
����������
�������

Citation: Contreras, V.; Marini, N.;

Fanda, L.; Manzo, G.; Mualla, Y.;

Calbimonte, J.-P.; Schumacher, M.;

Calvaresi, D. A DEXiRE for

Extracting Propositional Rules from

Neural Networks via Binarization.

Electronics 2022, 11, 4171.

https://doi.org/10.3390/

electronics11244171

Academic Editor:

Alberto Fernandez Hilario

Received: 4 November 2022

Accepted: 7 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A DEXiRE for Extracting Propositional Rules from Neural
Networks via Binarization
Victor Contreras 1 , Niccolo Marini 1 , Lora Fanda 2 , Gaetano Manzo 1,3 , Yazan Mualla 4 ,
Jean-Paul Calbimonte 1,5,6 , Michael Schumacher 1 and Davide Calvaresi 1,*

1 Institute of Information Systems (IIG), University of Applied Sciences and Arts Western Switzerland
(HES-SO), 3960 Sierre, Switzerland

2 Department of Clinical Neurosciences, University of Geneva, 1211 Geneva, Switzerland
3 National Institutes of Health (NIH), Baltimore, MD 21224, USA
4 CIAD UMR 7533, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France
5 The Sense Innovation & Research Center, 1950 Sion, Switzerland
6 The Sense Innovation & Research Center, 1007 Lausanne, Switzerland
* Correspondence: davide.calvaresi@hevs.ch

Abstract: Background: Despite the advancement in eXplainable Artificial Intelligence, the expla-
nations provided by model-agnostic predictors still call for improvements (i.e., lack of accurate
descriptions of predictors’ behaviors). Contribution: We present a tool for Deep Explanations and
Rule Extraction (DEXiRE) to approximate rules for Deep Learning models with any number of hid-
den layers. Methodology: DEXiRE proposes the binarization of neural networks to induce Boolean
functions in the hidden layers, generating as many intermediate rule sets. A rule set is inducted
between the first hidden layer and the input layer. Finally, the complete rule set is obtained using
inverse substitution on intermediate rule sets and first-layer rules. Statistical tests and satisfiability
algorithms reduce the final rule set’s size and complexity (filtering redundant, inconsistent, and
non-frequent rules). DEXiRE has been tested in binary and multiclass classifications with six datasets
having different structures and models. Results: The performance is consistent (in terms of accuracy,
fidelity, and rule length) with respect to the state-of-the-art rule extractors (i.e., ECLAIRE). Moreover,
compared with ECLAIRE, DEXiRE has generated shorter rules (i.e., up to 74% fewer terms) and
has shortened the execution time (improving up to 197% in the best-case scenario). Conclusions:
DEXiRE can be applied for binary and multiclass classification of deep learning predictors with any
number of hidden layers. Moreover, DEXiRE can identify the activation pattern per class and use it
to reduce the search space for rule extractors (pruning irrelevant/redundant neurons)—shorter rules
and execution times with respect to ECLAIRE.

Keywords: eXplainable Artificial Intelligence (XAI); binary neural networks; rules extraction; rules
induction; global explanations

1. Introduction

Deep learning (DL) comprises a set of machine learning (ML) methods based on
artificial neural networks (ANN) that can learn complex representations directly from
input data through representation learning [1,2]. DL techniques are employed in complex
tasks where manual feature engineering can be time-consuming or impossible to design.
Moreover, DL architectures can be generalizable, and pre-trained DL models can be used
across domains. For example, DL predictors have been adopted in numerous applications,
including image processing [3], recommender systems [4], cyber-security [5], natural
language processing [6], and in multiple decision support systems (DSS) [7]. DSS can
strongly influence and persuade individuals and organizations. This raises ethical concerns
about trust, privacy, and accuracy [8], as well as legal questions about liability, transparency,

Electronics 2022, 11, 4171. https://doi.org/10.3390/electronics11244171 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244171
https://doi.org/10.3390/electronics11244171
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6189-0217
https://orcid.org/0000-0002-5273-5741
https://orcid.org/0000-0003-3432-3353
https://orcid.org/0000-0002-1682-6865
https://orcid.org/0000-0002-6772-6135
https://orcid.org/0000-0002-0364-6945
https://orcid.org/0000-0002-5123-5075
https://orcid.org/0000-0001-9816-7439
https://doi.org/10.3390/electronics11244171
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244171?type=check_update&version=1

Electronics 2022, 11, 4171 2 of 35

and risk exposition [9]. Therefore, DSS’s inner workings of the principles/mechanisms and
outcomes must be intelligible to accept the DSS conclusions.

Interpreting and explaining DL predictors (both from human [10] and virtual agents [11,12]
perspectives) have been, to date, widely investigated in the discipline named eXplainable
Artificial Intelligence (XAI) [13]. XAI methods can be categorized into intrinsically inter-
pretable (interpretable by design—i.e., decision trees [14], linear regression [15], and rule
sets [15,16]), and post-hoc explainable (predictors trained on inputs–outputs—i.e., LIME [17],
SHAPLEY [18], ECLAIRE [19], and CIU [20]).

Despite the significant advances in XAI, the quality of the explanations still calls for
improvements. For example, on the one hand, model-agnostic approaches do not provide
highly accurate descriptions of the predictor’s internal behavior. Instead, they focus solely
on surrogate models (intrinsically interpretable models that mimic the original models)
and ignore the internal structure of the actual model. On the other hand, model-specific
approaches are restricted to a few DL architectures, limiting their scope of explanation.
DL predictors are connectionist models that store their knowledge through a distributed
structure represented by weighted connections between neurons and non-linear activation
functions. Decompositional rule-extraction methods are suitable for extracting knowledge
stored in the DL predictors. However, their scope is limited to specific architectures, usually
one-hidden layer neural networks, and it is computationally expensive (requiring several
phases of pruning and training).

This paper presents a tool for Deep Explanations and Rule Extraction (DEXiRE). Such
a tool approximates rules for DL models with any number of hidden layers. The proposed
approach employs binary neural networks to induce Boolean functions in the hidden layers,
generating intermediate rule sets for every hidden layer. In turn, a rule set is inducted
between the first hidden layer and the input layer. Finally, the complete rule set is obtained
using inverse substitution on intermediate rule sets and first-layer rules. To reduce the size
and complexity of the final rule set, the algorithm uses statistical tests and satisfiability
algorithms to filter redundant, inconsistent, and non-frequent rules.

The rest of the paper is organized as follows:
Section 2 presents the state of the art on DL, XAI, and rule extraction from ANNs. Section 3
describes the methodology. Section 4 presents the experimental setup and the tests’ exe-
cution. Section 5 presents the experimental results. Section 6 discusses and evaluates the
results and what we can learn from them. Finally, Section 7 concludes the paper.

2. State of the Art

The XAI contributions can be classified into two main branches: Explainable-by-design
and Post-hoc Explanations [21,22].

