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ABSTRACT 

Results of bridging tractions in mode I delamination on uniaxially reinforced AS4/PPS 
specimens are presented. Bridging tractions determined using distributed strains and an inverse-
numerical technique are compared to those obtained using a method based on the experimental 
measurements of energy release rate and crack opening displacement. Both experiments result 
in similar distributions of the bridging tractions. The two types of bridging laws are 
implemented in a numerical model that uses cohesive elements to calculate global force-
displacement response. In both cases the cohesive model can describe the global load-
displacement curve well. However, the J-integral method requires an additional assumption 
about the length of the bridging zone. Regardless of the law used to define the bridging 
tractions, the cohesive model requires certain assumptions regarding the initial stiffness of the 
cohesive elements and the maximum stress before softening. These parameters influence crack 
propagation and the resulting strains.  

 

1. INTRODUCTION 
Delamination is one of the most important failure mechanisms in layered composite 
materials. It occurs at the free edges due to high stresses required to maintain continuity 
of strains.  It is also found in the composite structure as a result of low impact loads, 
fatigue, etc. Consequently, its characterisation and prediction assume a position of 
prominence in the mechanics of composites. Several efforts have been devoted to 
studying delamination in various composite materials [1-8]. Often delamination is 
characterised by using linear elastic fracture mechanics, especially for pure mode 
loadings. In some cases, however, composites may display crack bridging (fibres 
crossing the open crack) which makes delamination behaviour geometry dependent 
[2,4,5,8] as reflected in the energy release rate (ERR) J (or IG ) versus crack opening 
displacement (COD) δ data. Recent studies simulate delamination propagation by using 
advances in interfacial cohesive element modeling [2,3,6]. Such methods have proven 
useful in understanding complex delamination; however, they are sensitive to the 
physical parameters of the process that need to be experimentally characterised. In cases 
of large-scale fibre bridging, some authors establish experimentally a relationship 
between J  and δ  in order to extract the traction-separation behaviour of the cohesive 
elements in the fibre-bridged zone [2,4]. Other investigations of delamination cracking 
use the spectra of optical fibre Bragg grating (FBG) sensors to measure strains near the 
delamination crack and attempt to correlate such data with the physical process of 
delamination [9-11]. Most of these studies, however, use the FBG spectrum, which 
alone cannot capture the location and direction of the delamination growth. Recently, a 
new method has been proposed to measure distributed strains over a relatively long 
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FBG [12]. In contrast to the T-matrix approach, no assumptions are made about the 
form of the axial strain distribution.  
 
This paper focuses on analysis and comparison of data describing bridging tractions in 
mode I delamination determined using two different methods. The first is based on 
internal strain measurements taken along an embedded FBG sensor which are then 
applied in inverse identification algorithm to obtain the bridging tractions [5]. The 
second relates measurements of J (or GI) to δ, to obtain bridging tractions. The 
calculated bridging tractions are compared and used in a cohesive finite element (FE) 
model to simulate crack growth and to predict the corresponding pin-load versus 
displacement curve. 
 
2. METHODS 
Unidirectional specimens are made of Cytec’s AS4/PPS (carbon fibre – polyphenylene 
sulphide) Fiberite composite prepreg [5].  The planar dimensions of the [0]28 plates are 
200x50mm and specimens include a 60-70 mm long piece of aluminium foil treated 
with demoulding agent and inserted between the centre plies at one end of the specimen 
to create a pre-crack. In addition, an optical fibre with diameter 0.125 mm and Bragg 
wavelength centered at λB = 1300 nm is placed between the second and third layers 
above the centre plane and parallel to the reinforcing direction. The polyimide coating 
of the FBG is removed in the FBG zone plus 5 mm on both ends before being 
embedded.  With this procedure, the FBG is located at approximately twice its diameter 
(i.e., twice the ply thickness or 0.264 mm) from the delamination plane. This distance is 
sufficiently remote from the crack to keep it from being damaged and close enough to 
guarantee the sensitivity of the sensor. The dimensions of the double cantilever beam 
(DCB) specimen are chosen according to ASTM D-5528: width = 25 mm, length = 200 
mm and thickness = 3.7 mm. Specimen edges are sanded to remove imperfections that 
may interfere with crack growth or a clear image of the crack tip position. Afterwards 
steel loading blocks (25x10x10 mm) are attached to the specimen ends with 5 min (24hr 
cure) epoxy.  Once the glue is set, correction fluid is placed along one side to provide 
contrast enabling the visualization of crack growth.  A mechanical testing system is 
used to advance a mode I delamination in the specimen. In all specimens with the 
embedded FBG, the displacement Δ is increased at a rate of 0.01mm/min and the 
location of the crack tip a is continuously monitored with a digital camera and 
photographs are acquired manually to provide a record of the crack tip position with 
time. To carry out measurements using optical low coherence reflectometry (OLCR), 
delamination should be stationary. Thus, once its front is below the FBG sensor, the 
specimen is held at a constant displacement until delamination growth stops to an 
equilibrium position.  
 
