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A NOTE ON TREE REALIZATIONS OF MATRICES*
ALAIN HERTZ! AND SACHA VARONE?

Abstract. It is well known that each tree metric M has a unique
realization as a tree, and that this realization minimizes the total length
of the edges among all other realizations of M. We extend this result to
the class of symmetric matrices M with zero diagonal, positive entries,
and such that m;; +my < max{mik +mji, ma + m]’k} for all distinct
1,7, k, L.
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INTRODUCTION

An n x n matrix M = (m;;) with zero diagonal is a tree metric if it satisfies the
following 4-point condition:

mij + mi < max{m + mj;, my + mji} Vi, j, k,lin {1,...,n}

By denoting s;;jx1 = ms; + my, the 4-point condition is equivalent to imposing
that two of the three sums s;;x1, Sikj1 and sy, are equal and not less than the third.
The 4-point condition entails the triangle inequality (for & = l) and symmetry
(for i = k and j = I). There is an extensive literature on tree metrics; see for
example [1-3,7-10].
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It is well known that a tree metric M = (m,;) can be represented by an unrooted
tree T such that {1,...,n} is a subset of the vertex set of T', and the length of the
unique chain connecting two vertices ¢ and j in T' (1 < ¢ < j < n) is equal to m;;.

Let G = (V, E,d) be the graph with vertex set V, edge set E, and where d is a
function assigning a positive length d;; to each edge (4, j) of G. The length of the
shortest chain between two vertices ¢ and j in G is denoted dg

Definition 0.1. Let M be a symmetric n X n matrix with zero diagonal and such
that 0 < m;; < myg, +my; for all 4,7,k in {1,...,n}. A graph G = (V,E,d) is a
realization of M = (m;;) if and only if {1,...,n} is a subset of V, and dg = M
for all 4,7 in {1,...,n}.

As mentioned above, tree metrics have a realization as a tree. A realization
G of a matrix M is said optimal if the total length of the edges in G is minimal
among all realizations of M. Hakimi and Yau [7] have proved that tree metrics
have a unique realization as a tree, and this realization is optimal. Culberson and
Rudnicki [4] have designed an O(n?) time algorithm for constructing a realization
as a tree of tree metrics.

We propose to extend the above definition to matrices whose entries do not
necessarily satisfy the triangle inequality. Given a symmetric n X n matrix M =
(m;) with zero diagonal and positive entries, let K denote the complete graph
on n vertices in which each edge (7, 5) has length m;;.

Definition 0.2. Let M be a symmetric n x n matrix with zero diagonal and
positive entries. A graph G = (V, E,d) is a realization of M = (m;;) if and only
if {1,...,n} is a subset of V, and dg = dfj-“ for all 4,7 in {1,...,n}.

Obviously, if M satisfies the triangle inequality, then dfj(-M = m;;, and Definition
0.2 is then equivalent to Definition 0.1. Figure 1 illustrates this new definition.
Notice that the matrix in Figure 1 is not a tree metric, while it has a realization
as a tree.

12 0 6 8 6
20 6 0 4 14
22 8 4 0 16
4 6 14 16 0
A matrix M. Its associated complete A realization of M as a
graph Kjy. tree.

FIGURE 1. a tree realization of a tree metric

Let M,, denote the set of symmetric n x n matrices M = (m;;) with zero
diagonal, positive entries, and such that m;; +m; < max{mir + mj, my +m;,}
for all distinct points 4, j, k,l in {1,...,n}.



TITLE WILL BE SET BY THE PUBLISHER 3

Since we only impose the 4-point condition on distinct points i, j, k, [, the entries
of a matrix in M,, do not necessarily satisfy the triangle inequality. While all tree
metrics belong to M,,, the example in Figure 2 shows that a matrix having a
realization as a tree does not necessarily belong to M,,. However, we prove in this
paper that all matrices in M,, have a unique realization as a tree, and that this
realization is optimal.

01 3 1

1 01 3

31 0 4

1 3 40

A 4 x 4 matrix M
that does not Its associated
belong to M. complete graph A realization of M
Ky as a tree.