As shown in Figure 1, on the one hand, decision trees, linear models, and rule-based
approaches are considered explainable-by-design, meaning that the output is derived from
the set of rules or thresholds within them. On the other hand, deep learning models, such
as ANN, belong to post-hoc explanations, meaning that the output requires a third-party
approach to be explained. Post-hoc explanations can be divided into local explanations
(e.g., features importance) and global explanations (e.g., rule extraction). The concept of
global or local explanations refers to interpreting a model from a different perspective.
Global explanations focus on the model’s perspective, while local explanations focus on a
particular data point or observation [21].

This paper focuses on rule-extraction approaches, which elicit the hidden knowledge
embedded in DL predictors and help explain the ANN outcomes. Extracted rules can be
used for hazard mitigation, traceability, system stability and fault tolerance, operational ver-
ification and validation, and more [23,24]. Andrews et al. [25] propose a multidimensional
taxonomy for several rule-extraction methods, from shallow ANN architectures. They
use the (i) decompositional approach: rule-extraction algorithms that work on the neuron
level; (ii) pedagogical approach: rule-extraction algorithm regards the neural network

Electronics 2022, 11, 4171 3 of 35

as a black box; and (iii) eclectic approach: the combination of both decompositional and
pedagogical approaches.

XAI
Explainable-by-design
(intrinsically interpretable) Post-Hoc Explanations

Global Explanations

Decision
Trees

Linear
Models

Local Explanations

Rule-based

Local Surrogate Models

Local Features Importance

Feature Attribution

Sensibility Analysis

Rule Extraction Global Surrogate Models

Decompositional

Eclectic

Pedagogical

Global Feature Importance

Figure 1. Taxonomy of the XAI classes of algorithms.

Decompositional algorithms work on the neuron level by extracting rules from neurons
and inputting them into the whole network. In decompositional algorithms, every neuron
and connection is transformed into a set of rules. A pioneer of decompositional algorithms
is Fu [26,27], which proposed the KT algorithm and outlined the general algorithm by
setting a threshold for each neuron. Fu resolved the problem by mapping the output
result from each neuron (in hidden or output layers) into a Boolean function according
to a given threshold. Towell and Shavlik [28] expanded the subset of Fu’s algorithm,
which can extract M-of-N rules from MLP models. However, a significant complexity of
computing time was added for finding all potential sets of links per neuron unit. The
authors in [29] extracted rules from a neural network with one single hidden layer and
one linear output unit for regression problems. The activation function in the hidden
layer is approximately by piece-wise linear functions. To reduce the complexity, the
network is pruned before rule extraction. Despite this limitation, the inherent simplicity of
decompositional algorithms makes them extremely useful for explaining the mechanics of
rule extraction and for providing interpretability of ANN models at the level of individual
hidden and output units.

Pedagogical rule-extraction algorithms consider ANN as a black box, extracting based
on the ANN’s inputs and outputs [30]—neurons and their connections are not subjected
to analysis. The rules extracted using Pedagogical algorithms are directly extracted from
the ANN’s output, which changes as the ANN’s input changes. Therefore, contrary to
decompositional algorithms, the extracted rules are still intelligible if the ANN’s internal
structure is complex. Thrun in [31] extracted symbolic knowledge rules from ANN based
on Validity Interval Analysis by propagating the activations through the network. This
technique simulates the ANN train coupling the system’s input and output patterns.
HYPINV algorithm extracts rules from trained neural networks used in classification
problems regardless of the structure of the network [32]. Model-agnostic methods, such as
HYPINV, explain the predictions of arbitrary machine learning models independently of the
implementation. They provide a way to explain predictors by considering models as black
boxes. HYPINV approximates the network decision boundary by finding hyperplanes
tangent to the decision hypersurface. Then the network decision boundary is represented
in rules. Sethi et al. [30] proposed a pedagogical algorithm named KDRuleEx for rule
extracting in the form of IF-THEN. The method can deal with discrete and continuous
features and handles non-binary input. The authors in [33] compared rule sets extracted
from ensembles of interpretable neural networks DIMLP, and their conclusion is that
rule sets extracted from neural networks have greater accuracy than those extracted from
decision tree ensembles but at a higher computational cost. The authors in [19] presented a
new method to extract rules from Deep neural networks with any number of hidden layers.

Electronics 2022, 11, 4171 4 of 35

This efficient algorithm induces intermediate rule sets between the hidden layer and the
predicted labels and with a process call-wise substitution to produce the final rule set.

Eclectic approach combines both the Decompositional and Pedagogical approaches.
Most recent contributions in XAI are based on Eclectic approaches, such as Ebecken [34],
which present the RX algorithm to extract rules from trained MLP in classification problems.
RX (i) applies a clustering genetic algorithm to find clusters of hidden unit activation
values, and (ii) generates classification rules describing these clusters w.r.t. the input.
Local Interpretable Model-agnostic Explanations (LIME) [35] is a technique that explains
how the input characteristics of an ML model affect its predictions. For instance, for
image classification tasks, LIME seeks to find the region of an image (set of super-pixels)
having the strongest association with a prediction label. LIME creates explanations by
generating a new dataset of random disturbances (with their respective predictions) around
the explained instance. Then it fits a weighted local surrogate model. This local model is
usually simpler with inherent interpretability, such as a linear regression model. The first
theoretical analysis of LIME was published in [36], confirming the crucial role of LIME,
but also demonstrating its limitation (i.e., poor choice of parameters causes LIME to miss
essential features).

In [37], authors concluded that pruning algorithms based on Mutual Information and
Significance could be more efficient than the methods based on sensitivity and magnitude,
as they consider the mutual dependency between the inputs of the network and outputs of
the hidden neurons. This is a comparative study of pruning algorithms that compares six
different algorithms of large variability with details explanations and uses only one three-class
problem application (out of four) since it is the Iris dataset (popular and generally used in
creating/testing algorithms) that might suggest that the results should be looked at critically.

Local Interpretable Visual Explanations (LIVE) [38] uses a surrogate model to predict
the black box model’s local properties, generating the representative model’s coefficients.
LIVE differs from LIME regarding local discoverability and how it handles interpretable
inputs. LIVE does not create an interpretable input space by transforming input features
but instead uses the original feature space. Since the shuffled data points correspond very
closely to the original points, the similarity between them is measured using the identity
kernel, while the original features are used as an interpretable input.

SHapley Additive exPlanations (SHAP) [39] is a game theory-inspired method that
tries to improve interpretability by calculating the importance of each feature in individual
predictions. First, the author defines a class of feature attribution methods. It integrates six
methods, including LIME [35], DeepLIFT [40], and Layer-Wise Relevance Propagation [41].
Then, they propose the SHAP values as unified measures of feature importance. These
valued hold three desirable properties: local accuracy, missingness, and consistency. In the
end, the authors present various methods for estimating SHAP values, demonstrating the
superiority of these values in distinguishing various output classes, and better aligning
with human intuitions compared to other methods [21].