3. RESULTS AND DISCUSSION 
3.1 Experimental 
Before testing, the position of the FBG is identified by using the OLCR to measure the 
distance between it and the end of the optical fibre outside the specimen. Next, the 
specimen is loaded and delamination is followed until its front is near the FBG sensor. 
At this point the displacement is held constant and the FBG is interrogated. The 
specimen is further loaded until a longer delamination length and the measurements 
repeated. A typical DCB specimen with a delamination crack is shown in Figure 1 [5]. 



3 

Also shown on this figure by a dotted line is the location of the optical fibre, which 
includes the FBG sensor. Note here the bridging fibres behind the crack tip. 
.  

 
Figure 1: Photograph of a specimen with a well-developed delamination crack with 
bridging fibres. 
 
In the present studies, the strain energy release rate is expressed as [13]: 
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where P is the measured pin load, I is the moment of inertia of one arm, Δ is the applied 
displacement and b is the specimen width.  For unidirectional specimens, the Young 
modulus is taken as E = E11. Note that since the displacement and load data are 
continuously measured by the data acquisition system during testing, use of Eq. (1) 
reduces errors incurred when measuring crack tip position.  Despite the fact that this 
type of simple equation neglects the effects of fibre bridging and orthotropy, it is found 
to give relatively good agreement with ERR calculated via FE modeling that included 
the effect of fibre bridging [2]. Values of GI as a function of applied displacement tend 
towards a stabilization of ERR with values between 800-1100 J/m2 which correspond 
well to literature data determined for carbon fibre PPS (PPS from another manufacturer) 
using DCB specimens (820-1350 J/m2) [14-16]. The relatively large difference in these 
measurements is attributed to differences in specimens and their bridging zone sizes.  
 
4. IDENTIFICATION OF BRIDGING TRACTIONS 
4.1. Fibre Bragg grating & inverse identification of bridging tractions 
It is well known that the spectral response of a homogeneous FBG in its free state (no 
applied strain or temperature) is a single peak centred at the Bragg wavelength λB as 
described by the Bragg condition Λ= effB n2λ , where neff is the effective refractive 
index for the guided mode of interest and Λ is the constant nominal period of the 
refractive index modulation [12]. When the FBG is embedded into a homogeneous 
strain field, at constant temperature, the difference in wavelength bλΔ obtained from the 
peak shift of the spectra, before and after loading, is related to the strain zε  in the fibre 
with ( )/ 1b B e zpλ λ εΔ = − , where ep  is an optomechanical constant evaluated 
experimentally.  
Spectral response, however, is significantly complicated by the introduction of non-
uniform axial strains [5,12]. For example, when the FBG is near a delamination, the 
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spectral response becomes complicated and is sensitive to variations in the polarization 
state. In addition, spectral evolution lacks spatial correlation. A crack could arrive from 
either end of the FBG and produce the same spectral shape, indicating that the spectral 
form does not correspond to a unique strain state. For a constant  temperature and small 
transverse strains so that εx = εy ≈ −νf εz, (νf is the Poisson’s ratio of the optical fibre), the 
relationship between the non-uniform axial strains εz(z) and the local Bragg wavelength 
shift Δλb is similar to the one shown earlier, however, the ( ),  ( )b zz zλ εΔ  are now 
dependent upon the location along the FBG: 

