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Abstract—Muscle synergy analysis investigates the neurophysiological mechanisms that the central nervous
system employs to coordinate muscles. Several models have been developed to decompose electromyographic
(EMG) signals into spatial and temporal synergies. However, using multiple approaches can complicate the inter-
pretation of results. Spatial synergies represent invariant muscle weights modulated with variant temporal coef-
ficients; temporal synergies are invariant temporal profiles that coordinate variant muscle weights. While non-
negative matrix factorization allows to extract both spatial and temporal synergies, the comparison between
the two approaches was rarely investigated targeting a large set of multi-joint upper-limb movements. Spatial
and temporal synergies were extracted from two datasets with proximal (16 subjects, 10M, 6F) and distal
upper-limb movements (30 subjects, 21M, 9F), focusing on their differences in reconstruction accuracy and
inter-individual variability. We showed the existence of both spatial and temporal structure in the EMG data, com-
paring synergies with those from a surrogate dataset in which the phases were shuffled preserving the frequency
content of the original data. The two models provide a compact characterization of motor coordination at the spa-
tial or temporal level, respectively. However, a lower number of temporal synergies are needed to achieve the
same reconstruction R2: spatial and temporal synergies may capture different hierarchical levels of motor control
and are dual approaches to the characterization of low-dimensional coordination of the upper-limb. Last, a
detailed characterization of the structure of the temporal synergies suggested that they can be related to intermit-
tent control of the movement, allowing high flexibility and dexterity. These results improve neurophysiology
understanding in several fields such as motor control, rehabilitation, and prosthetics.� 2023 IBRO. Published by

Elsevier Ltd. All rights reserved.
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INTRODUCTION

The study of motor control focuses on how the central

nervous system (CNS) executes and coordinates

complex movements involving several muscles. Human
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motor control relies on a combination of a limited

number of spatial and/or temporal patterns or modules

(Bizzi et al., 2008) to simplify the planning and the produc-

tion of movement. These patterns of muscular activations

are often referred to as muscle synergies. In the last two

decades, many studies have exploited different

approaches based on muscle synergies for the analysis

of human motor control and different models have been

developed to decompose the electromyographic (EMG)

signals into spatial, temporal or spatiotemporal organiza-

tions. Existing models are spatial or synchronous syn-

ergies (Tresch et al., 1999; Cheung et al., 2005; Ting

and Macpherson, 2005), invariant temporal components

or temporal synergies (Ivanenko et al., 2004; 2005), spa-

tiotemporal or time-varying synergies (D’Avella et al.,
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2003, 2006) and space-by-time synergistic models (Delis

et al., 2014, 2015).

Spatial and temporal synergies are based on simple

invariant modules: in spatial synergies, invariant muscle

weights are modulated by variant temporal coefficients;

in temporal synergies, temporal invariant synergies

modulate variant muscle weights. Typically, muscle

patterns observed in different conditions of a motor task

are captured by the variable combination of invariant

spatial or temporal synergies. The spatiotemporal model

on the other hand captures the variability in the muscle

patterns as due to the amplitude modulation and

temporal delay of invariant collections of potentially

asynchronous muscle activation waveforms. The space-

by-time model proposes invariant spatial and temporal

synergies combined into invariant synchronous

spatiotemporal patterns that are recruited by variant

coefficients. In summary, all synergy models assume

that a few invariant modules are recruited with a few

spatially or temporally variant coefficients to account for

the variability observed in the muscle patterns.

The modules, i.e. the muscle synergies, however,

may be affected by many factors, such as the synergy

model used and the algorithm chosen for the extraction.

Spatial and temporal synergies can be extracted with

NMF (Lee and Seung, 1999). Interestingly, the standard

NMF is mostly used to extract spatial synergies rather

than temporal synergies. This is probably due to the fact

that original work on muscle synergies focused on the

spinal cord and demonstrated a spatial organization of

muscle patterns (Tresch et al., 1999; Cheung et al.,

2005). Another factor that influences muscle synergy vari-

ability is whether EMG data are averaged over repetitions

of the same task or concatenated. For the spatial model,

considering M muscles, K tasks sampled with T samples

each and R repetitions of each group of tasks, and S
extracted synergies, the EMG signals are grouped in a

data matrix with M rows and K∙T columns, if the task rep-

etitions are averaged; on the contrary, if task repetitions

are concatenated (Oliveira et al., 2014), EMG signals

are grouped in a data matrix with M rows and K∙T∙R col-

umns. Extracted synergies are thus extracted as a matrix

with M rows and S columns of invariant spatial synergies

modulated by variant temporal coefficients typical of each

task. While this model is by far the most frequently

employed in the literature, the dual module (time invariant

temporal synergies) may also be used. For the temporal

model, the EMG signals are grouped in a data matrix with

T rows and K∙M columns, if the task repetitions are aver-

aged; on the contrary, if task repetitions are concate-

nated, EMG signals are grouped in a data matrix with T

rows and K∙M∙R columns. Extracted synergies are thus

organized in a matrix with T rows and S columns of invari-

ant temporal synergies modulated by variant muscle

weights typical of each task. A schematic illustration of

how the matrix is arranged for each case is shown in

Fig. 1.

The temporal model is based on the hypothesis that

activation profiles - rather than spatial weights - are

invariant. The extraction of this type of synergies is

usually employed in periodic tasks, like locomotion
(Ivanenko et al., 2004, 2005) and cycling (Torricelli

et al., 2020), where an invariant temporal structure is nat-

urally found. However, the typical, highly repeatable bell-

shaped velocity profiles found in human upper limb dis-

crete movements (Flash and Hogan, 1985) also suggest

the existence of temporal modules, in addition to spatial

modules, of which the amplitude modulation explains

the observed directional tuning of muscle activations

(Borzelli et al., 2013; Scano et al., 2019; Mira et al.,

2021). We speculate that spatial synergies may charac-

terize motor coordination well at the spinal (Takei et al.,

2017) and the corticospinal (Cheung et al., 2009a,

2009b, 2012) levels, while temporal and spatiotemporal

synergies may be employed at the cortical (Overduin

et al., 2015) and the cerebellar (Berger et al., 2020) levels

for coordination even at higher levels of the neuro-motor

hierarchy (Wolpert and Kawato, 1998).

The presence of multiple definitions of muscle

synergies in the literature complicates the comparison

and the interpretation of the results obtained from

different studies. Few studies are available that compare

the spatial and the temporal models and show what

their differences imply in the interpretation of the data.

Delis and collaborators (2014) compared the spatial and

temporal models with the space-by-time model and found

that the space-by-time model, while compatible with the

two models, provides a more parsimonious representa-

tion of muscle activation patterns. Chiovetto et al.