The BreakDown method [40] is similar to SHAP [39], in trying to attribute the con-
ditioned responses of a black-box model proportionally to the input features. However,
unlike SHAP, the BreakDown method is greedy in terms of conditional responses as it
considers only one series of nested conditional responses. This method is theoretically not
as good as SHAP, but it is faster to compute and more natural to interpret.

Comparing LIVE, LIME, SHAP, and BreakDown, there is no best-for-all method
developed to meet all requirements. Most methods are focused on a particular model
or data type, or their scope is either local or global, but not both. Even though SHAP is
nearly the most complete method, it is not without flaws; KernelSHAP, the kernel version
of SHAP, like most permutation-based methods, does not consider feature dependencies,
hence, emphasizing unlikely data points. TreeSHAP is the tree version of SHAP that could
solve this problem. However, it relies on conditionally expected predictions that may give
non-intuitive feature importance values, as features that have no impact on prediction
could be given non-zero importance values [21].

Electronics 2022, 11, 4171 5 of 35

The work in [42] shows that model trees can be used to build guidelines for learning
problems, but this needs binary actions and does not apply to continuous action problems.
Satisfiability (SAT) solvers are considered alternative methods, used mainly to construct
decision trees and different constraint programming methods. SAT solvers such as [43,44]
and constraint programming methods like [45,46] work mainly on classification problems
with binary input features and do not apply to robotics applications. Several SAT solvers
and constraint programming solvers do not scale well to large datasets, mainly because
these methods add per-sample constraints to the dataset [47].

3. DEXiRE: Rational, Methodology, Algorithm, and Performance Evaluation

This section presents a novel approach to extract rules from DL predictors (with any
number of hidden layers) using binarization and Boolean rule induction. In particular, this
study presents a rule-extraction approach to explain the inner behavior of DL classifiers—
elaborating on the actual (and not a surrogated) model.

Approaching such a novelty, we have formulated (and validated) the following under-
lying hypotheses.

Hypothesis 1. The binarization of hidden layers in DL predictors allows the identification of
neuron activation patterns characteristic of each class.

Hypothesis 2. It is possible to use binary hidden layers to induce Boolean functions that approxi-
mate the behavior of each hidden layer.

Hypothesis 3. Intermediate rule sets approximating the behavior of each hidden layer can be
combined to produce a final (global) rule set that describes the overall behavior of DL predictors.

Hypothesis 4. The verification of Hypotheses 1–3 implies the existence of rule sets able to explain
binary and multiclass classifications of DL predictors.

Figure 2 schematizes and highlights the relationship between the hypotheses, the
evaluation metrics, and the algorithm’s goal.

3.1. Underlying Rational Design

DEXiRE is a decompositional rule-extraction algorithm designed to test the Hypotheses 1–4
defined above. Overall, it combines activation analysis and binary neural networks to extract
logic rules from deep neural networks (also referred to as rules induction). Figure 3 schematizes
the working pipeline, and the listing Algorithm 1 details the internal steps in pseudocode.

Decompositional rule extraction methods extract rules at a neuron/layer level and
combine them in the final rule set. Most of these methods are usually limited to networks
with a single hidden layer and require pruning phases that involve retraining the model
before rule extraction [19,48]. As a result, rule sets produced by these methods are longer
and more difficult to interpret than those produced by pedagogical methods. DEXiRE uses
satisfiability (SAT) algorithms [49–52], coverage [53], and information gain to reduce the
size of intermediate and final rule sets without applying pruning phases.

Binary neural networks (BNN) are characterized by using binary weights and acti-
vations, reducing the memory space required to represent quantities. BNNs are suitable
for working in limited-resource devices, improving the inference speed. However, in
contraposition, BNNs may lose accuracy and precision, in particular when both activation
and weights are binary [54–56]. DEXiRE employs binary neural networks to discretize only
the neuron activations, based on Hypothesis 1, identifying active neurons, and making
easier the induction of Boolean functions [57].

DL predictors are able to approximate real-value and Boolean functions. Choi et al. [58]
and Mhaskar et al. [59] have shown that it is possible to compile feedforward neural
networks into logic circuits, interpreting hidden layers as logic gates. Based on the previous
works and Hypotheses 1 and 2, DEXiRE identifies the activation pattern per class in every

Electronics 2022, 11, 4171 6 of 35

hidden layer and then induces Boolean functions between the relevant neurons identified
in the activation pattern.

Rule induction algorithms take a set of observations and, based on their statistical
properties and correlations between features, identify rules that split the input space into
decision regions. Complex decision regions, such as those learned by DL predictors,
produce complex rule sets that may be prone to overfitting. In order to avoid excessively
complex rule sets, DEXiRE induces rule sets and prunes those rules with low coverage
over the train samples. Once the intermediate rule sets are found, DEXiRE merges them
into a final rule set, generated based on Hypotheses 3 and 4. Figure 2 conceptualizes the
hypothesis (H1–H4) and their validation process through evaluation metrics (EM) w.r.t.
DEXiRE’s goal (G).

H1: Hidden layers binarization

H2: Boolean rules induction

H3: Intermediate rule sets generation

H4: global rule set generation

Binary activations

Boolean functions and activation patterns

Intermediate feature-based rule sets

G: To explain the internal decision process of a
DL predictor via rule sets and activation patterns

Rule sets Evaluation

EM1: Prediction Accuracy

EM2: Execution time

EM3: Fidelity

EM4: Rules length (# of terms)

Hypotesis (H) Goal (G) Evaluation Metrics (EM)

Figure 2. Overall conceptual schematization from Hypotheses (H) to the goal (G) via validation with
Evaluation Metrics (EM).

3.2. DEXiRE Algorithm, Methodology, and Performance Evaluation

The following definitions are introduced to formally describe DEXiRE.

Definition 1. An annotated training dataset is defined as the tuple < X, y >, where X ∈ Rm×n is
a matrix with m training samples and n features and y ∈ Rm×l is the label matrix that assigns a
label l to every sample in m.

Definition 2. A pretrained Deep Learning classification predictor is a function fΘ : X 7→ ŷ, which
maps the input features in X to the predicted labels ŷ.

Definition 3. An inference rule is a logic function that draws a conclusion or conclusions by
evaluating a premise. An inference rule can be expressed in an IF-THEN statement as follows:

IF Premise THEN Conclusion (1)

Electronics 2022, 11, 4171 7 of 35

Premises can be composed of different terms (logic expressions) linked by logic operators (∧, ∨, ¬,
⊕). In this paper, rules are presented in IF-THEN form and premises are constructed from terms in
disjunctive normal form (DNF).

