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Abstract 
This paper presents an efficient application of Machine 

Learning (ML) to derive models for accurately predicting 
the inductance value and mechanical constraints in widely 
used air-cored inductors in power electronics systems for 
accelerators.  The ML is trained on Finite Elements Anal-
yses (FEA) obtained data. The obtained Artificial Neural 
Network (ANN) based models are then used in a numerical 
optimization environment able to efficiently provide opti-
mal solution in terms of speed and accuracy. 

INTRODUCTION 
During the early design phases of large scientific infra-

structures, such as a particle accelerator, engineers are of-
ten asked to study the feasibility of their respective sys-
tems, within a constantly evolving specifications frame-
work. This imposes the need for efficient models and flex-
ible tools able to quickly provide a technical-economic fea-
sibility. For that purpose, the integration of ML can be a 
real asset.   
In this paper a design example of an air-core inductor, often 
necessary in Static Var Compensators (SVC), harmonic fil-
ters or strong field pulsed power applications, is considered 
[1, 2, 4]. These components are typically large and need to 
be optimized in terms of volume (cost) and losses. Their 
peak currents (operational in pulsed power, and faulty in 
other applications) produce severe mechanical constraints 
that needs to be estimated in the design phase. Typically, 
this is done via unprecise analytical formulations or via 
time consuming FEA (especially inside an optimization it-
erative process). This work shows that ML can be trained 
on FEA data in a very efficient way, via dimensional nor-
malization, and the obtained ANN analytical models can be 
used in the optimization process. The presented method 
demonstrates the power of including ML in optimal design 

processes and can be applied to other magnetic compo-
nents such as magnets or transformers of all kinds, and can 
include thermal and mechanical aspects.   

ELECTROMAGNETIC DESIGN MODEL 
OF AIR CORE INDUCTORS 

The electromagnetic design model of the air-core induc-
tor should enable the determination of the inductance value 
from its dimensions as well as the internal electromagnetic 
forces applied to the winding as a function of the applied 
current. 

Inductance value estimation 
The main geometric dimensions of an air-core inductor 

are shown in Figure 1. 

Figure 1: Main dimensions of the air core inductor. 

The design variables are the three geometric dimensions 
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and the number of turns 𝑁𝑁. To calculate 
the inductance 𝐿𝐿(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), a method of normal-
izing the dimensional variables has been adopted. A sim-
plified analytical expression of 𝐿𝐿 [3] was previously used 
to establish a suitable normalization base: 

𝐿𝐿(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑘𝑘𝐿𝐿 𝑁𝑁2 (2.𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)2
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with 𝑘𝑘𝐿𝐿 =7.87402E-06 in International System units. 

In Eq. (1), it is possible to normalize the geometric dimen-
sions with respect to 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  as follows: 

 𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 = 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

           𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐 = 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

𝐿𝐿(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) = 𝑘𝑘𝐿𝐿𝑁𝑁2𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(2+𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐)2
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 (2) 

One can then define a normalized inductance 𝐿𝐿𝑝𝑝𝑝𝑝 with only 
two variables as follows: 

𝐿𝐿(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) = 𝑁𝑁2. 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . 𝐿𝐿𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐)(3) 

Where 𝐿𝐿𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐)  is a per-unit inductance in 
H/m/turn2 with N=1, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =1m. Since the analytical ex-
pression of Eq. (2) may not be applicable with sufficient 
accuracy for all specifications of the applications aimed in 
this article, the calculation of the inductance 
𝐿𝐿𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) is performed in magneto-statics using a 
2D finite element method for axisymmetric coordinates 
with a current of I=1A. This normalized approach facili-
tates the robustness and efficiency of the learning process.  

Internal winding electromagnetic forces 
As the Laplace force density within the coil is 𝐽𝐽 ∧ 𝐵𝐵�⃗  (J 

and B being the current density and magnetic induction re-
spectively), one can decompose the distribution of internal 
forces in the winding into a distribution of local axial forces 
with a local volumetric density 𝐽𝐽 ∧ 𝐵𝐵𝑐𝑐(𝑟𝑟, 𝑧𝑧)���������������⃗  and a distribu-
tion of local radial forces with a local volumetric density 
𝐽𝐽 ∧ 𝐵𝐵𝑧𝑧(𝑟𝑟, 𝑧𝑧)���������������⃗  [1]. Figure 2 illustrates the spatial distribution 
of the induction in the winding, the radial, axial and result-
ing local forces.  