(2013) compared temporal, spatial and spatiotemporal

models by extracting muscle synergies from single joint

movements, including only two muscles. They showed

that all the three models lead to interpretable synergies

that encode specific motor features: in particular, spatial

synergies describe the coordinated activation of a group

of muscles, while the temporal ones reveal the different

phases of the movement. Safavynia and Ting (2012) used

both spatial and temporal synergies to analyze postural

control under perturbation and found that spatial syn-

ergies reconstruct the EMG signals better and are more

interpretable. Russo et al. (2014) employed the spatial,

temporal and spatiotemporal synergy models to investi-

gate and compare the dimensionality of joint torques to

the one of muscle patterns. They found that joint torques

have a lower dimensionality with respect to muscles and

the temporal synergy model is more parsimonious than

the spatial one. Spatial and temporal synergy models

were also compared by Torricelli and collaborators

(2020), who also used a surrogate dataset to evaluate

the process of short-term adaptation in cycling tasks.

Their results showed that neither spatial nor temporal

models can describe the learning process adequately,

while the temporal model shifted by an optimal delay

could explain the changes in muscle coordination. Finally,

Berger et al. (2020) studied the role of the cerebellum on

the organization of movement employing spatial, temporal

and spatiotemporal synergy models and found that spa-

tiotemporal synergies could identify changes in muscular

pattern as a specific effect of cerebellar damage.

Despite the high number of studies in the domain,

there are still limitations and open challenges. First,

while the temporal model has been employed less



Fig. 1. Schematic representation of data matriX arrangement and decomposition for both spatial and temporal synergy models. In the upper panel,

task repetitions are averaged, while in the lower panel the repetitions are concatenated. Data are collected in matrices in which the task is

represented by the color (blue, green, orange), the channels (4 in the example) are represented by different patterns and the time samples (5) are

represented by different color saturation levels.
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frequently than the spatial one, only one study has

investigated to what extent temporal synergies reflect a

specific temporal structure of the muscle activation

patterns rather than only intrinsic smoothness of

temporal profiles (Torricelli et al., 2020). Second, while

several studies compared spatial and temporal synergies,

no studies in literature targeted a large set of multi-joint

upper limb movements. Last, while spatial synergies have

been widely investigated, very rarely previous work pre-

sented a detailed characterization of the temporal syn-

ergies aiming at their physiological interpretation, i.e. a

functional description of the neural structures that may

implement temporal synergies and their role in motor

control.

With the aim of addressing the mentioned challenges,

this paper assesses the existence of significative spatial

and temporal structure, compares the spatial and

temporal models when using the same EMG datasets

and provides a detailed characterization of the temporal

synergies, formulating novel hypothesis on their neural

recruitment. Two comprehensive datasets were used

that include many muscles and degrees of freedom of

the upper limb. The first one includes proximal upper-
limb muscles (Scano et al., 2019) and the other distal

upper-limb muscles (Atzori et al., 2014). The first objec-

tive was achieved building a surrogate dataset from the

original data, randomly shuffling the phases of the Fourier

Transform of the signal and preserving the frequency con-

tent (Torricelli et al., 2020). The spatial and the temporal

synergy models were applied on both the original dataset

and the surrogate one and the goodness of the recon-

struction was compared in order to find significative differ-

ences between the synergies extracted from original and

surrogate datasets. After validating the synergy models,

spatial and temporal synergies were extracted with NMF

from both original datasets and a comprehensive compar-

ison was performed. The reconstruction capability of the

two models suggests a different organization of the motor

control between proximal and distal upper limbs. Differ-

ences in inter-individual variability of the invariant compo-

nents between the two models and the two datasets were

observed. Furthermore, we provide a detailed characteri-

zation of the temporal features of the temporal synergies,

suggesting that they can be related to an intermittent

motor control scheme that allows high flexibility and

dexterity.
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EXPERIMENTAL PROCEDURES

The experiment was conducted according to the

principles expressed in the Declaration of Helsinki and

was approved by the Italian CNR Ethics Ethical

Commettee (see Scano et al., 2019) and from the Ethics

Commission (Switzerland) of the Canton Valais (see

Atzori et al., 2014). Written informed consent was

obtained from all participants.

An overview of the study is shown in Fig. 2.

Dataset description and preprocessing

Two datasets were selected for this analysis: the REACH

PLUS dataset, representing the proximal upper-limb

coordination in multi-directional movements (Scano

et al., 2019) and the publicly available distal upper-limb

dataset NINAPRO (Atzori et al., 2014). They both were

already used for muscle synergy extraction with the spa-

tial synergy model based on NMF (Scano et al., 2018;

Pale et al., 2020).

The REACH PLUS dataset features 16 healthy

participants (10M, 6F) performing nine frontal point-to-

point movements (P2P) and 16 frontal exploration tasks
Fig. 2. Schematic of the workflow for the analysis of both REACH PLUS and N

R repetitions and T time samples. In the first row, the workflow for the valida

temporal and spatial synergy model is shown in the second row.
(EXP). The P2P movements are performed from the

resting position towards eight main cardinal directions

placed on a circular target (NE, E, SE, S, SW, W, NW,

N) and towards the central point O and they are

indicated with the name of the target to reach (O, NE,

E, SE, S, SW, W, NW, N); the EXP tasks include eight

movements performed from the central point O towards

eight cardinal points (center-out: O->NE, O->E, O-

>SE, O->S, O->SW, O->W, O->NW, O->N), and

eight movements performed from the cardinal points to

the central point (out-center: NE->O, E->O, SE->O,

S->O, SW->O, W->O, NW->O, N->O) in standing

position; each group of movements was repeated ten

times. The EMG signal was recorded from 16 muscles

of the right upper limb positioned according to the

SENIAM guidelines (Hermens et al., 2000): Erector Spi-

nae (ES), Teres Major (TM), Infraspinatus (IF), Lower

Trapezius (LT), Middle Trapezius (MT), Upper Trapezius

(UT), Deltoid Anterior (DA), Deltoid Middle (DM), Deltoid

Posterior (DP), Pectoralis (PT), Triceps Long Head (TL),

Triceps Lateral Head (TLa), Biceps Long Head (BL),

Biceps Short Head (BS), Pronator Teres (PR) and Bra-

chioradialis (BR). The data pre-processing was achieved
INAPRO datasets. Each dataset is composed of M muscles, K tasks,

tion of the synergy model is reported, while the comparison between
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with the methods already described in detail in a previous

report (Scano et al., 2019). EMG data were high-pass fil-

tered with a 7th order Butterworth filter with a cut-off fre-

quency of 50 Hz, rectified and low-pass filtered at 10 Hz

with a 7th order Butterworth filter. In each movement

phase, the EMG signal was resampled at 100 samples

and the tonic component was removed with a linear ramp

model. Normalization was performed on the maximum

value of filtered EMG for each channel. The data from

each movement phase were down sampled to 16 sam-

ples, so that spatial and temporal synergies were

extracted from the same total number of samples.