IF (

term︷ ︸︸ ︷
(Xi ≥ vi)∨ . . . (Xj < vj)) ∧ . . . ((Xk ≤ vk) ∨ . . . (Xm > vm))︸ ︷︷ ︸

premise/antecedent

THEN ŷ︸︷︷︸
conclusion

(2)

Definition 4. Accuracy of a predictor is a measure of the quality of predictions, which compares the
prediction of a model with the ground-truth labels, counting the fraction of correct predictions over
the total number of predictions (Equation (3)). Accuracy is measured using different metrics like
accuracy-score, F1-score, precision, recall, and other performance metrics, evaluating the predictions
against the ground-truth labels on supervised datasets [60,61].

Accuracy =
Number o f correct predictions
Total number o f predictions

(3)

Definition 5. Fidelity is a metric that compares the predictions from the original black-box model
(ŷ) and the predictions from an interpretable model (ŷrs), measuring how reliable the explanations
are in reflecting the underlying model’s behavior (Equation (4)). Fidelity is measured in terms of
accuracy, F1-score, and other similarity measures, using the predictions of the black-box model as
the ground truth [60–62].

Fidelity = Accuracy(ŷ, ŷrs) (4)

Definition 6. Coverage can be defined as the number of data instances that activate a rule over the
set of total data instances that belong to the same class < Xi, yi >, where Xi ⊂ X is a subset of
instances on X that belongs to class yi [53]. Let ri be a rule whose conclusion is yi, coverage for this
rule can be defined as follows:

coverage(ri) =
number of instances in Xi that activate ri

number of instances in Xi
(5)

Definition 7. Rule length is a measure of the number of terms (atomic Boolean expressions, e.g.,
(xi ≥ vi)) in a rule set.

Definition 8. An activation pattern is the set of most frequent discretized activation values for
each hidden layer that characterizes each class.

DEXiRE Formal goal: Given a training set (< X, y >), as was described in Definition 1,
and a pretrained DL classifier (fΘ) as was described in Definition 2; DEXiRE aims to induce
a set of rules in IF-THEN form, as was described in Definition 3, which defines a logic
model or theory M that approximates the behavior of the DL predictor fΘ such that M � ŷrs,
the logic model (M) semantically entails (�) conclusions (ŷrs).

Figure 3 and Algorithm 1 describe the DEXiRE pipeline step by step. The steps (S) are
numbered and described below. Such a tool requires a trained model fΘ and the training
set, X ∈ Rm×n with m samples and n features.

Electronics 2022, 11, 4171 8 of 35

Begin

Model
predictions

[S1]

Binary models
generation

[S2]

Trained model
<latexit sha1_base64="OM7iyvDwCamOcq1EbylIfxDGVIw=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK/cI2lM120i7dbMLuRCih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEikMuu63U1hb39jcKm6Xdnb39g/Kh0ctE6eaQ5PHMtadgBmQQkETBUroJBpYFEhoB+O7md9+Am1ErBo4ScCP2FCJUHCGVnoM+1mvMQJk03654lbdOegq8XJSITnq/fJXbxDzNAKFXDJjup6boJ8xjYJLmJZ6qYGE8TEbQtdSxSIwfja/eErPrDKgYaxtKaRz9fdExiJjJlFgOyOGI7PszcT/vG6K4Y2fCZWkCIovFoWppBjT2ft0IDRwlBNLGNfC3kr5iGnG0YZUsiF4yy+vktZF1buqXj5cVmq3eRxFckJOyTnxyDWpkXtSJ03CiSLP5JW8OcZ5cd6dj0VrwclnjskfOJ8/uIeQ9g==</latexit>

f⇥

Trained dataset
<latexit sha1_base64="QHaDm6HzMrrPy70DPTb952gJxwQ=">AAACAXicbZDLSsNAFIZP6q3WW9SN4GawCC6kJFLUhUjRjcsK9gJtKJPppB06uTAzEUqIG1/FjQtF3PoW7nwbJ20Ebf1h4OM/5zDn/G7EmVSW9WUUFhaXlleKq6W19Y3NLXN7pynDWBDaICEPRdvFknIW0IZiitN2JCj2XU5b7ug6q7fuqZAsDO7UOKKOjwcB8xjBSls9c++i62M1dL2knR6jHx6nlz2zbFWsidA82DmUIVe9Z352+yGJfRoowrGUHduKlJNgoRjhNC11Y0kjTEZ4QDsaA+xT6SSTC1J0qJ0+8kKhX6DQxP09kWBfyrHv6s5sRTlby8z/ap1YeedOwoIoVjQg04+8mCMVoiwO1GeCEsXHGjARTO+KyBALTJQOraRDsGdPnofmScU+rVRvq+XaVR5HEfbhAI7AhjOowQ3UoQEEHuAJXuDVeDSejTfjfdpaMPKZXfgj4+MbP4OWxw==</latexit>

< X,y >

<latexit sha1_base64="qAEW7o85AN4PCYZH3QX3xQN27IU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRS1GXRjcsK9gFNKJPppB06mYSZSSGE/okbF4q49U/c+TdO2iy09cDA4Zx7uWdOkHCmtON8W5WNza3tnepubW//4PDIPj7pqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3hd+b0alYrF40llC/QiPBQsZwdpIQ9v2IqwnQZh7E6zzbD4f2nWn4SyA1olbkjqUaA/tL28UkzSiQhOOlRq4TqL9HEvNCKfzmpcqmmAyxWM6MFTgiCo/XySfowujjFAYS/OERgv190aOI6WyKDCTRU616hXif94g1eGtnzORpJoKsjwUphzpGBU1oBGTlGieGYKJZCYrIhMsMdGmrJopwV398jrpXjXc60bzsVlv3ZV1VOEMzuESXLiBFjxAGzpAYAbP8ApvVm69WO/Wx3K0YpU7p/AH1ucPWkaUJA==</latexit>

ŷ Binary activations
extraction

[S3]

<latexit sha1_base64="Sml3Z2srTK7b5ioh/y5nIERpSeE=">AAAB8XicbVDLSgNBEJyNrxhfUY9eBoPgKexKUI9BLx4j5IXJGmYnvcmQ2dllplcIIX/hxYMiXv0bb/6Nk2QPmljQUFR1090VJFIYdN1vJ7e2vrG5ld8u7Ozu7R8UD4+aJk41hwaPZazbATMghYIGCpTQTjSwKJDQCka3M7/1BNqIWNVxnIAfsYESoeAMrfQQPga9bn0IyHrFklt256CrxMtIiWSo9Ypf3X7M0wgUcsmM6Xhugv6EaRRcwrTQTQ0kjI/YADqWKhaB8Sfzi6f0zCp9GsbalkI6V39PTFhkzDgKbGfEcGiWvZn4n9dJMbz2J0IlKYLii0VhKinGdPY+7QsNHOXYEsa1sLdSPmSacbQhFWwI3vLLq6R5UfYuy5X7Sql6k8WRJyfklJwTj1yRKrkjNdIgnCjyTF7Jm2OcF+fd+Vi05pxs5pj8gfP5A2LYkL4=</latexit>

f b
⇥

Activation path
identification

(per class)
[S4]

