RAIRO Operations Research

Will be set by the publisher

A NOTE ON TREE REALIZATIONS OF MATRICES*

Alain Hertz ${ }^{1}$ and Sacha Varone ${ }^{2}$

Abstract

It is well known that each tree metric M has a unique realization as a tree, and that this realization minimizes the total length of the edges among all other realizations of M. We extend this result to the class of symmetric matrices M with zero diagonal, positive entries, and such that $m_{i j}+m_{k l} \leq \max \left\{m_{i k}+m_{j l}, m_{i l}+m_{j k}\right\}$ for all distinct i, j, k, l.

Keywords: matrices, tree metrics, 4-point condition.
Mathematics Subject Classification. 05C50,05B20,68R10,68U99

Introduction

An $n \times n$ matrix $M=\left(m_{i j}\right)$ with zero diagonal is a tree metric if it satisfies the following 4-point condition:

$$
m_{i j}+m_{k l} \leq \max \left\{m_{i k}+m_{j l}, m_{i l}+m_{j k}\right\} \quad \forall i, j, k, l \text { in }\{1, \ldots, n\}
$$

By denoting $s_{i j k l}=m_{i j}+m_{k l}$, the 4-point condition is equivalent to imposing that two of the three sums $s_{i j k l}, s_{i k j l}$ and $s_{i l j k}$ are equal and not less than the third. The 4 -point condition entails the triangle inequality (for $k=l$) and symmetry (for $i=k$ and $j=l$). There is an extensive literature on tree metrics; see for example [1-3, 7-10].

[^0]It is well known that a tree metric $M=\left(m_{i j}\right)$ can be represented by an unrooted tree T such that $\{1, \ldots, n\}$ is a subset of the vertex set of T, and the length of the unique chain connecting two vertices i and j in $T(1 \leq i<j \leq n)$ is equal to $m_{i j}$.

Let $G=(V, E, d)$ be the graph with vertex set V, edge set E, and where d is a function assigning a positive length $d_{i j}$ to each edge (i, j) of G . The length of the shortest chain between two vertices i and j in G is denoted $d_{i j}^{G}$.
Definition 0.1. Let M be a symmetric $n \times n$ matrix with zero diagonal and such that $0 \leq m_{i j} \leq m_{i k}+m_{k j}$ for all i, j, k in $\{1, \ldots, n\}$. A graph $G=(V, E, d)$ is a realization of $M=\left(m_{i j}\right)$ if and only if $\{1, \ldots, n\}$ is a subset of V, and $d_{i j}^{G}=m_{i j}$ for all i, j in $\{1, \ldots, n\}$.

As mentioned above, tree metrics have a realization as a tree. A realization G of a matrix M is said optimal if the total length of the edges in G is minimal among all realizations of M. Hakimi and Yau [7] have proved that tree metrics have a unique realization as a tree, and this realization is optimal. Culberson and Rudnicki [4] have designed an $O\left(n^{2}\right)$ time algorithm for constructing a realization as a tree of tree metrics.

We propose to extend the above definition to matrices whose entries do not necessarily satisfy the triangle inequality. Given a symmetric $n \times n$ matrix $M=$ ($m_{i j}$) with zero diagonal and positive entries, let K_{M} denote the complete graph on n vertices in which each edge (i, j) has length $m_{i j}$.
Definition 0.2. Let M be a symmetric $n \times n$ matrix with zero diagonal and positive entries. A graph $G=(V, E, d)$ is a realization of $M=\left(m_{i j}\right)$ if and only if $\{1, \ldots, n\}$ is a subset of V, and $d_{i j}^{G}=d_{i j}^{K_{M}}$ for all i, j in $\{1, \ldots, n\}$.

Obviously, if M satisfies the triangle inequality, then $d_{i j}^{K_{M}}=m_{i j}$, and Definition 0.2 is then equivalent to Definition 0.1. Figure 1 illustrates this new definition. Notice that the matrix in Figure 1 is not a tree metric, while it has a realization as a tree.
$\left(\begin{array}{ccccc}0 & 12 & 20 & 22 & 4 \\ 12 & 0 & 6 & 8 & 6 \\ 20 & 6 & 0 & 4 & 14 \\ 22 & 8 & 4 & 0 & 16 \\ 4 & 6 & 14 & 16 & 0\end{array}\right)$

A matrix M.

Its associated complete graph K_{M}.

A realization of M as a tree.