The NINAPRO dataset features 30 selected healthy

participants (30 subjects, 21M, 9F) performing 20 hand

grasps, extracted from hand repertoire of NINAPRO

Dataset 2 (NINAPRO DB2). During the experiment, the

subjects were asked to sit at a desktop and to repeat

the movements that were shown on the screen as

naturally as possible. The set of movements represents

hand grasps encountered in activities of daily living

(ADL). Each group of movements was repeated six

times. Twelve channels were used for the recording of

the EMG signal: eight electrodes were equally spaced

around the forearm at the height of the radio-humeral

joint and four electrodes were placed to record the

activity of the flexor and the extensor digitorum

superficialis (Flex, Ext), the biceps and the triceps

brachii (Bic, Tric). The data pre-processing was

achieved with the methods described in detail in a

previous report (Scano et al., 2018): EMG data were

high-pass filtered at 50 Hz with a 7th order Butterworth fil-

ter, rectified, and low-pass filtered with a 7th order Butter-

worth filter with a cut-off frequency of 10 Hz. The EMG

data was resampled and normalized on the maximum

value of filtered EMG for each channel. The data from

each movement phase were down sampled to 12 sam-

ples, so that spatial and temporal synergies were

extracted from the same total number of samples.

The two datasets were analyzed separately and the

results were compared.

Surrogate dataset

A preliminary step for our analysis was to validate both

the spatial and temporal models for synergy extraction,

demonstrating that a significative spatial and temporal

organization exists in the muscle activation patterns

and, in particular, that the spatial synergies do not

simply represent a feature related to the amplitude

distribution of the signals and the temporal synergies a

feature related to the smoothness of the time-varying

profile of the signals. To do this, we constructed a

surrogate dataset mimicking the amplitude distribution

and smoothness of the original dataset (having the

same Fourier components) but removing its specific

spatiotemporal structure (by randomization of the

phases of the Fourier components of each muscle),

inspired from a previously adopted procedure (Torricelli

et al., 2020). Following the approach of Faes et al.

(2004), the surrogate datasets were constructed comput-

ing the Fourier Transform (FT) of the original time series;

for each frequency component, we substituted the phases
with random phases / chosen in the interval �p;p½ �,
while the modulus remained unchanged. Therefore, each

complex amplitude obtained from FT was multiplied by ei/

and, in order to compute a real inverse FT, the phases

were symmetrized to have / fð Þ ¼ �/ �fð Þ (Theiler et al.,

1992). Finally, the inverse of the Fourier Transform was

applied to return into the time domain, obtaining time ser-

ies with the same frequency content of the original data

but with random temporal structure. An example of the

original and the surrogate dataset is shown in Fig. 3.

These datasets were given as input to the spatial and

the temporal synergy extraction algorithm and the result-

ing reconstruction R2 and order of factorization for each

R2 threshold were compared to those obtained from the

original dataset.

The bootstrapping procedure was performed for both

datasets and repeated ten times for each participant:

therefore, ten surrogate datasets were obtained and

only the mean R2 over the ten repetitions for each

participant was taken into consideration.
Synergy extraction

As in a previous study (Scano et al., 2019), data from the

REACH PLUS dataset were averaged across repetitions

and arranged differently for the extraction of spatial and

temporal synergies. For extracting spatial synergies, con-

sidering M muscles, K tasks sampled with T samples

each, the EMG signals were rearranged in a data matrix

with M rows and K � T columns. In contrast, for extracting

temporal synergies, the EMG data matrix had T rows and

K �M columns.

Since there are six repetitions of each movement in

the NINAPRO dataset and they had a longer duration,

data were concatenated in order to preserve the trial by

trial variability (Oliveira et al., 2014). Therefore, consider-

ing M muscles, K tasks sampled with T samples each,

and R repetitions of each group of tasks, the EMG signals

were arranged in a data matrix with M rows and K � T � R
columns for extracting spatial synergies and in a data

matrix with T rows and K � R �M columns for extracting

temporal synergies.

For extracting both spatial and temporal synergies, we

used a non-negative matrix factorization based on the

alternating least squares algorithm (Berry et al., 2007).

We considered as convergence criteria when the error

change between an iteration and the consecutive one

lower than 10-4 or when the number of iterations were

higher than 50. The spatial model is the following:

EMG k; r; t;mð Þ ¼
XS

i¼1

ci
k;r tð ÞwiðmÞ

where wi are the time-invariant synergy vectors and ci the

time-varying scalar activation coefficients for each synergy

(i = 1. . .S), and EMG k; r; t;mð Þ the activity of muscle m at

time t of repetition r of task k.

For the REACH PLUS dataset, considering K ¼ 25,

T ¼ 16, M ¼ 16, input data was a 16 � 400 matrix.

Spatial extraction would lead to S synergies (each a

column vector with 16 components) and S � 25 time-

varying coefficients (16 samples each). For NINAPRO



Fig. 3. Example of the original (upper panel) and the surrogate (lower panel) dataset from one subject of the REACH PLUS dataset. The muscles

are reported in rows, while the 25 tasks are reported in columns. The P2P tasks are the movements performed from the resting position to the target

and they are indicated with only the name of the target; the EXP tasks are the exploration movements performed from the central point O to the

cardinal points (center-out) and from the cardinal points to the central point (out-center).
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dataset, input data was a 12 � 1440 matrix, considering

K ¼ 20, T ¼ 12, R ¼ 6, M ¼ 12. Spatial extraction would

lead to S synergies (each a column vector with 12

components) and S � 120 time-varying coefficients (12

samples each). Each spatial synergy was normalized by

the Euclidean norm of that synergy and as a

consequence the temporal coefficients were also

normalized by the reciprocal of the norm.

The temporal model is:

EMG k; r; t; mð Þ ¼
XS

i¼1

wi
k;rðmÞciðtÞ

Where ci are the invariant temporal synergy vectors

and wi the variant muscle weight vectors for each

synergy dependent on task and repetition. Using the

REACH PLUS dataset, input data was a 16 � 400 matrix

and the extraction would lead to S temporal synergies

(16 � S matrix) and S � 400 variant muscle weights (25

loads per spatial group). With NINAPRO dataset, input

data was a 12 � 1440 matrix and the extraction would

lead to S temporal synergies (12 � S matrix) and S � 1440
variant muscle weights (120 weights per spatial group).

The order of factorization S, given as input in the NMF

algorithm, was increased from 1 to the number of EMG

channels (16 for REACH PLUS and 12 for NINAPRO)

for both spatial and temporal synergy extraction. For

each S, the algorithm was applied 100 times with

different random initializations in order to avoid local

minima and the optimization run accounting for the

higher variance of the signal was chosen as the

representative of the order S.

As a measure of goodness of reconstruction, we used

the R2 defined as 1� SSE
SST

where SSE is the sum of the

squared residuals and SST is the sum of the squared

differences with the mean EMG vector (D’Avella et al.,

2006). The order of factorization was chosen as the low-

est one explaining a predefined threshold level of R2. We

chose three threshold levels commonly adopted in litera-

ture (Pale et al., 2020) that were 0.80, 0.85 and 0.90.
Synergy clustering

To evaluate the variability of synergies from different

participants, we grouped invariant spatial and temporal

synergies across participants for each R2 level. Cluster

analysis allows to reduce the dataset of extracted

synergies to a limited number of groups, which

compactly represent the repertoire of modules extracted

among the participants. Since the order of factorization

varied across the participants, we decided to group the

extracted synergies using the k-means clustering

algorithm (Steele et al., 2015).