<latexit sha1_base64="irpzik6D1y2P5YvmsYedUzH1Yik=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWFQIpipBFTBWsDAWiT6kNkSO67RWHSeyHUSJ+iUsDCDEyqew8Tc4bQdoOZKlo3Pu1T0+QcKZ0o7zbRVWVtfWN4qbpa3tnd2yvbffUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywus799gOVisXiTo8T6kV4IFjICNZG8u1yL8J6GITZ4+TkPvCZb1ecqjMFWibunFRgjoZvf/X6MUkjKjThWKmu6yTay7DUjHA6KfVSRRNMRnhAu4YKHFHlZdPgE3RslD4KY2me0Giq/t7IcKTUOArMZB5TLXq5+J/XTXV46WVMJKmmgswOhSlHOkZ5C6jPJCWajw3BRDKTFZEhlpho01XJlOAufnmZtM6q7nm1dlur1K/mdRThEI7gFFy4gDrcQAOaQCCFZ3iFN+vJerHerY/ZaMGa7xzAH1ifP9ZFkzc=</latexit>

x0b
i

Intermediate rules
generation

(per class)
[S5]

Intermediate rule
sets pruning

[S6]

Final rule-set
generation

[S8]

Final rule-set
evaluation

[S9]
End

Features’ rules
generation

[S7]

Figure 3. DEXiRE pipeline describes the series of steps executed by the DEXiRE algorithm (Algorithm 1).

Algorithm 1 DEXiRE algorithm pseudocode.
Require: Pretrained DL predictor fΘ with k + 1 hidden layers (h0...k+1).
Require: Training feature matrix X.
Require: Training labels matrix y.
Ensure: Last layer on predictor fΘ has as many neurons as classes.
1: ŷ← fΘ(X) . Generates predictions from model fΘ [S1]
2: f b

Θ ← clone_model(fΘ)
3: for hidden layer i = 0,. . . k do
4: hb

i ← binarize(hi)

5: f b
Θ ← replace_layer(f b

Θ, hb
i) . Hidden layers are binarized producing a binary model [S2]

6: end for
7: f ′bΘ ← f ine_tune(f b

Θ)
8: for binary hidden layer i = 0,. . . k do
9: x′bi ← hb

i (x) . Binary patterns are extracted, [S3]
10: end for
11: for each class c ∈ C do
12: activation_pattern[c]← ∅
13: for hidden layer i = 0,. . . k do
14: activation_pattern[c][i]← probability_ranking(x′bi) . Activation pattern identification [S4]
15: end for
16: end for
17: for each class c ∈ C do
18: intermediate_ruleset[c]← ∅
19: initial_rule_set[c]← ∅
20: f inal_rule_set[c]← ∅
21: for hidden layer i = 0,. . . k do
22: intermediate_ruleset[c][i]← boolean_inductor(activation_pattern[c][i]) . Int. rule set generation [S5]
23: intermediate_ruleset[c][i]← prune(intermediate_ruleset[c][i]) . Intermediate rule set running [S6]
24: end for
25: f eature_rule_set[c] = f eature_rule_inductor(activation_pattern[c][0]) . Feature rule set generation [S7]
26: f inal_rule_set[c] = rule_merge(f eature_rule_set[c], intermediate_ruleset[c]) . Final rule set gen. [S8]
27: end for
28: ŷrs ← f inal_rule_set.predict(X)
29: accuracy← accuracy_ f unction(y, ŷrs) . Final rule-set evaluation [S9]
30: f idelity← accuracy_ f unction(ŷ, ŷrs)

The DEXiRE pipeline (Algorithm 1) consists of several steps described as follows:

S1: Model predictions: Using the pre-trained DL predictor (fΘ) and the training set (X),
predicted labels (ŷ) are obtained, as is described in line 1 on Algorithm 1
and in Equation (6).

ŷ← fΘ(X) (6)

S2: Binary models generation: To test Hypothesis 1, it is necessary to identify the most
frequently active neurons per class. DEXiRE binarize the activation functions on
hidden layers using the hard-tanh function, described in Equation (7) [63,64]. The
hard-tanh activation function is commonly used in binary neural networks (BNN) to
approximate the sign function, particularly during the backpropagation [65].
The binarized predictor f b

Θ is created cloning (coping architecture and weights) from
the original model fΘ, line 2 on Algorithm 1, then every hidden layer on f b

Θ is replaced
for a binary layer maintaining the same weights, lines 3–6 on Algorithm 1. Once the

Electronics 2022, 11, 4171 9 of 35

binary predictor f b
Θ has been created, a fine-tuning training (line 7 in Algorithm 1) is

executed on it to ensure high accuracy and fidelity.

hard-tanh(x) =

−1 if x < −1

x if −1 ≤ x ≤ 1

1 if x > 1

(7)

S3: Binary activations extraction: Binary activations are discrete approximations of logic
values obtained from the hard-tanh activation function. Binary activation for hidden
layer i is defined as follows:

x′bi : x′bi ∈ {1,−1}j (8)

Binary neural network (f b
Θ) is used to obtain the binary activations x′bi for each data

sample x(r) in the training set, x(r) ∈ X. The binary activation extraction process is
executed for each binary hidden layer hb

i (see Algorithm 1, lines 8–10).
S4: activation pattern identification (per class): are obtained for each hidden binary layer

h′bi , in the previous step. Binary activations are grouped by class, and then the most
frequent activation values are identified and stored in the dictionary (activation_path).
Then a probability ranking is constructed per class using the likelihood of activation
values per class, which describes the activation pattern per class as the collection of
frequently activated neurons per layer (Algorithm 1 lines 11–15). Step S4 aims to test
Hypothesis 1 identifying the activation pattern per class. Two example activation
patterns are shown in Figures 4 and 5.

S5: Intermediate rules generation (per class): Intermediate rules are generated, per class,
from the activation pattern. Per each hidden layer and class, the most frequently acti-
vated neurons are selected, and a Boolean rule is inducted using the Sum of Products
(SoP) or OneR methods. Intermediate rules are Boolean and operate with logic values,
interpreting binary activation value 1 as the logic True and binary activation value −1
as the logic False. (1 lines 21–24). In this step, Hypothesis 2 is tested.

S6: Intermediate rule sets pruning: The intermediate rule sets are pruned based on the
probability ranking (likelihood of activation) of the terms which compose the Boolean
function and applying satisfiability (SAT) algorithms that check the consistency of the
intermediate Boolean functions (Algorithm 1 line 23).

x_0
h_1_0

h_1_1

h_1_2=1.0

h_1_3

x_1

x_2

x_3

h_2_0

h_2_1

h_2_2=1.0

h_2_3

h_3_0

h_3_1

h_3_2

h_3_3=1.0

h_4_0

h_4_1

h_4_2

h_4_3=1.0
y_0=1.0

y_1

y_2

Figure 4. The activation pattern (the most frequently activated neurons) for class 0 is highlighted in
red over the DL predictor architecture (Iris dataset). In addition, the most frequent activation values
are shown for neurons in the activation pattern.