 
Figure 2: Spatial distribution of the induction in the wind-

ing and the local internal forces. 

For an inductance 𝐿𝐿(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) powered with a 
current I, the upper half of the winding is subject to a total 
normalized axial crushing force: 

𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧 = 2𝜋𝜋. 𝐽𝐽. � � 𝐵𝐵𝑐𝑐(𝑟𝑟, 𝑧𝑧). 𝑎𝑎(𝑟𝑟, 𝑧𝑧) . 𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/2
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 (4) 

 With 𝐽𝐽 = 𝑁𝑁.𝐼𝐼
𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

  , 𝑎𝑎(𝑟𝑟, 𝑧𝑧)  being the area of each in-
ternal finite element of the coil whose centroid coordinates 
are (𝑟𝑟, 𝑧𝑧) , and the axial and radial induction values associ-
ated with 𝐵𝐵𝑧𝑧(𝑟𝑟, 𝑧𝑧) and 𝐵𝐵𝑐𝑐(𝑟𝑟, 𝑧𝑧), respectively. Due to sym-
metry, 𝐵𝐵𝑐𝑐(𝑟𝑟,−𝑧𝑧) = −𝐵𝐵𝑐𝑐(𝑟𝑟, 𝑧𝑧), the lower half of the coil is 
subject to −𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧, and the coil tends to crush axially under 
the action of 𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧 and −𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧. Also due to symmetry, 
𝐵𝐵𝑧𝑧(𝑟𝑟,−𝑧𝑧) = 𝐵𝐵𝑧𝑧(𝑟𝑟, 𝑧𝑧), the sum of the amplitudes of the ra-
dial bursting forces 𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧 applied at each point on the com-
plete outer surface of the cylinder of the coil is given by:  

𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧 = 2𝜋𝜋. 𝐽𝐽. � � 𝐵𝐵𝑧𝑧(𝑟𝑟, 𝑧𝑧). 𝑎𝑎(𝑟𝑟, 𝑧𝑧) . 𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐+𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/2

−𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/2

 (5) 

The processing of local quantities obtained from finite 
element calculations of the normalized inductance 𝐿𝐿𝑝𝑝𝑝𝑝 
with I=1A, N=1, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  =1m, allows for the determination of 
the normalized axial and radial forces, 𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) 
and 𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) using Eq. (4) and Eq. (5). Dimen-
sional analysis shows that the forces associated with each 
inductance 𝐿𝐿(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) can be deduced from 
these normalized forces: 

𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐,𝐹𝐹𝐹𝐹𝑎𝑎𝑟𝑟,𝐹𝐹𝐹𝐹𝑏𝑏𝑟𝑟) = (𝑁𝑁𝑁𝑁)2.𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐)(6)  

𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧(𝑁𝑁, 𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐,𝐹𝐹𝐹𝐹𝑎𝑎𝑟𝑟,𝐹𝐹𝐹𝐹𝑏𝑏𝑟𝑟) = (𝑁𝑁𝑁𝑁)2.𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐)(7)  

One can notice from Eq. (6) and Eq. (7) that 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  does 
not play a role in the calculation of the total forces as a 
function of the normalized forces. 

ANN DIMENSIONNING MODEL  
Due to their faster computing time, the ANN models 

could replace the heavy and complex FEA models in inte-
grated design environments. Typically, in an optimal de-
sign methodology using a reverse problem approach with 
a non-linear optimization procedure associated to several 
FEA based dimensioning models (e.g., electrical, mechan-
ical and thermal), the global processing time in order to 
converge to an optimal solution can become a significant 
issue. 

 Replacing the FEA by supervised ANN models could 
resolve the heavy computing time problem. This has been 
shown in [5], where ANN models replacing FEA models in 
an optimal design methodology have significantly short-
ened the computing time while keeping similar perfor-
mance in terms of accuracy.  

In this paper, 3 ANN models have been trained to predict 
the inductance, the electromagnetic axial and radial forces 
of an air inductor in a supervised setting. These 3 ANN 
models have the purpose to replace their FEA counterparts 
in an optimal inductor design environment. 