Figure 1. a tree realization of a tree metric
Let \mathcal{M}_{n} denote the set of symmetric $n \times n$ matrices $M=\left(m_{i j}\right)$ with zero diagonal, positive entries, and such that $m_{i j}+m_{k l} \leq \max \left\{m_{i k}+m_{j l}, m_{i l}+m_{j k}\right\}$ for all distinct points i, j, k, l in $\{1, \ldots, n\}$.

Since we only impose the 4-point condition on distinct points i, j, k, l, the entries of a matrix in \mathcal{M}_{n} do not necessarily satisfy the triangle inequality. While all tree metrics belong to \mathcal{M}_{n}, the example in Figure 2 shows that a matrix having a realization as a tree does not necessarily belong to \mathcal{M}_{n}. However, we prove in this paper that all matrices in \mathcal{M}_{n} have a unique realization as a tree, and that this realization is optimal.

$$
\left(\begin{array}{llll}
0 & 1 & 3 & 1 \\
1 & 0 & 1 & 3 \\
3 & 1 & 0 & 4 \\
1 & 3 & 4 & 0
\end{array}\right)
$$

A 4×4 matrix M that does not belong to \mathcal{M}_{4}.

Its associated complete graph K_{M}.

A realization of M as a tree.

Figure 2. a tree realization of a matrix that does not belong to \mathcal{M}_{n}

1. The main result

Let $M=\left(m_{i j}\right)$ be any matrix in \mathcal{M}_{n}, and consider the matrix $M^{\prime}=\left(m_{i j}^{\prime}\right)$ obtained from M by setting $m_{i j}^{\prime}$ equal to the length $d_{i j}^{K_{M}}$ of the shortest chain between i and j in K_{M}. Notice that the elements in M^{\prime} satisfy the triangle inequality. In order to prove that M has a realization as a tree, it is sufficient to prove that M^{\prime} is a tree metric. The proof is based on Floyd's $O\left(n^{3}\right)$ time algorithm [6] for the computation of M^{\prime}.

Floyd's algorithm [6]

Set M^{0} equal to M;
For $r:=1$ to n do
For all i and j in $\{1, \ldots, n\}$ do
Set $m_{i j}^{r}$ equal to $\min \left\{m_{i j}^{r-1}, m_{i r}^{r-1}+m_{r j}^{r-1}\right\}$;
Set M^{\prime} equal to M^{n}; We shall prove that each matrix $M^{r}(1 \leq r \leq n)$ is in
\mathcal{M}_{n}. Since the entries of $M^{\prime}=M^{n}$ satisfy the triangle inequality, we will be able to conclude that M^{\prime} is a tree metric.

Theorem 1.1. Let $M=\left(m_{i j}\right)$ be a matrix in \mathcal{M}_{n}, and let $M^{\prime}=\left(m_{i j}^{\prime}\right)$ be the $n \times n$ matrix obtained from M by setting $m_{i j}^{\prime}=d_{i j}^{K_{M}}$ for all i and j in $\{1, \ldots, n\}$. Then M^{\prime} is a tree metric.

Proof. Following Floyd's algorithm, define $M^{0}=M$ and let M^{r} be the matrix obtained from M^{r-1} by setting $m_{i j}^{r}=\min \left\{m_{i j}^{r-1}, m_{i r}^{r-1}+m_{r j}^{r-1}\right\}$ for all i and j
in $\{1, \ldots, n\}$. Given four distinct points i, j, k, l in $\{1, \ldots, n\}$, we denote $s_{i j k l}^{r}=$ $m_{i j}^{r}+m_{k l}^{r}$. We prove by induction that each $M^{r}(r=1, \ldots, n)$ is in \mathcal{M}_{n}. By hypothesis, $M^{0}=M$ is in \mathcal{M}_{n}, so assume $M^{r-1} \in \mathcal{M}_{n}$. It is sufficient to show that $s_{i j k l}^{r} \leq \max \left\{s_{i k j l}^{r}, s_{i l j k}^{r}\right\}$ for all distinct i, j, k, l in $\{1, \ldots, n\}$, or equivalently, that two of the three sums $s_{i j k l}^{r}, s_{i k j l}^{r}$ and $s_{i l j k}^{r}$ are equal and not less than the third.