A matrix containing the whole set of muscle synergies

extracted from all the participants was given as input to

the algorithm. The number of clusters was initially set

equal to the maximum order of factorization obtained

among the participants for the chosen threshold and

was increased until all the synergies from the same

participant were assigned to different clusters. The

number of replicates was set to 200, namely the

number of times the algorithm repeated the clustering
with new initial cluster centroids estimates (chosen

uniformly at random (Arthur and Vassilvitskii, 2007)) with

the same number of clusters and gave the results with the

lowest sum of Euclidean distances of each point in the

cluster to the centroid. The entire procedure was repeated

10 times and we considered as the best solution the one

that gave the most parsimonious number of clusters. The

algorithm returned the synergies grouped in each cluster

and the centroid (mean synergy in the cluster). The clus-

tering procedure was performed for both spatial and tem-

poral model and for each R2 threshold.
Linear discriminant analysis for movement
classification

Different approaches have been developed in literature

relating muscle activity, muscle synergies, or kinematic

synergies to the performed task by assessing their

ability to discriminate different movements (Santello

et al., 1998; Brochier et al., 2004; Delis et al., 2013,

2018). We then wondered if spatial and temporal syn-

ergies differ in their ability to classify the performed move-

ments. We employed a single-trial classification analysis

using as features of individual movements the integral of

the activation coefficients for each direction for the spatial

model and the integral of muscle weights for the temporal

model. We implemented a linear discriminant analysis

(LDA) with a leave-one out cross validation similarly to

Delis and collaborators (Delis et al., 2013, 2018). We per-

formed this analysis only for the REACH PLUS dataset,

since in NINAPRO only six repetitions of each task were

performed, while it was previously suggested that the

validity of this analysis requires at least 10 repetitions of

each motor task (Delis et al., 2013). The REACH PLUS

dataset was split into P2P movements and EXP tasks to

reduce variability and resemble previous works in the

field; thus, only the center-out movements (from O to

the cardinal directions) were considered for the EXP

movements in order to avoid ambiguity generated by sim-

ilar directions that would affect classification accuracy

(e.g. W->0 is hardly distinguished from 0->E). The anal-

ysis was performed only for the synergies extracted with

the R2 threshold of 0.80.
Outcome measures and statistics

The goodness of the reconstruction was obtained from

the original and the surrogate dataset with a spatial and

a temporal model. A linear mixed-effects model

(McLean et al., 1991) was fitted for the R2 in order to

investigate the effects of the use of the surrogate and orig-

inal dataset. First, the data was tested for normality with

the Kolmogorov-Smirnov test. Then, the R2 was modelled

as the dependent variable with fixed effects for dataset

type and order of extraction with interaction, considering

the order of extraction as a categorical variable. Random

intercepts were included for effects of subjects. The level

of significance (aÞ was set 0.05.

In order to compare the spatial and the temporal

model, we proceeded as follows. First, we compared

the goodness of reconstruction obtained from each

model and a statistical analysis was conducted to
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evaluate the differences. We extracted synergies

according to three reconstruction R2 thresholds and we

quantified the mean and the standard deviation of each

order of factorization to compare the R2 achieved with

spatial and temporal synergies. Linear mixed-effects

model was fitted for the R2 to investigate the effects of

the use of the spatial and temporal model. First, the

data was tested for normality with the Kolmogorov-

Smirnov test. Then, the R2 was modelled as the

dependent variable with fixed effects for synergy model

and order of extraction with interaction, considering the

order of extraction as a categorical variable. Random

intercepts were included for effects of subjects. The

level of significance (aÞ was set 0.05.

Furthermore, we clustered extracted synergies across

participants and R2 levels to define the inter-individual

repertoire of invariant spatial and temporal synergies.

The inter-individual similarity was computed via cosine

angle, comparing all combination of synergies present in

a cluster and then averaged for each level of R2. This

process was done for each dataset and for both spatial

and temporal invariant synergies.

To provide a detailed characterization of the temporal

model and of the temporal structure found in the data,

temporal synergies were extracted from the surrogate

datasets, considering the same order of factorization of

the original dataset for each R2 threshold, and they

were clustered with k-means clustering algorithm. For

both the original and the surrogate datasets, the mean

of the temporal synergies in each cluster were fitted

with a Gaussian distribution and the phase (the peak

location), the period (distance between two consecutive
Fig. 4. Reconstruction R2 computed with spatial synergy model: compariso

blue). Both REACH PLUS and NINAPRO results are reported, averaged acro

error bars represent the standard deviations.
phases), and the full width at half maximum (FWHM)

were computed. After testing the data for normality with

the Kolmogorov-Smirnov test, a two-sample t-test was

performed at each R2 threshold in order to identify the

difference between original and surrogate datasets. The

level of significance (aÞ was set 0.05.

Finally, the results of the classification analysis are

reported with confusion matrices (shown only for a

typical subject) showing the percentage of correctly

classified repetition of each task. Then, the classification

accuracy was computed as the ratio between the

number of correctly classified tasks and the total

number of classified tasks. After testing the data for

normality with the Kolmogorov-Smirnov test, a two-

sample t-test was performed in order to identify the

difference of classification accuracy between spatial and

temporal model. The level of significance (aÞ was set

0.05.

RESULTS

Validation of the synergy models

In Fig. 4, the comparison of the reconstruction R2 of the

spatial model using the original and the surrogate data

is shown for both REACH PLUS and NINAPRO dataset.

The R2 reconstruction was higher using the original

dataset with respect to the surrogate one, for both

REACH PLUS and NINAPRO. For both datasets, the

‘dataset type’ (surrogate/original) had a significant

influence on the reconstruction R2 (p < 0.001),

indicating that the spatial organization of the muscle

patterns captured by the spatial synergy decomposition
n between original data (dark blue) and the surrogate dataset (light

ss participants. The squares are the mean across participants and the
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did not simply arise from the amplitude distribution of the

data.

The difference between the R2 curve of the surrogate

and the R2 curve of the original data was significant for all

the order of extraction with p < 0.001 until order 14

(included) for REACH PLUS and order 10 (included) for

NINAPRO.

In Fig. 5, the comparison of the reconstruction R2 of

the temporal model using the original and the surrogate

data is shown for both REACH PLUS and NINAPRO

dataset. As for the spatial model, the reconstruction R2

was higher using the original dataset with respect to the

surrogate one, for both REACH PLUS and NINAPRO.

For both datasets, the ‘dataset type’ (surrogate/original)

exhibited a significant influence on the reconstruction R2

(p < 0.001), indicating that also the temporal

organization of the muscle patterns revealed by the

temporal synergy decomposition could not simply be

explained by the smoothness of the time-varying profile

of the data.

The difference between the R2 curve of the surrogate

and the R2 curve of the original data was significant for all

the order of extraction until order 14 (p = 0.015) for

REACH PLUS and order 11 (p = 0.03) for NINAPRO.
Synergy reconstruction and order of factorization

In Fig. 6, we reported the reconstruction R2 comparing

spatial synergies and temporal synergies for the

REACH PLUS and for NINAPRO dataset.