Electronics 2022, 11, 4171 10 of 35

x_0
h_1_0

h_1_1

h_1_2=-1.0

h_1_3

x_1

x_2

x_3

h_2_0

h_2_1

h_2_2=-1.0

h_2_3

h_3_0

h_3_1

h_3_2

h_3_3=-1.0

h_4_0

h_4_1

h_4_2

h_4_3=-1.0

y_0

y_1=1.0

y_2

Figure 5. The activation pattern (the most frequently activated neurons) for class 1 is highlighted in
red over the DL predictor architecture (Iris dataset). In addition, the most frequent activation values
are shown for neurons in the activation pattern.

S7: Features’ rule generation: Binary activation of the first hidden layer (h′b0) is used as
the target label to induce features’ rule set.
Explainable layers (ExpL) are hidden layers that are able, through their weights and
activation, to explain the underlying neuron behavior [60]. ExpL layers can learn an
activation threshold ti for the features producing partitions in the feature space, in the
form (xi ≥ ti), according to the class label. However, the partitions on the input space
are binary and cannot be extended to the multiclass problem. For this reason, ExpL as
a method for feature rule induction is only suitable for the binary classification task.
For the multiclass task, we employ algorithms such as decision trees, random forest,
ID3, CART, C4.5, and OneR. (Algorithm 1 line 25).

S8: Final rule set generation: Per class, intermediate rule sets are merged with the
initial_rule_set to produce the final_rule_set (Algorithm 1 line 26). In this step,
Hypotheses 3 and 4 are tested. The substitution process carried out to produce the
final rule set can be visualized in Figure 6.

6XEVWLWXWLRQ 6XEVWLWXWLRQ6XEVWLWXWLRQ

)LQDO�5XOH�VHW

Figure 6. Substitution and merging process between the intermediate rule sets and the feature rule
set employed to generate the final rule set.

S9: Final rule-set evaluation: Once the final rule set has been generated, its predictions
ŷrs are evaluated against the true labels (y) predictions (ŷ) to measure rule accuracy
and fidelity (Algorithm 1 lines 28 and 30).

4. Experimental Setup

This section elaborates on the experimental setup, datasets used for the evaluation, and
experimental process adopted to verify the hypotheses outlined in Section 3. Figure 7 shows
the experimental workflow. A detailed description of each experimental step (ES) follows.

Electronics 2022, 11, 4171 11 of 35

[ES5] DEXiRE application

• Execution of Algorithm (1)

[ES3] Data-sets pre-processing

• Features z-score normalization
• Lables enconding
• Data partitioning

[ES2] Data-sets gathering

• 3 data-sets for S1
• 3 data-sets for 21

[ES4] Baseline predictor characterization

• Baseline model definition
• Training baseline predictor
• Baseline predictor evaluation

[ES1] Scenario definition

• S1 — Binary classification
• S2 — Multi-classification

Figure 7. Experimental setup workflow describes the experimental steps (ES) carried out to test the
DEXiRE algorithm.

4.1. ES1 Scenario Definition

Recalling that DEXiRE is a decompositional rule-extraction method designed to extract
rules from DL classifiers, its features’ rule generation (step S7 of the pipeline) operates
differently for binary and multiclass classification. On the one hand, for binary classification
(SC1), S7 consists of learning the initial rule set (the rule set between the input features and
the first hidden layer) using explainable layers (ExpL). ExpL is an additional layer added
to the original mode that can learn the activation threshold that splits the decision region
between two classes [60]. On the other hand, multiclass classification (SC2) concerns three
or more target categories. In the case of SC2, S7 employs algorithms like ID3, C4.5, and
OneR to induce the initial rule set for each class.

4.2. ES2 Datasets Gathering

For this study, we selected publicly accessible datasets. Public datasets foster the
replication and extension of our study. In particular, the datasets we employed are:

• SC1 Binary classification datasets:

– Breast Cancer Wisconsin (Diagnosis): The Breast Cancer Wisconsin Diagnosis
(BCWD) dataset is a binary classification tabular dataset with 30 features and
569 instances. The BCWD dataset includes annotations to determine if a given
data instance describes a malign (M) or benign (B) breast tumor [66]. A detailed
description of features can be found in Appendix A.1.

– Banknote authentication Dataset The banknote dataset is a binary classification
tabular dataset with 1372 instances and four continuous features extracted from
the instances’ image wavelet transform. In addition, the banknote dataset includes
annotations to classify a banknote as authentic or fake [67]. A detailed description
of features can be found in Appendix A.2.

– Prima Indians diabetes mellitus classification The Prima Indians diabetes dataset
is a binary classification tabular dataset that contains 768 instances (patients) and
eight features. The Prima Indians diabetes dataset includes annotations to determine
if a given patient is diabetic or not [68]. A detailed description of features can be
found in Appendix A.3.

• SC2 Multiclass classification datasets:

– Digits Dataset: The Digits dataset is a multiclass classification tabular dataset
with 1797 instances and 64 features, each one representing the intensity of a gray-
scale pixel. The Digits dataset provides annotations to classify digits between
0 and 9 [67]. A detailed description of features can be found in Appendix A.4.

Electronics 2022, 11, 4171 12 of 35

– Iris: The Iris dataset is a popular multiclass classification tabular dataset that
contains 150 instances and four features (petal length, sepal length, petal width,
and sepal width). The Iris dataset provides annotations to classify an instance
between one of three target categories (Setosa, Virginica, Versicolor). A detailed
description of features can be found in Appendix A.5.

– Wine quality: The wine quality dataset is a multiclass classification tabular
dataset with 178 instances and 13 numeric features. The wine quality dataset
provides annotations to classify wine into one of three classes [67]. A detailed
description of features can be found in Appendix A.6.

4.3. ES3 Datasets Pre-Processing

Data normalization has been the first step in the pre-processing pipeline. Normaliza-
tion changes the scale and range of data to improve the training process and reduce the
bias induced by the feature ranges. In this study, all features have been normalized using
the Z-score normalization. The one-hot encoding procedure transforms the target labels (y)
into binary vectors.

Once the dataset has been normalized and the labels encoded, the dataset is separated
into three sets: training set (60%), validation set (20%), and test set (20%) using stratified
sampling and a random seed of 42.