( )( ) 1 ( )b
e z

B

z p zλ ε
λ

Δ
= −       (2) 

According to (2), the axial strain distribution along the FBG can be obtained if the local 
wavelength evolution is known. Using an inverse scattering algorithm the local Bragg 
wavelength λb(z) for a given polarization axis is given by [5]: 
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where λd is a reference wavelength chosen within the range reflected by the FBG and φ 
is the phase of the coupling coefficient. 
Wavelength shifts measured for three different delamination lengths, using an OLCR 
system, are given in Figure 3 [5]. Note that due to the proportionality between 
longitudinal strain and wavelength shift, one observes that the wavelength shifts for 
cracks 1, 2 and 3 are zero well ahead of the crack tip (no strain perturbation) and then 
rise sharply near the crack tip. Moreover, these curves can be superimposed by a simple 
translation, indicating a certain similarity of the field around the crack and the bridging 
zone.  
 

 
Figure 2: Measured wavelength shifts for three crack lengths. Numbers with arrows 
indicate crack lengths measured visually [5].  
 
The distributed strains along the embedded FBG can be used to characterise the 
bridging tractions by an inverse numerical identification of a FE model including a 
parametric form of the bridging tractions. Details of the FE modeling are given in [5,7]. 
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In this work, the bridging stress br ( )zσ  normal to the delamination plane is represented 
by the function: 

( )- γ
1 2σ ( , ) = +z

br z e A A zα        (4) 
where z  is the position from the crack tip (Figure 3) and γ is a parameter defining the 
degree of non-linearity of the bridging traction curve. [ ]1 2γ, ,= A Aα  is a vector of the 
unknown parameters.  A1 represents the maximum stress at the crack tip br maxσ  and the 
ratio of A1 to A2 defines the maximum length maxz of the bridging zone with the 
following limits on their values:  γ ≥  0;  A1 = br maxσ  ; 0 ≤ A1 ≤ mσ  ( mσ  is the matrix 
strength); – A1/A2 = maxz , 0 ≤ – A1/A2 ≤ a – a0.  The parametric form of the bridging 
tractions is introduced in the FE model as a user-defined pressure distribution applied to 
the portion of the delamination surface between the current crack tip and the pre-crack 
tip. By minimizing the error norm (least squares function F(α)) that describes the 
discrepancies between the simulated strains ),(~ αzzε and measured strains )(zzε : 
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one can identify the parameters in (4). Further description of this identification 
technique can be found in [5,7]. 
 

 
Figure 3: Schematic of DCB specimen with fibre bridging across the delamination crack 
where 0a  is the pre-crack length; a is the current crack length; δ  is the COD; Δ  is the 
applied displacement; z  is the distance from the crack tip. 
  
4.2 Determination of bridging law using J-integral approach 
To define a bridging law, consider the schematic in Figure 3. The bridging fibres are 
shown by lines crossing the crack plane. These fibres can be represented by position-
dependent, equivalent bridging stresses: 

b b ( )σ = σ δ         (6) 
This function is assumed to be identical for every location along the bridging zone [8]. 
It is also assumed that the bridging stresses vanish when δ = fδ  ( fδ  is the maximum 
separation limit), so that b f( ) 0σ δ = . To evaluate the distribution of the fibre bridging 
stresses, researchers use the J-integral to represent the ERR IG , as both are equivalent 
for an elastic material [2,4,8]. Thus, the following equation represents the J-integral 
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when it is evaluated along a path containing the crack face in the bridged zone and the 
crack tip: 

*

I 1 b i
0

G J ( )d G
δ

= = σ δ δ +∫       (7) 

where IG  is the total mode I ERR and i ICG G=  is the mode I ERR required to initiate 
growth at the crack tip. The integral in (7) represents the energy bG  dissipated in the 
crack bridging zone, which starts at 0δ =  and ends at the pre-crack tip where 

*
0(a )δ = δ . To experimentally determine the bridging stress distribution, one may 

differentiate (7) with respect to *δ : 
*I

b*

dG ( )
d

= σ δ
δ

        (8) 