The R2 reconstruction was reported from order 1 to

the number of EMG channels, 16 for REACH PLUS and
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Fig. 5. Reconstruction R2 computed with temporal synergy model: comparis

REACH PLUS and NINAPRO results are reported, averaged across participa

represent the standard deviation.
12 for NINAPRO. In REACH PLUS dataset, the two

methods reported nearly the same R2 at order 1 (0.35

for spatial and at 0.32 for temporal). For all the other

order of factorization, the temporal model showed a

higher R2. In NINAPRO dataset, instead, the R2 curves

of the two methods crossed each other between order 4

and 5: R2 is higher in temporal synergies until order 4

and in spatial synergies after this order. The linear

mixed-effects model analysis indicated that the ‘synergy

model’ had significant effects on the R2, with p < 0.001

for REACH PLUS and with p = 0.04 for NINAPRO,

indicating a different reconstruction between the spatial

and the temporal model. Furthermore, for REACH PLUS

the difference between the R2 curve of the spatial model

and the R2 curve of the temporal model was significant

for all the order of extraction until order 10 (p = 0.028),

while for NINAPRO the difference between the R2 of the

two models is significant only for order 1 and 2 with

p < 0.001.

In Table 1, the orders of factorization averaged across

participants for each R2 threshold are reported. For the

REACH PLUS dataset, the number of extracted

synergies for each R2 thresholds varied across

participants respectively from 4 to 7, from 5 to 9, from 7

to 11 for the spatial model, while the range was

between 3 and 6, 4 and 7, 5 and 10, for temporal

model. For NINAPRO dataset, the order of factorization

ranged from 2 to 5, from 3 to 6, from 3 to 8 for the

spatial model, while using temporal model the orders

were between 2 and 5, 3 and 6, 4 and 8.

In Fig. 7, we report an example of spatial synergies

and variant temporal coefficients extracted from EMG
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Fig. 6. Reconstruction R2 for spatial and temporal synergies for both datasets (REACH PLUS and NINAPRO).

Table 1. Means and standard deviations for the number of extracted

synergies for each R2 threshold for spatial and temporal models in both

datasets

MODEL R2 = 0.80 R2 = 0.85 R2 = 0.90

REACH PLUS

SPATIAL 5.8 ± 1.0 7.2 ± 1.2 9.2 ± 1.2

TEMPORAL 4.6 ± 0.8 5.7 ± 1.2 7.5 ± 1.7

NINAPRO

SPATIAL 3.8 ± 0.7 4.6 ± 0.8 5.6 ± 0.9

TEMPORAL 3.6 ± 0.8 4.3 ± 0.8 5.7 ± 0.8
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signal of a typical subject of the REACH PLUS dataset.

With R2 threshold = 0.80, the order of extraction was

five, with R2 = 0.81. In the first row, the distribution of

muscles in each synergy is shown, while the temporal

activation profiles of each synergy are reported for each

direction of movement.

An example of temporal synergies with variant spatial

loads extracted from the same participant is reported in

Fig. 8. In this case, imposing a R2 threshold of 0.80,

four synergies were extracted, (R2 = 0.83). The

invariant temporal synergies are shown in the first

column and the respective variant spatial loads are

reported for each direction of movement.
Inter-individual variability of invariant components

In Fig. 9, the spatial synergies after clustering are

reported for the REACH PLUS dataset (inter-individual

synergies).

Twelve clusters were chosen for grouping the

synergies obtained with R2 = 0.80 and each cluster
contained from 4 to 14 synergies. With R2 = 0.85,

fourteen clusters were found to group synergies, with 3

to 14 synergies in each cluster. Finally, for R2 = 0.90,

synergies were clustered in fourteen groups composed

of 6 to 16 synergies each.

In Fig. 10, we report the temporal synergies after

matching across participants for REACH PLUS (inter-

individual synergies).

For the first R2 threshold, temporal synergies were

clustered in seven groups, containing from 8 to 14

synergies. With R2 = 0.85, eight clusters were used to

match the temporal synergies and in each cluster the

number of synergies ranged from 6 to 15. Eleven

clusters were found for R2 = 0.90, containing from 2 to

14 synergies each. The number of clusters needed to

group temporal synergies were lower with respect to

spatial synergies for all the R2 thresholds, as reflected

by the lower mean order of factorization.

In Fig. 11, we report the spatial synergies after

matching across participants for the NINAPRO dataset

(inter-individual synergies).

For the NINAPRO dataset, the number of clusters for

R2 = 0.80 was nine, with a range of 4 to 23 synergies in

each group. For R2 = 0.85, spatial synergies were

clustered in ten groups (each composed of 6–24

synergies). Finally, for R2 = 0.90, eleven clusters were

found and each cluster contained from 9 to 25 synergies.

In Fig. 12, we report the temporal synergies after

matching across participants for the NINAPRO dataset

(inter-individual synergies).

Temporal synergies were grouped in seven clusters

for R2 = 0.80, with 10 to 21 synergies in each group.

For R2 equal to 0.85, the number of clusters was eight



Fig. 7. Typical example of spatial synergies and variant temporal coefficients, extracted from the REACH PLUS dataset.
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and each one contained from 12 to 27 temporal

synergies. For R2 = 0.90, ten clusters were found and

the number of synergies in each one ranged from 10 to

27. As for REACH PLUS dataset, the number of

clusters were lower for the temporal model with respect

to the spatial model in all the R2 thresholds, even if the

mean order of extraction was similar between the two

models.

In Table 2, the inter-individual similarities for spatial

and temporal synergies in the same cluster are

summarized.

The similarity computed in each cluster was high

(>0.75) for all the conditions. In the REACH PLUS

dataset, similarity of spatial synergies was 0.78, 0.77

and 0.81 for the 0.80, 0.85, 0.90 thresholds,

respectively. For the temporal model, instead, the

similarity was higher, reaching 0.89 for R2

threshold = 0.80 and 0.90 and 0.88 for R2

threshold = 0.85. For the NINAPRO dataset, the

similarity of spatial synergies was 0.85, 0.86 and 0.86.

For temporal synergies, the similarity was higher and

decreased when increasing the threshold: it was 0.90 at

R2 threshold = 0.80, 0.89 for R2 threshold = 0.85 and

0.88 for the highest threshold.

Similarity was computed in each cluster and, then,

averaged across clusters for the same R2 threshold.

Mean and standard deviations are compared in Fig. 13.

For both the datasets, temporal synergies showed a
higher similarity and lower standard deviations with

respect to spatial synergies.
Characterization of the temporal synergies

In Fig. 14, the results of the k-means clustering on the

temporal synergies extracted from the surrogate data of

REACH PLUS dataset are reported. For each subject,

the order of factorization for each threshold was the

same used for the synergy extraction from the original

dataset and the extracted synergies were clustered in 7,

9, and 11 clusters. The number of clusters was equal to

the number of clusters of the original dataset for R2

threshold = 0.80 and R2 threshold = 0.90, while for R2

threshold = 0.85 the number of clusters was higher.