Notice that $m_{r i}^{r}=m_{r i}^{r-1}$ and $m_{i j}^{r} \leq m_{i j}^{r-1}$ for all $1 \leq i \leq j \leq n$. Consider any four distinct points i, j, k and l. Since r is possibly one of these four points, we divide the proof into two cases.

Case A : $r \in\{i, j, k, l\}$, say $r=l$.
Since $M^{r-1} \in \mathcal{M}_{n}$, we may assume, without loss of generality (wlog) that $s_{r i j k}^{r-1} \leq s_{r j i k}^{r-1}=s_{r k i j}^{r-1}$. If $m_{i k}^{r}=m_{i k}^{r-1}$ and $m_{i j}^{r}=m_{i j}^{r-1}$, then $s_{r i j k}^{r} \leq s_{r j i k}^{r}=s_{r k i j}^{r}$ and we are done. So, we can assume wlog $m_{i k}^{r}<$ $m_{i k}^{r-1}$. It then follows that $m_{r i}^{r-1}+s_{r j i k}^{r-1}=m_{r i}^{r-1}+s_{r k i j}^{r-1}<m_{i k}^{r-1}+m_{i j}^{r-1}$, which means that $m_{i j}^{r}=m_{r i}^{r-1}+m_{r j}^{r-1}<m_{i j}^{r-1}$. We therefore have $s_{r i j k}^{r} \leq m_{r i}^{r-1}+m_{r j}^{r-1}+m_{r k}^{r-1}=s_{r j i k}^{r}=s_{r k i j}^{r}$.

Case B : $r \notin\{i, j, k, l\}$.
If $s_{i j k l}^{r}=s_{i j k l}^{r-1}, s_{i k j l}^{r}=s_{i k j l}^{r-1}$ and $s_{i l j k}^{r}=s_{i l j k}^{r-1}$, there is nothing to prove. So assume wlog that $m_{i j}^{r}<m_{i j}^{r-1}$. Notice that if $m_{i k}^{r}=m_{i k}^{r-1}, m_{i l}^{r}=m_{i l}^{r-1}$, $m_{j k}^{r}=m_{j k}^{r-1}$ and $m_{j l}^{r}=m_{j l}^{r-1}$, then we are done. Indeed, since $M^{r-1} \in$ \mathcal{M}_{n} and $s_{r k i j}^{r}<s_{r k i j}^{r-1}$, while $s_{r j i k}^{r}=s_{r j i k}^{r-1}$ and $s_{r i j k}^{r}=s_{r i j k}^{r-1}$, we know from Case A that $s_{r j i k}^{r-1}=s_{r i j k}^{r-1}$. In a similar way, we also have $s_{r j i l}^{r-1}=s_{r i j l}^{r-1}$. Hence, $s_{r j i k}^{r-1}+s_{r i j l}^{r-1}=s_{r i j k}^{r-1}+s_{r j i l}^{r-1}$, which means that $s_{i k j l}^{r-1}=s_{i l j k}^{r-1}$. Since $M^{r-1} \in \mathcal{M}_{n}, s_{i k j l}^{r}=s_{i k j l}^{r-1}, s_{i l j k}^{r}=s_{i l j k}^{r-1}$ and $s_{i j k l}^{r}<s_{i j k l}^{r-1}$ we conclude that $s_{i j k l}^{r}<s_{i k j l}^{r}=s_{i l j k}^{r}$. Wlog, we can therefore assume $m_{i k}^{r}<m_{i k}^{r-1}$.

The rest of the proof is divided into four subcases.
Case B1 : $m_{j k}^{r-1}<m_{r j}^{r-1}+m_{r k}^{r-1}$ and $m_{j l}^{r-1}>m_{r j}^{r-1}+m_{r l}^{r-1}$.
Since $s_{r k j l}^{r}=m_{r k}^{r-1}+m_{r j}^{r-1}+m_{r l}^{r-1}>s_{r l j k}^{r}$, we know from Case A that $s_{r j k l}^{r}=s_{r k j l}^{r}$, which means that $m_{k l}^{r}=m_{r k}^{r-1}+m_{r l}^{r-1}$. Hence, $s_{i l j k}^{r}<$ $s_{i j k l}^{r}=s_{i k j l}^{r}$.
Case B2 : $m_{j k}^{r-1}<m_{r j}^{r-1}+m_{r k}^{r-1}$ and $m_{j l}^{r-1} \leq m_{r j}^{r-1}+m_{r l}^{r-1}$.
We can assume $m_{k l}^{r}=m_{k l}^{r-1}$, else we are in Case B1, where the roles of points j and k are exchanged. We can also assume $m_{i l}^{r-1}<m_{r i}^{r-1}+m_{r l}^{r-1}$. Indeed, if $m_{i l}^{r-1} \geq m_{r i}^{r-1}+m_{r l}^{r-1}$ then $s_{i j k l}^{r}=m_{r i}^{r-1}+s_{r j k l}^{r-1}, s_{i k j l}^{r}=m_{r i}^{r-1}+$ $s_{r k j l}^{r-1}$, and $s_{i l j k}^{r}=m_{r i}^{r-1}+s_{r l j k}^{r-1}$ and we are done since $M^{r-1} \in \mathcal{M}_{n}$.