In this work, values of IG  are obtained using (1). The method for acquiring *δ  (Figure 
3) is based on digital image correlation measurements of points drawn on the correction 
fluid at the pre-crack tip (Sec. 2). One consequence of this procedure is that the 
measurements of *δ  are taken during the applied displacement ramp and therefore do 
not correspond to the equilibrium state achieved during the displacement hold used in 
sec. 4.1. This implies that the corresponding bridging law can be used to model crack 
growth and loading pin forces during the ramp opening portion of the tests 
(subsequently referred to as the “non-equilibrium” state). To produce a bridging law 
that describes an equilibrium hold situation, it is assumed that the *

IG − δ  relationship is 
similar to that of the non-equilibrium curve [7].  
 
4.3 Comparison of Bridging Laws 
To compare the J-integral bridging laws with the bridging behaviour found using the 
FBG method, one must convert the z  variable into δ . This is accomplished by 
extracting ( )δ z  from the FE model. A comparison of the bridging laws is found in 
Figure 4 [7].  

 
Figure 4: Comparison of bridging laws determined using the J-integral for both 
equilibrium and non-equilibrium cases, and using the FBG-inverse identification 
technique [7]. 
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By comparing the corresponding bG values due to bridging one notes that the bridging 
laws are similar when it is assumed that fδ = 4mm for the J-integral method : J-integral 
equilibrium, bG =790 J/m2; FBG-inverse method (for a = 108 mm, in Figure 3); 

bG =750 J/m2; J-integral non-equilibrium, bG = 940 J/m2. Although the form of the non-
equilibrium law does not seem significantly different from the other two cases 
(comparing shape and maximum stress, Figure 4), the total area under the curve is 
sufficient to differentiate it from the other two bridging laws. 
 
5. NUMERICAL MODELING  
Fibre bridging along the delamination is modelled in ABAQUS® using a single layer of 
zero thickness cohesive elements (COH2D4) along the delamination plane (see insert in 
Figure 5). Cohesive element behaviour of this type is well explained in the literature 
[3,6]. In the case of mode I delamination, these elements are defined by their “traction-
separation” response, meaning that the stress an element incurs as it opens along the 
crack front depends on the local crack opening displacement δ  as it is shown in the 
Traditional Cohesive Zone illustrated in Figure 5.  
 

 
Figure 5: Definition of the constitutive behaviour of a cohesive element with fibre 
bridging. Insert shows implementation of cohesive element in the case of mode I 
delamination opening. 
 
Before any damage, elements follow a linear-elastic traction-separation behaviour 
defined by the stiffness p max 0K /= σ δ  (see Figure 5). Before the maximum stress level 

b 0 max( )σ δ = σ , the damage parameter D is zero. After the maximum point, D evolves 
according to a softening model, which may be linear, exponential or user-defined. In 
general, the damage increases from 0 to 1 corresponding to 0δ = δ  and 1δ = δ  
respectively, and the material secant stiffness p(1 D)K− decreases until a pre-defined 
maximum value of opening displacement 1δ  is achieved. At D = 1 the cohesive 
elements carry no load. 
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Due to large-scale fibre bridging, it is assumed that the composite first undergoes 
decohesion followed by fibre bridging. Thus we use a three-part cohesive model as 
illustrated in Figure 5 [2]. The area under the triangle in the first part of the separation 
(insert in Figure 5) represents I IC max 1G G / 2σ δ= = . The third part of the cohesive 
element law describes the bridging zone, and is defined on the basis of the bridging 
stress functions b ( )σ δ  from the results of the previous sections. The area under the 
bridging zone portion of the curve 1 f( )δ ≤ δ ≤ δ    is defined by the separation ERR 