In Fig. 15, the results of the clustering procedure on

the temporal synergies extracted from the surrogate

data of NINAPRO dataset are reported. For each

subject, the order of factorization for each threshold was

the same used for the synergy extraction from the

original dataset and the extracted synergies were

clustered in 6, 7, and 10 clusters. Differently from the

REACH PLUS dataset, the clusters were fewer than the

clusters of the original dataset R2 threshold = 0.80 and

R2 threshold = 0.85, indicating that the synergies

extracted from the surrogate dataset were more similar

between subjects, while for R2 threshold = 0.90 the

number of clusters was the same of the original dataset.
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The mean temporal synergy of each cluster was fitted

with a Gaussian function and the phase of the peak and

its full width at half maximum (FWHM) were computed
for both the original and the surrogate dataset and they

are reported in Table 3. The synergies with normalized

movement phase <5% or >95% were reported in
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Table 2. Inter-individual similarity (spatial and temporal synergies) is

reported for each threshold and each dataset. The values are the mean

and standard deviations between the similarity computed in each

cluster obtained at that threshold

MODEL R2 = 0.80 R2 = 0.85 R2 = 0.90

REACH PLUS

SPATIAL 0.78 ± 0.04 0.77 ± 0.04 0.81 ± 0.04

TEMPORAL 0.89 ± 0.02 0.88 ± 0.02 0.89 ± 0.02

NINAPRO

SPATIAL 0.85 ± 0.03 0.86 ± 0.02 0.86 ± 0.03

TEMPORAL 0.90 ± 0.03 0.89 ± 0.03 0.88 ± 0.02
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brackets and excluded from the computation of the mean

period (difference between peak phases) and FWHM

because they represent the tails of the signals and

these curves were incomplete and cannot be easily

fitted with a Gaussian function. Mean widths and mean

periods are reported in Fig. 16.

For both the original and surrogate datasets, the

period and the FWHM decreased as the number of

extracted synergies increased. The surrogate synergies

showed larger FWHM and period with respect to the

original synergies for all the thresholds, even when the

number of clusters was higher (as in the REACH PLUS

dataset). The original synergies appear more

concentrated, with closer and narrower peaks.

Statistical analysis showed that FWHM was

significantly different between original and surrogate
data for R2 = 0.80 (p = 0.01) and R2 = 0.90

(p = 0.02) for REACH PLUS, while significant

differences were found for R2 = 0.80 (p = 0.01) and

R2 = 0.85 (p = 0.007) for NINAPRO. Differences in

periods were statistically significant for all the threshold

in both REACH PLUS and NINAPRO datasets.

Classification analysis

In Fig. 17, the confusion matrices of a typical subject are

shown for the spatial and temporal models and for P2P

and EXP datasets, and the classification accuracy of all

the subjects is reported.

The classification accuracy for the spatial model was

0.60 ± 0.09 for P2P and 0.74 ± 0.08 for EXP and for

the temporal model was 0.48 ± 0.07 for P2P and

0.65 ± 0.09 for EXP. Thus, we found that for P2P and

EXP dataset, the classification accuracy was

significantly higher for spatial model than for temporal

one (10-5 in P2P and 10-4 in EXP).

DISCUSSION

In this study, we performed a quantitative assessment of

the spatial and temporal synergies extracted using NMF

from two datasets that provide a comprehensive

description of both distal and proximal upper limb

movements. We first showed that there exists a

significative spatial and temporal structure in the EMG

signals of several muscles that could not be simply

explained by the amplitude distribution or the
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Fig. 13. Inter-individual similarity of invariant synergies (spatial and temporal) for both datasets when changing the R2 threshold.
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smoothness of the time-varying profile of the data. In fact,

the goodness of reconstruction with temporal and spatial

synergies obtained with a surrogate dataset when the

temporal and spatial structures of individual muscles

was randomized (while maintaining the same EMG

spectral features) was lower than the one obtained with

the original signals. Spatial and temporal synergy

models were then compared in terms of quality of

reconstruction (R2), number of synergies (reconstruction

order) selected according to three different R2

thresholds, and inter-individual synergy variability.

Interestingly, we found that especially for low and

frequently used reconstruction R2, the temporal

factorization required fewer temporal components than

spatial ones. These findings were not analyzed in detail

before and suggest that the smoothness of the time-

varying profile of the data constrains the temporal

dimensionality more than the amplitude distribution of

the data constrains the spatial dimensionality. The

differences between the two models were more evident

in the proximal upper limb dataset. At the same time,

the ‘‘elbow” in the reconstruction R2 curve was more

pronounced with temporal synergies than with spatial

synergies. It follows that it is often possible to find an

even more compact representation of movement with

temporal synergies with respect to the standard spatial

model. It is indeed likely to obtain a lower dimensional

representation when using the temporal model. On the
contrary, spatial synergies were more parsimonious

than temporal synergies for higher reconstruction R2

values, that are less frequently used. Comparing both

models with the surrogate dataset, the R2 curve of the

surrogate data is closer to the R2 curve of the original

data for the temporal model. Since the surrogate data

indicate the intrinsic dimensionality expected for signal

with such characteristics, the temporal synergies may

have a lower dimensionality due to the smoothness of

the profile of the data rather than to a more compact

representation of the temporal model. Thus, the

smoothness of the time-varying profile of the data

appears to constrain the temporal dimensionality more

than the amplitude distribution of the data constrains the

spatial dimensionality. Consequently, according to this

point of view, the spatial model gives a more compact

representation of the movement, even if it requires more

synergies as previously explained. However, we remark

that spatial and temporal synergies may capture

different levels of organization and no assumption

should be made a priori on the proper number of

synergies that should be extracted (which can in general

be different when adopting on model or the other). We

conclude that the two methods are complementary at a

mathematical level, even if they may reflect different

features and organization at neural level. It follows that

it is probably not correct to support only the use of the

spatial (or the temporal) model.



Table 3. Full widths at half maximum and phases of the peak are reported for the mean temporal synergy of each cluster of the original (Or) and the

surrogate (Sur) dataset of both REACH PLUS and NINAPRO datasets. In the last column, the mean width and the mean phase difference between

consecutive peaks (period) are reported. The values in brackets are excluded from the mean since the phases was <5 or >95. The bold indicates the

synergies in which the FWHM of the original data is larger than the FWHM of the surrogate data