But now, $s_{r l i k}^{r}>s_{r k i l}^{r}$, and we know from Case A that $s_{r i k l}^{r}=s_{r l i k}^{r}$, which means that $m_{k l}^{r}=m_{r k}^{r-1}+m_{r l}^{r-1}$. Hence, $s_{r j k l}^{r}>s_{r l j k}^{r}$, and we know from Case A that $s_{r k j l}^{r}=s_{r j k l}^{r}$, which means that $m_{j l}^{r}=m_{r j}^{r-1}+m_{r l}^{r-1}$. We therefore have $s_{i l j k}^{r}<s_{i j k l}^{r}=s_{i k j l}^{r}$.

Case B3 : $m_{j k}^{r-1} \geq m_{r j}^{r-1}+m_{r k}^{r-1}$ and $m_{j l}^{r-1}>m_{r j}^{r-1}+m_{r l}^{r-1}$.
It follows from Cases B1 and B2 that i, j, k and l satisfy the 4-point condition in M^{r} if $m_{i j}^{r}<m_{i j}^{r-1}, m_{i k}^{r}<m_{i k}^{r-1}$, and $m_{j k}^{r-1}<m_{r j}^{r-1}+m_{r k}^{r-1}$. By permuting the roles of points i and j as well as those of k and l, we also know that i, j, k and l satisfy the 4 -point condition in M^{r} if $m_{i j}^{r}<m_{i j}^{r-1}, m_{j l}^{r}<m_{j l}^{r-1}$, and $m_{i l}^{r-1}<m_{r i}^{r-1}+m_{r l}^{r-1}$. Since $m_{i j}^{r}<m_{i j}^{r-1}$ and $m_{j l}^{r}<m_{j l}^{r-1}$ in Case B3, we can assume $m_{i l}^{r-1} \geq m_{r i}^{r-1}+m_{r l}^{r-1}$. Hence, $s_{i j k l}^{r} \leq s_{i k j l}^{r}=s_{i l j k}^{r}$.
Case B4 : $m_{j k}^{r-1} \geq m_{r j}^{r-1}+m_{r k}^{r-1}$ and $m_{j l}^{r-1} \leq m_{r j}^{r-1}+m_{r l}^{r-1}$.
Since $M^{r-1} \in \mathcal{M}_{n}$, and $s_{r i j l}^{r-1}<s_{r l i j}^{r-1}$ we know that $s_{r j i l}^{r-1}=s_{r l i j}^{r-1}$, which means that $m_{i l}^{r}<m_{i l}^{r-1}$. If $m_{j l}^{r-1}=m_{r j}^{r-1}+m_{r l}^{r-1}$ then $s_{i j k l}^{r} \leq s_{i k j l}^{r}=s_{i l j k}^{r}$. Else, $m_{j l}^{r-1}<m_{r j}^{r-1}+m_{r l}^{r-1}$, which implies $s_{r k j l}^{r}<s_{r l j k}^{r}$. We then know from Case A that $s_{r j k l}^{r}=s_{r l j k}^{r}$, which means that $m_{k l}^{r}=m_{r k}^{r-1}+m_{r l}^{r-1}$. We therefore have $s_{i k j l}^{r}<s_{i j k l}^{r}=s_{i l j k}^{r}$.

Corollary 1.2. Each matrix in \mathcal{M}_{n} has a unique realization as a tree, and this realization is optimal.

