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Abstract—Machine Learning (ML) approaches are increas-
ingly used to model data coming from sensor networks. Typical
ML implementations are cpu intensive and are often running
server-side. However, IoT devices provide increasing cpu capa-
bilities and some classes of ML algorithms are compatible with
distribution and downward scalability. In this demonstration we
explore the possibility of distributing ML tasks to IoT devices
in the sensor network. We demonstrate a concrete scenario of
appliance recognition where a smart plug provides electrical
measures that are distributed to WiFi nodes running the ML
algorithms. Each node estimates class-conditional probabilities
that are then merged for recognizing the appliance category. Fi-
nally, our architectures relies on Web technologies for complying
with Web-of-Things paradigms.

I. INTRODUCTION

Nowadays, many objects are following the Internet-of-
Things (IoT) paradigm by relying on well known IP tech-
nologies. In spite of increasing capabilities, those devices are
still performing simple tasks such as sense and react. We
also observe the emergence of data-driven ML algorithms
that are able to leverage on the large amount of sensor data.
ML algorithms are usually executed on powerful computers
often residing server-side. In this demonstration, we explore
the feasibility of deporting the execution of those algorithms
directly on things. For this purpose, we use several OpenPicus
FlyportPRO WiFi [1] modules which will act as distributed
computing power. Our implementation is also relying on Web
technologies as application layer according to Web-of-Things
(WoT) paradigms [2].

II. MACHINE LEARNING APPROACH

The experimental setup demonstrates the feasibility and
effectiveness of our approach by its deployment in the field of
the electrical appliance recognition. The electrical consumption
is measured with smart plugs placed between the appliance
plug and the wall socket. Different features can be measured
by the smart plug, as the active power, reactive power, RMS
current, voltage, phase and frequency. The aim of the electrical
appliance recognition task consists in analysing a sequence of
electrical appliance measures, called appliance signatures, and
provide information about the appliance generating the signal.
Potentially, several information can be inferred, as the brand
and model of the appliance, its category (i.e. coffee machine)
or its actual state (i.e. stand-by). In this work, we demonstrate

the recognition of the appliance category and state using an
implementation inspired from [4]].

For training the models we use the ACS-F2 database [3]], con-
taining 450 electrical signatures recorded from 225 appliances
of different brands and / or models. A signature consists of
one hour recording with a sampling frequency of 10~! Hz.
The appliances are uniformly spread into 15 categories.

The signatures in the ACS-F2 database are represented in a
six dimensional space as described above. Given the small
quantity of memory available on the OpenPicus, we decide to
reduce as much as possible the feature space, removing the
non relevant frequency and voltage features, as well as the
phase angle which is redundant with the active and reactive
power information [4].

We selected Hidden Markov Models (HMMs) to represent
the state-based nature of the signals. In our setting, we
assume that the HMMs are trained offline due to the large
quantity of data requested by ML training procedures. The
training of the HMMs is performed here using a classical
Expectation Maximisation procedure that iteratively estimates
the parameters of the HMMs, i.e. the transition probabilities
between states and the emission probability estimators, in our
case Gaussian Mixtures Models. We consider here two states
models: on and off (or stand-by). After training, the models
parameters are transferred to the OpenPicus that are then in
charge of processing real-time data. The choice of generative
models such as HMMs is also motivated by our need to
spread the computation load in the network of OpenPicus.
This is naturally done considering that we can train one
model M; per category and spread the computation of class
conditional probabilities p(x|M;) (likelihoods) on each nodes.
The decision about the category label is finally taken using
the simple Bayes rule, i.e. electing the highest likelihood if all
categories have equal priors. In a previous work the system
reported increasing accuracy using larger number of Gaussian
per state, typically up to 30 [3]. Given the memory restriction
of the devices we are here limiting the number of Gaussians
to 8, trading off slightly the accuracy rate.

III. GENERAL ARCHITECTURE

As our architecture relies on the WoT paradigm, every
device embeds a RESTful API accessible through CoAP (i.e
a lightweight version of HTTP) [5)]. In order to sense non-
physical measures like an appliance category, we introduce
the concept of virtual sensors. Those type of sensors are
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Fig. 1. Data exchange between the entities.

associated to complex data-driven process composed of several
models called virtual classes. The Virtual sensor exploits
the computational power of nearly located smart things and
deploys models on them, forming a set of virtual classes.
Virtual classes are agents able to compute class conditional
probabilities (likelihoods) as explained above. They are peri-
odically executing the algorithm using the data coming from
the sensors. From a client’s point of view, a virtual sensor acts
like any other type of sensing device offering a Web resource
representing the actual state. With a single GET request, a
client can retrieve the actual value inferred from the Virtual
classes.

Offline training algorithms will deploy the runtime algorithms
by creating new virtual sensors resources. This step is achieved
by providing a JSON document containing all the parameters
of the machine learning models. The newly created virtual
sensor then handles all the distribution of the models on
the OpenPicus modules, creating virtual classes. Due to the
memory limitation, parameters are exchanged in float binary
format (IEEE 754) in order to avoid the JSON verbosity.
Virtual classes will further register at physical sensors to be
notified with new values.

Our implementation offers two access modes for clients (se-
lectable when creating the virtual sensor). In the end-to-
end mode, clients are requesting the virtual sensor for the
actual appliance category. In order to determine the appliance
category, each virtual class will be requested sequentially
for its current likelihood. The virtual sensor then compares
the likelihood values and, according to the Bayes rule, the
model having the highest likelihood is designated as winner
(assuming equal priors). The winning appliance category and
its actual state are then returned to the client. The sync-based
mode is fully event-driven and is especially tailored for real-
time systems. Virtual classes will notify the Virtual sensor each
time a new likelihood is computed. The decision making is
performed as soon as a likelihood changes and is cached on
the virtual client. This allows to avoid the sequential requesting
of virtual classes and improves the scalability as well as the
round-trip time. Clients can optionally observe a virtual sensor
that will send notifications as soon as the appliance category
changes.

IV. DEMONSTRATION

Our demonstration is composed of a smart plug Plogg, a
set of OpenPicus FlyportPRO WiFi nodes, a Raspberry Pi and
a client tablet device. The OpenPicus nodes execute a model
(virtual class resource), corresponding to a specific appliance
category. The Raspberry Pi acts as virtual sensor for making
the decision about the category of the appliance plugged in the
smart plug. The virtual classes will regularly be notified about
new values coming from the smart plug. We use a mobile
device as client to feedback the user about information on the
identified appliance. A web page using Sync-based mode is
used and notified by the Virtual sensor in real-time. FigurdI]
illustrates the different entities and their data exchange. Off-
line experiments of the demonstration settings show correct
identification rates of about 90%.

V. CONCLUSION

We have presented an architecture for executing the run-
time part of a machine-learning process on smart things.
An experimental setup demonstrates the feasibility of this
architecture able to execute higher-level tasks on a network of
IoT things. We successfully deployed complex trained models
performing a classification task for appliance recognition. The
extensive use of Web technologies among with the concepts of
virtual sensor and virtual class allows a seamless integration
in the world of IoT and WoT. Future works will include
the recognition of user activities in houses, as well as the
reconsidering the training part according to the WoT precepts.
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