4.4. ES4 Baseline Predictor Characterization

In ES4, the baseline DL predictor is defined. The baseline DL predictor is a feed-
forward DL model, and its architecture is defined for each dataset based on the number
and type of features and labels. In turn, it is trained using the training and validation
sets as described in experimental step ES3 (Section 4.3). The trained baseline predictor is
evaluated using the test set and the performance metrics on the task in order to check the
generalization ability and establish the baseline measure. The performance metrics used in
this study are accuracy-score for binary classification and F1-score with micro-average for
the multiclass task.

4.5. ES5 DEXiRE Application

In ES5, DEXiRE is applied to extract rules from the DL predictor (see Algorithm 1, lines
11 to 28). In turn, the obtained final rule set is evaluated with the test set and predictions
from the DL predictor (see Algorithm 1 lines 28 to 30), employing accuracy-score for
scenario S1 and F1-score with micro-average in scenario S2. All experiments were executed
on a laptop with Intel Core i7, 32 GB of RAM, and Windows 10. The software requirements
to replicate the study are python (v3.7), TensorFlow (v2.3.0), Larq (v0.12.2).

5. Results

In this section, experimental results are presented, discriminated by scenario (scenario
SC1 and scenario SC2), as was described in Section 4.1.

5.1. SC1 Binary Classification

Results per dataset are shown in Table 1. Results are obtained by applying the experi-
mental setup described in Section 4 to three publicly available datasets. The initial model
to be explained is a DL predictor (FΘ) without binarization, and it is used as input for
both rule-extraction algorithms ECLAIRE and DEXiRE. The initial DL predictor (FΘ) was
trained and tested using five-fold cross-validation. The accuracy result reported for each
DL predictor without binarization is the average accuracy-score measured on each fold.

Scenario (SC1) was tested on three publicly available datasets. Datasets employed in
this scenario were briefly described in Section 4.2. The first column in Table 1 identifies
the dataset. For each dataset, the second column describes the approach employed to
extract rules from the DL predictor (fΘ). In this scenario, two rule-extraction algorithms
were tested, ECLAIRE and DEXiRE. ECLAIRE is the current state-of-the-art algorithm for

Electronics 2022, 11, 4171 13 of 35

rule extraction [19] and the baseline method for rule extraction. DEXiRE is our proposed
approach for rule extraction, described in further detail in Section 3.

The third column presents the average accuracy-score for ECLAIRE and DEXiRE
on the test set. The fourth column describes the fidelity measure, which quantifies the
similarity between the DL model’s predictions and those from the extracted rule sets
(Definition 5). The fifth column describes the average rule length (the number of terms
on each rule set, Definition 7) resulting from five-fold cross-validation. Finally, the sixth
column presents the average and standard deviation of the rule-extraction algorithms’
execution time, calculated based on the time measured on 100 executions using the same
model and train set.

The Breast Cancer Wisconsin Diagnosis (BCWD) dataset is the first dataset shown
in Table 1. BCWD dataset consists of 30 features and two target classes (for a detailed
description of this dataset, see Appendix A.1). The DL predictor’s accuracy is 97% with a
standard deviation of (≈1%), which shows a consistent performance of this model. The rule
sets generated by ECLAIRE have an average accuracy of 93% with a standard deviation
of (≈0.4%), whereas the rule sets generated by DEXiRE have an average accuracy of 89%
with a standard deviation of (≈1.3%). Example rule sets extracted from the DL predictor
are presented in Appendix B.1. ECLAIRE’s example rule set is shown in Table A9 and
consists of four terms. Features employed in this rule set were concave_points_worst and
perimeter_worst. Similarly, the example rule set produced by DEXiRE (Table A8) consists
of four terms.

Table 1. Summary table Scenario SC1 (binary classification) showing results for rule-extraction
approach, accuracy, fidelity, rule length, and execution time for each dataset. Numerical results are
reported with average value ± standard deviation. The best results in each dataset are shown in bold.

Dataset Approach Accuracy Fidelity Rule Length Execution Time

BCWD DL predictor 0.97± 0.010 NA NA NA
ECLAIRE 0.93± 0.004 0.93± 0.015 6.4± 3.2 471 ms± 18.3 ms
DEXiRE 0.89± 0.013 0.90± 0.013 4.8± 2.0 178 ms± 1.2 ms

Banknote DL predictor 0.98± 0.008 NA NA NA
ECLAIRE 0.94± 0.036 0.95± 0.026 13.8± 0.4 213 ms± 3.08 ms
DEXiRE 0.94± 0.032 0.95± 0.026 13.8± 0.4 212ms± 2.17 ms

Prima diabetes DL predictor 0.76± 0.017 NA NA NA
ECLAIRE 0.73± 0.025 0.86± 0.031 11.8± 5.1 381 ms± 7.56 ms
DEXiRE 0.75± 0.027 0.90± 0.018 8.4± 1.9 232ms± 3.37 ms

The second dataset shown in Table 1 is the Banknote authentication dataset. The ban-
knote dataset consists of four features, taken from wavelet transform applied to banknote
images, and two target classes to decide whether a banknote is authentic. A detailed de-
scription of this dataset can be found in Appendix A.2. For this dataset, the DL predictor’s
accuracy is 98% with a standard deviation of 0.08%. The accuracy measure for ECLAIRE’s
rule set was, on average 94% with a standard deviation of 3.6%. Similarly, DEXiRE’s rule
set presents an average accuracy of 94% and a standard deviation of 3.2%. The accuracy
difference between the DL predictor and the rule sets varies ≈4%. Meanwhile, ECLAIRE’s
and DEXiRE’s rule sets have a fidelity score of 95% with a standard deviation of 2.6%.
Execution time is comparable in both datasets. Examples of the extracted rule sets from
the DL predictor are presented in Appendix B.2. An example of ECLAIRE’s rule set for
the banknote dataset is shown in Table A12. An example of DEXiRE’s rule set is shown in
Table A11. ECLAIRE’s rule set example consists of 10 terms, whereas DEXiRE’s consists of
14 terms. Both rule sets exclude the feature entropy_o f _image.

The Prima Indian Diabetes dataset results are shown at the bottom of Table 1. The
Prima diabetes dataset consists of eight features obtained from female patients and two
target classes to classify a patient as diabetic or non-diabetic. A detailed description of
this dataset can be found in Appendix A.3. The DL predictor’s accuracy is 76% with a
standard deviation of 1.7%. ECLAIRE’s rule set has an average accuracy of 73% with a

Electronics 2022, 11, 4171 14 of 35

standard deviation of 2.5%, and DEXiRE’s rule set reports an average accuracy of 75% with
a standard deviation of 2.7%. The accuracy variation between the baseline and the rule sets
is ≈3%. ECLAIRE’s rule set has a fidelity score of 86% with a standard deviation of 3.1%.
DEXiRE’s rule set has a fidelity score of 90% with a standard deviation of 1.8%. Example
rule sets extracted from the DL predictor are presented in Appendix B.3. An example
of ECLAIRE’s rule set is shown in Table A15 consists of 22 terms, whereas an example
of DEXiRE’s rule set is shown in Table A14 and consists of 10 terms. DEXiRE’s rule set
example employs features: BMI, glucose, and pregnancies, whereas ECLAIRE’s rule set
uses the same features with the addition of SkinThickness.