Proof. Let M be any matrix in \mathcal{M}_{n}, and let $M^{\prime}=\left(m_{i j}^{\prime}\right)$ be the $n \times n$ matrix obtained from M by setting $m_{i j}^{\prime}=d_{i j}^{K_{M}}$ for all $1 \leq i<j \leq n$. It follows from Definition 0.2 that a graph is a realization of M if and only if it is a realization of M^{\prime}. We know from the above theorem that M^{\prime} is a tree metric. To conclude, it is sufficient to observe that each tree metric has a unique tree realization, and this realization is optimal.

2. A related problem

Given two $n \times n$ metrics $L=\left(l_{i j}\right)$ and $U=\left(u_{i j}\right)$, the matrix sandwich problem [5] is to find (if possible) a tree metric $M=\left(m_{i j}\right)$ such that $l_{i j} \leq m_{i j} \leq u_{i j}$ for all $i, j \in\{1, \ldots, n\}$. Typically, the information concerning the distance matrix associated with a network may be inaccurate, and we are only given lower and upper bound matrices L and U.

We prove here below that a solution to the matrix sandwich problem can be obtained by first finding a matrix $M \in \mathcal{M}_{n}$ that lies between L and U, and then constructing the tree metric $M^{\prime}=\left(m_{i j}^{\prime}\right)$ with $m_{i j}^{\prime}=d_{i j}^{K_{M}}$. Finding a matrix $M \in \mathcal{M}_{n}$ that lies between L and U is possibly easier than finding a tree metric with the same lower and upper bound matrices, the reason being that the triangle inequality is not imposed on matrices in \mathcal{M}_{n}.

Proposition 2.1. Let $M=\left(m_{i j}\right)$ be a matrix in \mathcal{M}_{n}, and let $M^{\prime}=\left(m_{i j}^{\prime}\right)$ be the $n \times n$ matrix obtained from M by setting $m_{i j}^{\prime}=d_{i j}^{K_{M}}$ for all i and j in $\{1, \ldots, n\}$. If $l_{i j} \leq m_{i j} \leq u_{i j}$ for all $i, j \in\{1, \ldots, n\}$, then M^{\prime} is a solution to the matrix sandwich problem.

Proof. Let $M=\left(m_{i j}\right)$ be a matrix in \mathcal{M}_{n}, such that $l_{i j} \leq m_{i j} \leq u_{i j}$ for all $i, j \in\{1, \ldots, n\}$, and let $M^{\prime}=\left(m_{i j}^{\prime}\right)$ be the $n \times n$ matrix obtained from M by setting $m_{i j}^{\prime}=d_{i j}^{K_{M}}$ for all $1 \leq i<j \leq n$. We know from Theorem 1 that M^{\prime} is a tree metric. Moreover, since L is a metric, we have $l_{i j} \leq m_{i j}^{\prime} \leq m_{i j}$ for all $i, j \in\{1, \ldots, n\}$.

References

[1] H.-J. Bandelt. Recognition of tree metrics. SIAM J. on Algebraic Discrete Methods, 3(1):16, 1990.
[2] J.-P. Barthélémy and A. Guénoche. Trees and proximity representations. John Wiley \& Sons Ltd., Chichester, 1991.
[3] P. Buneman. A note on metric properties of trees. J. Combin. Theory Ser. B, 17:48-50, 1974.
[4] J. C. Culberson and P. Rudnicki. A fast algorithm for constructing trees from distance matrices. In Inf. Process. Lett., volume 30, pages 215-220, 1989.
[5] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees. Algorithmica, 13:155-179, 1995.
6] R. W. Floyd. Algorithm 97. Shortest path. Comm. ACM, 5(6):345, 1962.
[7] S. L. Hakimi and S. S. Yau. Distance matrix of a graph and its realizability. Quart. Appl. Math., 22:305-317, 1964.
[8] A. N. Patrinos and S. L. Hakimi. The distance matrix of a graph and its tree realization. Quart. Appl. Math., 30:255-269, 1972.
9] J. M. S. Simões-Pereira. A note on the tree realizability of a distance matrix. J. Combin. Theory, 6:303-310, 1969.
[10] S. C. Varone. Trees related to realizations of distance matrices. Discrete Mathematics, 192:337-346, 1998.

[^0]: March 2005.

 * This work has been partially funded by grant PA002-104974/1 from the Swiss National Science Foundation, received by the second author.
 ${ }^{1}$ Département de mathématiques et de génie industriel, École Polytechnique, Montréal, Canada, alain.hertz@gerad.ca
 2 LARIM, Département de génie informatique, École Polytechnique, Montréal, Canada, sacha.varone@polymtl.ca