REACH PLUS

R2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 mean

FWHM Or 0.80 (23.1) 13.5 14.2 14.7 17.5 16.1 21.9 16.3 ± 3.1

0.85 (21.6) 10.7 13.5 12.4 15.3 15.5 19.4 21.7 15.5 ± 3.9

0.90 (21.3) 9.9 10.9 10.9 11.3 10.0 10.7 16.9 5.1 10.8 9.7 10.6 ± 2.8

Sur 0.80 (19.1) 19.7 20.8 21.4 19.8 19.3 20.6 20.3 ± 0.8

0.85 (8.0) 16.9 17.1 17.2 15.5 16.7 17.3 17.4 15.8 16.7 ± 0.7

0.90 (9.1) 13.2 14.5 14.4 11.1 13.1 13.7 12.3 12.4 12.9 12.1 13.0 ± 1.1

phase Or 0.80 (-0.9) 22.4 30.8 38.2 49.7 59.1 70.4 9.6 ± 1.8

0.85 (-1.5) 19.7 28.2 37.0 47.3 56.5 67.4 77.8 9.7 ± 1.0

0.90 (-1.6) 19.7 27.1 38.8 52.4 60.3 67.8 76.4 11.4 45.5 33.1 7.2 ± 1.0

Sur 0.80 (2.0) 15.2 28.6 43.5 59.5 77.0 93.5 15.7 ± 1.5

0.85 (1.0) 20.0 34.2 47.2 56.7 78.6 93.0 5.9 66.0 12.4 ± 2.2

0.90 (1.0) 16.8 27.2 37.3 57.1 82.6 93.9 6.5 66.1 50.2 74.0 9.7 ± 1.8

NINAPRO

R2 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 mean

FWHM Or 0.80 22.5 26.9 28.5 25.4 22.9 31.8 (38.8) 26.3 ± 3.5

0.85 16.5 24.6 24.5 23.9 23.8 22.0 (42.7) 18.8 22.0 ± 3.2

0.90 14.8 16.5 19.5 21.5 17.4 14.4 (25.2) 16.1 22.0 15.8 17.5 ± 2.8

Sur 0.80 (33.1) 30.9 30.4 34.8 30.5 35.7 32.5 ± 2.6

0.85 26.5 27.1 27.2 27.5 25.2 26.7 (25.4) 26.5 ± 1.0

0.90 18.6 20.2 19.4 19.5 21.2 20.4 (13.9) 20.0 19.9 20.7 19.5 ± 2.2

phase Or 0.80 24.9 37.5 49.0 59.8 71.3 82.6 (98.0) 11.7 ± 1.0

0.85 20.3 38.4 49.6 57.6 67.8 79.6 (99.5) 30.8 9.9 ± 1.7

0.90 19.1 37.9 48.3 55.2 70.6 82.9 (97.2) 29.7 77.6 61.8 8.0 ± 1.9

Sur 0.80 (2.7) 21.5 34.9 51.7 71.5 89.1 16.9 ± 2.7

0.85 7.4 21.5 39.3 56.5 71.3 83.7 (100.3) 15.3 ± 2.2

0.90 8.7 18.2 29.8 51.2 71.4 83.1 (101.7) 41.0 61.1 94.9 10.8 ± 0.9

Fig. 16. The mean FWHM (left panel) and the mean period (right panel) computed on the mean temporal synergy of each cluster are reported for

both REACH PLUS and NINAPRO datasets. The shaded areas represent the data distribution, while the points are the data. The black lines

represent the mean (continuous lines) and the median (dashed lines). The red color refers to the original data, while the pink color to the surrogate

data.
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The sensibility of the temporal synergy model on the

number of samples of the input signals should be

investigated more in future work. Decreasing the

number of samples may give a higher reconstruction of
the signal, as in Torricelli et al. (2020) in which better

results were obtained using 18 samples for the temporal

model. Similarly, in this study the number of samples for

EMG time series was low, as it was matched to the num-
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ber of muscles to allow a fair comparison between the two

models. Therefore, the temporal structure can be com-

puted after down-sampling or over-sampling the time ser-

ies and this may affect the results. The two models exhibit

some differences on the datasets employed, probably due

to the movements involved. Temporal synergies have

been used principally to describe cyclic movements char-

acterized by specific cyclic timings, like locomotion

(Ivanenko et al., 2004; 2005). Therefore, in the REACH

PLUS dataset, where typical reaching movements are

characterized by bell-shaped velocity profile of the end

effector trajectory, the temporal synergy model gives

results similar to the spatial model. In the NINAPRO data-

set, reach to grasp movements are characterized by a

triphasic modulation (pre-shaping, grasping and releas-

ing) and more synergies are needed to obtain high R2

reconstruction. Similar results were found also in kine-

matic synergies applied to hand grasps. Indeed, Jarque-

Bou et al. (2019) found that three kinematic synergies

accounted for more than the 50% of variance but a high

number of synergies was needed to reconstruct finer

movements of the hand. Moreover, finer movements of

the hand require a more fractionated control of muscles

that might be reflected by multiple temporal synergies

(Takei et al., 2017).

The temporal synergy structure was analyzed in detail

comparing original and surrogate datasets. The

differences found in the distribution of the temporal

synergies extracted from original and surrogate datasets

suggest that the shape of temporal synergies is not

simply related to the smoothness of the input signal but

it may represent a specific feature of the neural

commands. Temporal synergies of the original datasets

were narrower and activated closer in time and

condensed in the central phase with respect to the

smoothed Gaussians of the surrogate data. Thus,

neural commands may be generated as a sequence of

narrow pulses generated at regular and short intervals

during a movement, each activating one or more spatial

synergies. The reduction of the full width at half

maximum and of the periods when comparing temporal

components with the natural composition of a signal

with the same frequency content seems to suggest that

the configuration of the temporal synergies may reflect

an intermittent control of movement. Although the

majority of the optimal control theories are based on

continuous control signals that generate the human

movement, some studies already suggested that the

control signal is based on an intermittent control

mechanism (Gawthrop et al., 2011; Karniel, 2013). In this

control paradigm, the sensory feedback is used intermit-

tently to parameterize the controlled motion law. The

CNS sends pulsed commands to generate the movement

that are transformed into activation profiles of muscles

(Leib et al., 2020) and allows to shape the motor output
Fig. 17. Relation between spatial synergies, temporal synergies and the tas

the left) and for the EXP center-out dataset (on the right) are shown. In the up

the percentage of correct classifications for the different directions are reporte

reported for the spatial model (in blue) and the temporal model (in red).

3

by adjusting the timing and the amplitude of the bursts

(Gross et al., 2002). While the movements analyzed in

this study reflect mainly feedforward control (especially

in the REACH PLUS dataset), in this study we still

observed an intermittent organization of temporal syner-

gies. Given the importance of high dexterity of flexibility

of human upper limb and hand, we suppose that the con-

trol architecture might be tuned to be intermittent by nat-

ure in order to be ready to implement intermittent

adaptation and corrections to the movement. In an exper-

imental design in which sensory feedback plays a larger

role, we expect that intermittent control emerges even fur-

ther. This is also suggested by the fact that in the NINA-

PRO (featuring slower movements and higher

involvement of the sensory feedback) the difference

between the real dataset and the surrogate is amplified

with respect to REACH PLUS in which movements are

controlled mainly feedforward. This implementation of

control of human movement may be related to higher

order derivative of the trajectory than the acceleration.

Indeed, the intermittent control is predicted by the control

signal of the minimum acceleration criterion with con-

straints (Ben-Itzhak and Karniel, 2008), which is based

on minimizing the acceleration while constraining the

maximum value of the jerk (third derivative). Intermittent

control allows an online optimization process that allows

higher adaptability and flexibility of the movement (van

de Kamp et al., 2013; Loram et al., 2014). This hypothesis

for the physiological mechanisms underlying the temporal

synergies should be tested more directly with neurophys-

iological approaches or with perturbation/learning experi-

ments in future work.