bG . 
The general model configuration considered here follows the schematic in Figure 3. As 
in the experiments, a displacement Δ  is applied to open the delamination and the crack 
length a is allowed to develop freely as the cohesive elements separate and break. Non-
linear geometry is accounted for; however, to reduce calculation costs, the proposed FE 
model assumes plane strain conditions along the width of the specimen. Consequently, 
the model is considered to be representative of the centre of the specimen. The 
composite beam is simulated by 32 000 linear, plane strain elements with the same 
mechanical properties that were used in the inverse identification method [5, 7]. 
Cohesive elements (0.05mm wide) are inserted along the crack plane as shown in 
Figure 5, starting at the pre-crack tip position, a0 = 63 mm, and continuing to the end of 
the specimen. This layer of elements is fixed to the plane strain elements using tie 
constraints. The input parameters for the cohesive element are ICG = 150 
J/m2;  maxσ = 36 MPa; Kp = 10000 3Nmm− . The ICG  is taken within the range of the 
experimentally measured values and Kp is equal to the transverse modulus 22E  divided 
by the constitutive element thickness of one. The maxσ   is assumed to be about 40% of 
the matrix yield strength or 36 MPa on the suggestion of reference [3] with respect to 
convergence issues.  With high maxσ  values, convergence becomes difficult, thus this 
model relies on ICG , instead of the exact value of maxσ .  It must be noted, however, that 

ICG  and maxσ  will influence the progression of cracking, and they should not be 
dismissed when considering the potential errors of this method. In addition to the 
lowering of the maximum stress, a small value of viscous regularization, 1·10-5 is 
required to help the convergence of the model. In preliminary tests, this value does not 
noticeably affect the force-displacement results; however, care must always be taken in 
the choice of this parameter. The third part of the bridging law is described using the 
bridging stress distributions determined using both the J-integral and the FBG-inverse 
identification methods.  
To investigate the impact of the different bridging laws on delamination behaviour, as 
predicted by the cohesive model, two different simulations are reported herein: (1) In a 
first step, the non-equilibrium law determined using the J-integral approach is 
implemented with fδ  = 4 mm and Δ  = 25.26 mm. In a second step, the displacement is 
held constant while using the equilibrium law to simulate the actual ramp-hold 
procedure of the experiment: (2) The bridging law determined using the FBG-inverse 
identification technique is implemented for an applied Δ  = 25.26 mm. This law 
represents the equilibrium (hold) behaviour of the delamination. Output from the 
cohesive models is displayed in terms of the force-displacement P- Δ  response of the 
DCB specimen. These two cases are shown in Figure 6 [7]. Case 1, fδ  = 4 mm, 
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simulates an actual test case, where the first step follows the displacement ramp and the 
second step represents the time when the specimen is held open at a fixed displacement 
( Δ  = 25.3 mm). By applying the non-equilibrium cohesive law in the second step, the 
delamination crack continues to grow, (more cohesive elements rupture) so that the 
force decreases for a fixed displacement. This result agrees well with the experimentally 
observed decrease in force. Case 2 illustrates the behaviour of the specimen based on 
the bridging law obtained from the FBG-inverse identification method. Its results are 
comparable to the lowest force values obtained during the displacement holds ( Δ  = 
14.5, 19.9, and 25.3 mm) since its FBG measurements were taken during such 
displacement holds. During the initial loading, this model follows the same linear 
response as in case 1, but once the cohesive element softening behaviour starts to 
influence the model, the calculated forces follow a low curve that touches the force 
values obtained during the fixed-displacement holds. At the hold when Δ  = 25.3 mm the 
forces calculated in cases 1 and 2 are comparable. 

 
Figure 6: Force displacement response compared with results from cohesive elements. 
Note the drop in the case 1 load towards that of case 2 at Δ  = 25.3 mm. 
 
6. CONCLUSIONS 
In this work two techniques are used to determine bridging stress distributions in mode I 
delamination of uniaxial carbon fibre-reinforced polymer composite. While both 
methods produce similar bridging laws, the J-integral approach requires a choice of the 
δf value. Regardless of the technique used to determine bridging laws, accurate crack tip 
position, and the resulting local strain distribution are difficult to simulate, due to the 
need to assume an initial stiffness and maximum stress before damage is incurred. Note 
also that the choice of appropriate values in the traditional cohesive zone is dictated not 
only by GIC, but also by the need for numerical convergence. The results of this work 
demonstrate that distributed strain data from embedded long FBG sensors and inverse 
numerical identification provide an independent semi-experimental means for 
determining bridging laws that can be used to characterise delamination behaviour in 
polymer composites. 
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