The creation of the models has been done in Pytorch [6] 
and following the typical training and optimization work-
flow as described in [5]. The databases used to train each 
ANN model have been generated from 2D FEA 

    

    



magnetostatics computation and contains 100’000 sam-
ples. Each sample provides the inductor’s form factors 
𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐 and the respective targets: 𝐿𝐿𝑝𝑝𝑝𝑝, 𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝 and 
𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝. For the training and the optimization process each 
database has been divided in 3 subsets: a training, a valida-
tion and an evaluation set. The ANN model hyperparame-
ters such as number of layers, number of neurons per layer 
and the learning rate, have been specified before training 
using the Optuna [7] framework. 

The architecture and performance of the 3 ANN models 
is reported in Table 1. Figure 3 shows the matching rate of 
the ANN models predictions vs targets. One can see that 
according to Table 1, and the scatter graphs (Fig. 3) show-
ing a high concentration of points along the x=y axis, the 
best forecasts are provided for the 𝐿𝐿𝑝𝑝𝑝𝑝, and the 𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝 ANN 
models. The 𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝 ANN model still performs acceptably 
well, its performance being altered by a couple of outliers. 
 

Table 1: ANN models architectures and performance 

ANN Neurons per 
layer 

Prediction 
MRE [%] 

𝐿𝐿𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) [560,467,284,509] 0.118 
𝐹𝐹𝑧𝑧𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) 
𝐹𝐹𝑐𝑐𝑧𝑧𝑐𝑐𝑧𝑧𝑝𝑝𝑝𝑝(𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐) 

[374,28,28,360,744] 
[709,557,509] 

3.613 
0.637 

 

 
Figure 3: Scatter of ANN’s predictions vs target values 

OPTIMAL DESIGN EXAMPLE 
The ANN based electromagnetic dimensioning model 

has been implemented in an integrated optimal inductor de-
sign environment [5], including mechanical and thermal 
models. The FEA and ANN based electromagnetic models 
can be used in parallel in the environment to predict the 
inductance and the forces at each iteration of the optimiza-
tion process. Their respective efficiencies in terms of con-
vergence, precision and computing time can thus be com-
pared. 

 The optimal design example presented here concerns an 
inductor in a strong field pulsed power application. The ob-
jective is the inductor volume minimization while respect-
ing the electrical, thermal and mechanical specifications. 
In this case the inductor with an inductance value of 5µH 
has to withstand current pulses of 100kA during 200µs and 
the maximum radial pressure on the coil external surface 
must be limited to 9MPa. The input state variables of the 
optimization process are the coil winding turns N, the coil 
inner radius rcore and the form factors 𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐.  
From the same initial guess of the 4 input variables, both  
nonlinear constrained optimization processes using respec-
tively the FEA & ANN models converge identically to the 
solutions presented in Figure 4 and on Table 2. One can 

notice that the optimal solutions obtained by both methods 
are practically identical. The values of the objective func-
tion differ by only 0.06%, the specifications and the con-
straint of 9MPa are satisfied. The iteration number of the 
ANN model-based optimization process is lower and 25 
times faster than the one based on FEA. 

 
Figure 4: Optimal solution of 5µH inductor supplied by 

200µs-100kA current pulses 

Table 2: Comparative optimization results 
Optimization  With FEA With ANN 

Inductance (H) 4.7E-06 4.7E-06 

Relative error (%) 5.99 6.00 

Volume (m3) 1.104E-03 1.105E-03 

𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (m) .05997  .05999 

𝐹𝐹𝐹𝐹𝑎𝑎𝑐𝑐 ,𝐹𝐹𝐹𝐹𝑏𝑏𝑐𝑐 .0153,1.58 .0153,1.58 

Iterations number 780 709 

Execution time (s) 370 25 

 

CONCLUSION 
The methodology using ML to integrate accurate ANN-

based models into a numerical optimization environment 
shows the advantages in terms of computational speed. 
However, this has to be put into perspective with the com-
plexity of the ANN model creation process. Efforts are 
needed to standardize the ANN model creation approach in 
order to simplify the overall process. Once achieved, the 
ANN-based design optimization environment might have 
a solid potential edge over the classical FEA approach. As 
shown in this work via the geometrical normalization of 
the inductor, one can minimize the database size and thus 
the training process efforts. The presented tool can be used 
to dimension inductors taking into consideration mechani-
cal constraints given by very high faulty currents. It can be 
extended by integrating other ANN models such as losses 
and thermal. Another interest of this approach is that it can 
be easily applied to optimally design all kind of magnetic 
components, such as transformers or electro-magnets.  
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