This finding paves the way for considering spatial and

temporal synergies as representative of different features

of the modular and hierarchical neuromotor organization.

The rationale behind spatial synergies has been widely

discussed in the literature. It is based on the

observation of spinal modules that produce movements

by linear combination of their force or and associated

muscle activity output (Bizzi et al., 2002; D’Avella and

Bizzi, 2005). This means that spatial modules need diver-

gent neural connection for being implemented and they

have been widely related to neural circuits at the spinal

level (Tresch et al., 1999; Saltiel et al., 2001). At the same

time, in this study we noted that temporal synergies for

low orders can achieve higher reconstruction R2. We thus

propose that temporal synergies may reflect a neural

strategy for generating motor commands, possibly at cor-

tical level, as a reduced number of descending signals

recruiting spatial synergies, possibly at spinal level,

although Ivanenko et al. (2006) suggested that the tempo-

ral patterns of muscle activation during locomotion may

also be located in the spinal circuitry. Many studies sug-

gest that CNS structures above spinal level contribute to

movement planning. Hart and Giszter (Hart and Giszter,
k space. The classification results of the LDA for the P2P dataset (on

per panel, the confusion matrices of a typical subject (ID = 3) showing

d. In the lower panel, the classification accuracy of all the subjects are



C. Brambilla et al. / Neuroscience 514 (2023) 100–122 119
2004, 2010) demonstrated that the brainstem can be

involved in the time-scale distribution, improving smooth-

ness and reducing co-contraction, thus contributing to the

implementation of temporal synergies. It has been also

demonstrated that internal models controlling the arm

movement are located in cerebellum (Kawato, 1999)

and multiple inverse and forward models can be adapted

to a large set of situations (Wolpert and Kawato, 1998;

Haruno et al., 1999). Santello et al. (2013) hypothesized

that the cerebellum receives direct input from the spinal

premotor pools (and synergies) employed in the tasks.

Berger et al. (2020) showed that temporal and spatiotem-

poral but not spatial structure in the muscle patterns is

affected by cerebellar damage. At the same time, the tem-

poral structure of the EMG signals itself can be the result

of a set of sensorimotor feedback signals involved in

motor control for adaption and tuning (Lockhart and

Ting, 2007; Welch and Ting, 2008), thus temporal syn-

ergies can be shared between higher and lower levels

of the CNS. All these evidences support the notion that

synergies are found not only at spinal level. They also

contribute to explain the observation that temporal syn-

ergies show lower dimensionality with respect to spatial

synergies: motion planning takes place in a principal

components-based, synthetic space that summarizes

the main features of the movement more synthetically

than the actuation (spatial synergies). Thus, spatial and

temporal synergies may not just be dual models but they

may reflect different levels of a hierarchical organization.

Temporal synergies reflect coordination in time, and map-

ping of goals into high-level features of motor commands

(planning); spatial synergies reflect the organization to

execute the movement (actuation). Since both models

are supported by the data and describe complementary

aspects of motor control, a more complete analysis of

motor control may be provided by the space-by-time

model (Delis et al., 2014, 2015) which incorporates both

spatial and temporal synergies. This method identifies

both spatial and temporal invariant modules that encode

complementary aspects of the tasks: spatial modules

identify muscles that activate synchronously, while tem-

poral modules encoded movement phases (Hilt et al.,

2018). Temporal and spatial muscle synergies encoded

different temporal and spatial aspects of the movements,

showing that there is a correspondence between major

attributes of movement and features of synergies (Delis

et al., 2018). Overduin et al. (2015) demonstrated that

the motor cortex employs spatiotemporal synergies to

control movement, indicating that the hierarchical organi-

zation of motor control utilizes spatial and temporal fea-

tures to organize motor synergies. The space-by-time

model incorporates both models in compact way, even if

it requires more parameters to be stored (Delis et al.,

2014). The systematic analysis of spatiotemporal syn-

ergies could give a more comprehensive perspective;

thus, it should be thoroughly studied in future work.

In this paper, we also showed how the spatial and

temporal models can discriminate tasks. It is not

surprising that the spatial synergy model shows higher

classification accuracy since the tasks differ in spatial

features (the direction of the target) which determine the
modulation of the spatial synergies (D’Avella et al.,

2008). In contrast, as the temporal synergies account

for the variations across movement directions of the pro-

files of acceleration and deceleration of the hand towards

the targets (Delis et al., 2018), one would not necessarily

expect to be able to discriminate target directions from

their modulation. Remarkably, we found that our tasks

could be discriminated well even with temporal synergies,

showing a directional-dependent temporal structure,

despite task temporal duration was quite homogeneous.

These results will be analyzed in more detail in further

work. Recent literature showed that the link between syn-

ergy models and the task space is a key feature for inves-

tigating motor control and may unveil unknown

mechanisms. The relationship between synergies and

the task space may also be investigated using the

mixed-matrix factorization (MMF) decomposition (Scano

et al., 2022), which directly relates muscle patterns to

kinematic variables by factorizing EMG and kinematics

(joint accelerations) together. Although some limitations

due to the merging of two domains and the approximation

of the linear constrain, the MMF algorithm could be a

promising approach for linking synergies with the task

space.

Future work might consider the contribution of spinal

feedback, separating it from the descending commands.

During movement, the reflex-mediated contributions can

be structured in space and time leading to apparent

synergies in muscle activation spaces even if the brain

does not change its descending commands. One

important role of sensory feedback might be to

modulate the activation of centrally organized synergies

adapting them to behavioral constraints. Feedback

pathways may also be organized synergistically: the few

synergies specific to feedback might represent a

reorganization of spinal neuronal networks (Cheung

et al., 2005). To achieve a better understanding of the role

of muscle reflexes and sensory feedback, it would be

important to use a musculoskeletal model that separates

each contribution acting on muscle activity.

Understanding better how muscle synergies are

related to the neural organization of motor control can

be important for many applications. A principal field of

application is neurorehabilitation (Singh et al., 2018),

since many studies have demonstrated that muscle syn-

ergies are a physiological marker in stroke patients

(Cheung et al., 2009a; 2009b; Roh et al., 2015). In this

way, rehabilitation can be focused on the altered syn-

ergies, improving motor recovery. Furthermore, modular-

ity of motor control can simplify the control of

neuroprosthesis (Piazza et al., 2012; Cole and Ajiboye,

2019), allowing to reproduce the desired movement with

a small number of command inputs.

In conclusion, this paper supports the existence of a

dual, spatial and temporal, structure in EMG signals,

comparing synergies extracted from the real data and a

surrogate dataset. Spatial and temporal synergies were

assessed and tested for differences in reconstruction

accuracy and inter-individual matching. While the spatial

model has been employed in the vast majority of muscle

synergy studies, our results show how the poorly
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exploited temporal model represents a potentially useful

resource for the study of motor control. With a detailed

characterization of temporal synergies, we suggested

that the temporal synergies may capture a higher level

of motor organization based on intermittent control that

allows flexibility and adaptability of the movement. We

believe that this paper will be useful to improve analysis

targeting several fields such as rehabilitation, prosthesis

control and motor control studies.
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