
consumption data, so as to label times of HVAC usage in every room. The applica-
tion layout shows a figure of each data stream, highlights the times of HVAC usage
in each temperature figure, visualizes the number of active HVAC units as a func-
tion of time, and provides a summary of the estimated electricity consumption per
room for a given period of time. These data allowed determine new opportunities
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Table 3 Basic information of the UPM data set
Indoor ambient sensors Number of sensors 34

Sensors per space 1-4
Parameters Temperature, humidity, light,

motion
Smart meters Number 32

Parameters Power consumption (528 lines)
Time range of data collection Start In steps through 2018-2020

End ongoing (12/2021)
Frequency of data collection From seconds to an hour

Fig. 2 Application screenshot, detecting HVAC usage in the UPM building, displaying all of the
relevant data streams.

for optimization of power consumption. In particular, the fact that the highest peaks
in power consumption were caused by HVAC units being turned on simultaneously
in multiple rooms suggest that smart scheduling of HVAC duty cycles could sub-
stantially reduce these peaks, and thus contribute to preventing outages.

Fig. 3 Screenshot of the visualization tool, detecting HVAC usage in UPM building.
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4 Key research challenges

We discuss some technical challenges for full implementation of the ABIDI ap-
proach, including IIoT architecture and protocols, energy harvesting, network op-
timization, Cloud infrastructure optimization, and Application layer. It is crucial to
identify and analyze those challenges for seeking novel solutions.

Reliable IIoT architecture and protocols. In order to increase performance and
reliability for IIoT networks, and meet with the most-demanding communication re-
quirements (e.g. robot control), some leading-edge techniques must be implemented
at various levels of the architecture. Specifically, MAC layer enhancements such as
Time Slotted Channel Hopping (TSCH) could be used in 6LoWPAN. TSCH avoids
packet losses and reduces latency by dynamically changing the carrier frequency in
a globally synced mesh network among all the nodes in the network [16]. On the
other hand, for other communication technologies, such as LoRaWAN or NB-IoT,
the scheme of Static Context Header Compression (SCHC) could be implemented.
SCHC allows compression of IPv6/UDP/CoAP packets, with the aim of making
them suitable for transmission over their restricted links of these technologies and
providing higher interoperability by using IPv6 connectivity [17].

Resource optimization of ML training at the edge. One of the key open issues
in gossip learning lies in the lack of understanding of the relationship between pat-
terns of exchange of models and of movement of agents, and some of the primary
performance parameters of the scheme. A key challenge concerns how to optimally
tune model merging as a function of the context and of the specific problem. Dif-
ferent merging strategies have shown to perform very differently according to the
specific model, but also as a function of the degree of dynamicity of the environ-
ment. New approaches need to be designed in order to improve their efficiency in
heterogeneous settings, i.e. when applied to set of nodes with very diverse sensing
and computing capabilities. Finally, strategies for improving the communication ef-
ficiency of these schemes have to be designed, and the trade-off between perfor-
mance and resource efficiency has to be characterized.

Energy Harvesting. As already mentioned, the location of IoT devices within
manufacturing equipment and processes means that they have to be battery-powered.
Energy harvesting (EH) rises as a green, sustainable, and virtually infinite power
supply to wireless devices, obtaining the available energy from the environment to
reduce the need for storage components. Power generation density depends mainly
on the real characteristics of the ambient energy availability for the IoT device loca-
tion. Even if RF appears to be a common energy source provided by manufacturing
equipment and existing wireless communications, its power density is small com-
pared to other energy sources such as light or magnetic induction. A more in-depth
analysis of the power density of the diverse energy harvesting techniques in fac-
tories is needed. Another deciding factor is the availability of the energy source,
which may be steady (RF) or more unpredictable (light), affecting the power sup-
ply profile. Time variation of the energy sources should be characterized. Finally,
a recent trend of study is the use of hybrid energy harvesting schemes, combining
high-power-density techniques (PV) with more steady sources (RF).
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Edge/Cloud balance-network optimization. The flexibility of the ABIDI ar-
chitecture at the edge layer allows it to adaptively distribute the computation. For
this, the particular application deployed at the edge level will be containerized pro-
viding the architecture with more flexibility at the edge layer. This containerization
provides the edge-layer with the option to dynamically adapt the computational re-
sources by using an (intra-)edge layer load balancing mechanism such as Kuber-
netes. The flexibility of the architecture will then be complemented with an inter-
layer load-balancing mechanism which allows the edge layer to offload tasks to the
server infrastructure. To this end, appropriate load balancing mechanisms need to
be designed, capable of efficiently cooperate with the data-offloading and task bal-
ancing processes.

Cloud infrastructure optimization. On the cloud side, for each use case the
database used must be tailored to the specific needs to optimize its performance in
terms of throughput. This is better done when the scenario characteristics in terms
of data and operations are fully determined, to obtain the database configuration
that best serves the application. This approach can be also applied to entire software
pipelines, such as when Kafka is employed to transmit data from the edge nodes to
the database on the cloud, to optimize every step of the data collection process. The
configuration methodology remains the same, requiring only to define the interface
between Irace and the desired database/pipeline [18].

Application layer. Turning the current approach taken for improving data qual-
ity in cloud environment into a full, low-effort pipeline applicable to a wide range
of use cases is a key challenge. A full pipeline from data to decision support tool vi-
sualization has currently only been implemented for time series regression models,
and expanding to other kind of tasks, such as classification, is important to widen
the spectrum of covered use cases. Utilizing Bayesian Estimation or some other
suitable algorithm for hyperparameter tuning instead of using a grid search could
also improve computational efficiency of the process.

5 Conclusions

Technologies such as artificial intelligence and Internet of Things are reshaping in-
dustrial processes to the point that relevant actors are calling this transformation
the fourth industrial revolution. The combination of big data and automated deci-
sion making is helping companies in transitioning from general mass production
to a smart production that uses information to increase efficiency and reduce waste
and operational costs. This transformation does not come without challenges, since
current approaches are limited in scope and application.

In this work we have presented the ABIDI architecture for Industrial Internet of
Things. ABIDI is a general framework that can be instantiated to address different
real world cases, making use of the most suitable technologies for each scenario.
It encompasses the whole IIoT stack, from the sensors and network layer to the
final application, combining the use of cloud architectures with an edge layer of
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computational nodes that can improve the performance and robustness of the final
application, and can perform distributed AI tasks. We have discussed how the com-
ponents of our architecture address the shortcomings of the current state of the art.
Finally, we have reported a real world scenario where we instantiated our architec-
ture, and we have outlined the steps necessary to reach the full vision of the ABIDI
infrastructure.
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