FIGURE 2. a tree realization of a matrix that does not belong to M,,

1. THE MAIN RESULT

Let M = (my;) be any matrix in M,, and consider the matrix M’ = (m};)
obtained from M by setting mgj equal to the length df](-M of the shortest chain
between ¢ and j in Kjp;. Notice that the elements in M’ satisfy the triangle
inequality. In order to prove that M has a realization as a tree, it is sufficient
to prove that M’ is a tree metric. The proof is based on Floyd’s O(n?) time

algorithm [6] for the computation of M’.

Floyd’s algorithm [6]
Set MY equal to M;
For r:=1ton do
For all i and j in {1,...,n} do
Set m;; equal to min{mfj_l, mi '+ m:j_l};
Set M’ equal to M™; We shall prove that each matrix M" (1 <r <n) is in

M,,. Since the entries of M’ = M™ satisfy the triangle inequality, we will be able
to conclude that M’ is a tree metric.

Theorem 1.1. Let M = (m;;) be a matriz in M., and let M' = (m];) be the
n x n matriz obtained from M by setting m;; = df](-M for alli and j in {1,...,n}.
Then M’ is a tree metric.

Proof. Following Floyd’s algorithm, define M° = M and let M" be the matrix
obtained from M"~! by setting mi; = min{m:j_l,mfr_l + m:j_l} for all 4 and j
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in {1,...,n}. Given four distinct points 4,7, k,0 in {1,...,n}, we denote sj;;;, =
mi; + my,;. We prove by induction that each M" (r = 1,...,n) is in M,,. By
hypothesis, M" = M is in M,,, so assume M"~! € M,,. It is sufficient to show

that s, < max{sgkjl, sgljk} for all distinct 4, j, k,l in {1,...,n}, or equivalently,
that two of the three sums i, si;; and s}, are equal and not less than the

third.

Notice that m,, = m: and m’" < m” Lfor all 1 < i < j < n. Consider any

four distinct points i, j, k and . Smce r is possibly one of these four points, we
divide the proof into two cases.

Case A : re{i,j,k, 1}, say r=1.
Since M™ ! € M,, we may assume, without loss of generality (wlog)
r—1 r—1 _ r—1 o r—1 _ r—1
that Srijk < Sy = Spgige W mg = mg and my; = my;; o, then
sﬁijk < Spjik = Sppi; and we are done. So, we can assume wlog mfk <
r—1 r—1 r—1 __
myy, - It then follows that m,; " + s = "+s
r—1 —1

Wthh means that m” = m,; + m,; i

r r—1 r—1 r—1 __
Spijk S My~ T My~ +my = =s

Tk)lj<mk? +m )

We therefore have
T J— T
riik — Srkij-

Case B : r ¢ {i, ],k l}
If s7ipy = ”kl, ikl = s:,;ﬁ and Sijk = szl;,i, there is nothing to prove. So
r—1

assume wlog that m;; < m;; . Notice that if mj; = mit, ml = mll ,

J

my, = m’ ! and m]l = m}, !, then we are done. Indeed, since M"~*
My, and spy,0 < :kiﬁ while s7.,, = s”lk and sy, = sm,€7 we know from
Case A that srﬂk = s:;i In a similar way, we also have s:;dl = s:;ﬂl
Hence, szk + sml = swk + Smw which means that slk]l = Zl]k Since
M1 e M,, s Sikjl = Z-kj}, Siik = Zl;k and s, < sukl we conclude that
Stikt < Sikji = Sijr- Wlog, we can therefore assume mj;, < mg- L

The rest of the proof is divided into four subcases.

Case Bl : P<miit 4 mr,C ! and m;l > mit+ml
Smce Sprji = Moy Ly my Ymlt > smk, we know from Case A that
r 1
Syikl = Srkjis which means that mkl = m,, Ly m,. Hence, s, <

T J— T
Sijkl = Sikjl-
. — r—1 r—1 r—1 r— r—1
Case B2 : mj; -~ <m, ;7 +my,~ and my~ < my; Yml
We can assume my, = mZ;l, else we are in Case B1, Where the roles of
oints j and k are exchanged. We can also assume mit < m,; T4 m,,
p J g i

r—1 r—1 _ r— 1
Indeed, if m],~ >m» +ml ! then Siikl = My, JFST]M’ ikjl*mri

+
sTkjl, and sll]k Ly sm,C and we are done since M1 € M,,.

