Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Files
Abstract
Poem generation with language models requires the modeling of rhyming patterns. We propose a novel solution for learning to rhyme, based on synthetic data generated with a rule-based rhyming algorithm. The algorithm and an evaluation metric use a phonetic dictionary and the definitions of perfect and assonant rhymes. We fine-tune a GPT-2 English model with 124M parameters on 142 MB of natural poems and find that this model generates consecutive rhymes infrequently (11%). We then fine-tune the model on 6 MB of synthetic quatrains with consecutive rhymes (AABB) and obtain nearly 60% of rhyming lines in samples generated by the model. Alternating rhymes (ABAB) are more difficult to model because of longer-range dependencies, but they are still learnable from synthetic data, reaching 45% of rhyming lines in generated samples.