But now, s7,,. > Srkw and we know from Case A that sl,., = s7,..,
which means that my;, =m, Yem” "l ~1 Hence, Spikl > srl]k, and we know
from Case A that s” kil = s”kl, which means that m” o= m by m,,;

We therefore have sllj,C < s”kl m]l.
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. r—1 r—1 r—1 r—1 r—1 r—1
Case B3 : mey, > m, i+ myy and miy > My gy
It follows from Cases B1 and B2 that ¢, j, k and [ satisfy the 4-point con-
ey . ros r r—1 r r—1 r—1 r—1 r—1
dition in M" if m;; < my; ", mgj < my , and My < my - +m.
By permuting the roles of points ¢ and j as well as those of k£ and [,
we also know that i,j,k and [ satisfy the 4-point condition in M" if
r r—1 r r—1 r—1 r—1 r—1 . r r—1
my; <my; o, my <my s, and my s <mg o +myy Since mj; < mj;
;fl in Case B3, we can assume m}, * > m/; ' +m’; . Hence,
T r — T
Siikl S Sikji = Sitjk-
. r—1 r—1 r—1 r—1 r—1 r—1
Case B4 : miy > m,; T+ myy and my Smrj +m,; .
: r—1 r—1 r—1 r—1 _ _r—1 :
Since M € M,, and Spigt < Spiij We know that Spiil = Splijo which
r r—1 r—1 __ r—1 r—1 r r _ar
means that mj; <m; . If my s =m, i +my then Siikl < Sikil = Siljk-

and m}'l <m

_
jl
r _ T : roo_ r—1
from Case A that Syikl = Spijk» Which means that my, = m;, = +m
' T — '
‘We therefore have Sikit < Sijkl = Siljk-

Else, m" ' < mfj_l + m:l_l, which implies sy, < s7,;,. We then know

r—1
rl

O

Corollary 1.2. Each matriz in M,, has a unique realization as a tree, and this
realization is optimal.

Proof. Let M be any matrix in M,,, and let M’ = (mj;) be the n x n matrix

obtained from M by setting m;j = df;M for all 1 < i < j < n. It follows from
Definition 0.2 that a graph is a realization of M if and only if it is a realization of
M'. We know from the above theorem that M’ is a tree metric. To conclude, it is
sufficient to observe that each tree metric has a unique tree realization, and this
realization is optimal. O

2. A RELATED PROBLEM

Given two nxn metrics L = (I;;) and U = (u;;), the matriz sandwich problem [5]
is to find (if possible) a tree metric M = (m;;) such that l;; < m;; < uy; for
all i,5 € {1,...,n}. Typically, the information concerning the distance matrix
associated with a network may be inaccurate, and we are only given lower and
upper bound matrices L and U.

We prove here below that a solution to the matriz sandwich problem can be
obtained by first finding a matrix M € M,, that lies between L and U, and then
constructing the tree metric M’ = (mj;) with mj; = di};M. Finding a matrix
M € M,, that lies between L and U is possibly easier than finding a tree metric
with the same lower and upper bound matrices, the reason being that the triangle
inequality is not imposed on matrices in M,,.

Proposition 2.1. Let M = (mi;) be a matriz in M,,, and let M" = (m};) be the
. . . K . ..

n x n matriz obtained from M by setting m;; = d;;* for all i and j in {1,...,n}.

If lij < myj; < wy for alli,j € {1,...,n}, then M is a solution to the matriz

sandwich problem.
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Proof. Let M = (m;;) be a matrix in M, such that l;; < m;; < u,; for all
i,j € {1,...,n}, and let M’ = (m};) be the n x n matrix obtained from M by
setting mgj = dfj-M for all 1 < ¢ < j < n. We know from Theorem 1 that M’

is a tree metric. Moreover, since L is a metric, we have [;; < m’ij < my; for all
1,7 €41,...,n}. O
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