5.2. SC2 Multiclass Classification

Scenario (SC2) is devoted to a multiclass task and was tested on three datasets. Scenario
SC2 differs from scenario SC1 in the technique employed to induce the features’ rule sets.
While SC1 uses ExpL, SC2 employs a decision tree as a rule inductor. Datasets tested in this
scenario are briefly described in Section 4.2. The first column in Table 2 identifies the dataset.
For each dataset, the second column on Table 2 lists the approach employed to extract
rules from the baseline predictor (fΘ). The third column presents the average accuracy
for each approach measured on the test set, calculated as the average value of five-fold
cross-validation training. The fourth column describes the fidelity measure (Definition 5),
which quantifies the similarity between the DL model’s predictions and those from the
extracted rule sets. The fifth column describes the average rule length (the number of terms
on each rule set, Definition 7) calculated as the average rule length in the rule set per fold
in five-fold cross-validation. Finally, the last column presents the average and standard
deviation of the rule-extraction algorithms’ execution time, calculated as the average time
of 100 executions employing a fixed DL predictor and train set.

The Digits dataset shown at the top of Table 2, which consists of 64 features and ten
target classes (digits from 0 to 9). A detailed description of this dataset can be found in
Appendix A.4). The DL predictor’s accuracy is 96% with a standard deviation of 1%. The
rule sets extracted with ECLAIRE have an accuracy of 82% with a standard deviation of
1%. The coverage threshold (Th) is a parameter that filters out those terms with low coverage
levels reducing the rule sets’ length. To evaluate the impact of coverage threshold (Th) on the
accuracy, fidelity, rule length, and execution time, DEXiRE was tested on different coverage
threshold levels. The first row in Table 2 shows DEXiRE results for different Th (60%, 50%,
25%) levels. The default Th value for DEXiRE is 60%; for this Th value, DEXIRE’s rule sets
obtained an average accuracy of 44% with a standard deviation of 1.49%. For a Th value of
50%, the average accuracy obtained is 50% with a standard deviation of 1.63%. Finally, for
a Th value of 25%, the average accuracy obtained is 79%, with a standard deviation of 2.5%.
Fidelity follows a similar behavior. For the Th value of 60%, the obtained average fidelity
of 43% with a standard deviation of 1.47%. For the Th value of 50%, the average fidelity
value is 50% with a standard deviation of 1.67%, and finally, for the Th value of 25%, the
obtained average fidelity is 79% with a standard deviation of 2%.

The Iris dataset consists of four features, taken from flowers’ petals and sepals width
and length, with three target classes (Setosa, Virginica, and Versicolor) (Appendix A.5).
Performance measures for the Iris dataset are shown in the middle of Table 2. The DL
predictor’s accuracy is 92% with a standard deviation of 5.7%. The average accuracy for
ECLAIRE’s rule sets is 89% with a standard deviation of 8.3%, while DEXiRE’s rule sets
obtained an average accuracy value of 90% with a standard deviation of 5.9%. ECLAIRE’s
rule set has obtained an average fidelity value of 89% with a standard deviation of 3.9%.
For DEXiRE, the rule sets have obtained an average fidelity value of 90% with a standard
deviation of 5.9%. Rule sets examples extracted from the DL predictor are presented in
Appendix B.5. An example of ECLAIRE’s rule sets is shown in Table A19 and consists of six
terms, whereas an example DEXiRE’s rule set is shown in Table A18 consists of four terms.
ECLAIRE’s rule set example includes sepal_width and petal_width whereas DEXiRE’s rule
set only employs pedal features (petal_width and petal_lenght).

Electronics 2022, 11, 4171 15 of 35

The Wine quality dataset is the third last dataset shown at the bottom of Table 2. The
Wine quality dataset comprises 13 features that describe factors affecting the wine’s quality
and taste. The target category is one of three classes of wine, a detailed description of this
dataset can be found in Appendix A.6. The DL predictor’s accuracy is 99% with a standard
deviation of 1.4%. The average accuracy value for ECLAIRE’s rule sets is 83% with a
standard deviation of 7.3%. The DEXiRE’s rule sets have obtained an average accuracy
value of 87% with a standard deviation of 2.8%. The accuracy variation between the DL
predictor and the rule sets is ≈17%. ECLAIRE’s rule sets have an average fidelity value of
84% with a standard deviation of 8.4%. DEXiRE’s rule sets have an average fidelity value
of 87% with a standard deviation of 2.8%. Examples of rule sets extracted from the DL
predictor are presented in Appendix B.6. An example of ECLAIRE’s rule set is shown in
Table A21 consists of six terms, whereas DEXiRE’s rule set example is shown in Table A20,
and consists of four terms. Both rule sets include the feature proline, color_intensity, and
magnesium f eatures.

Table 2. Summary table Scenario SC2 (multiclass classification) showing results for Rule extraction
approach, Accuracy, fidelity, rule length, and execution time for each dataset. Numerical results are
reported with average value ± standard deviation. The best results in each dataset are shown in bold.

Dataset Approach Accuracy Fidelity Rule Length Execution Time

Digits DL predictor 0.96± 0.010 NA NA NA
ECLAIRE 0.82± 0.010 0.81± 0.010 81.0± 8.1 9200 ms± 124 ms
DEXiRE (Th = 60%) 0.44± 0.149 0.43± 0.147 37.6± 3.0 442 ms± 5.3 ms
DEXiRE (Th = 50%) 0.50± 0.163 0.50± 0.167 39.0± 2.6 481 ms± 8.74 ms
DEXiRE (Th = 25%) 0.79± 0.025 0.79± 0.020 44.8± 1.0 490 ms± 6.94 ms

Iris DL predictor 0.93± 0.057 NA NA NA
ECLAIRE 0.89± 0.083 0.89± 0.039 5.6± 1.0 177 ms ± 2.19 ms
DEXiRE 0.90± 0.059 0.95± 0.026 4.0± 0.0 0.916 ms± 0.002 ms

Wine quality DL predictor 0.99± 0.014 NA NA NA
ECLAIRE 0.83± 0.073 0.84± 0.084 3.2± 0.4 249 ms± 5.84 ms
DEXiRE 0.87± 0.028 0.87± 0.028 4.0± 0.0 209 ms± 1.05 ms

6. Analysis and Discussion

This section elaborates on the obtained results and discusses the points characterizing
DEXiRE and its results.

6.1. Analysis Scenario (SC1)

It is worth recalling that the length of the rules refers to the number of Boolean terms
composing a rule set (see Definition 7). The average rule length obtained by DEXiRE
in scenario SC1 is reported in Table 1 column 4. Looking at it closely, it is possible to
notice that for BCWD and Prima Indians diabetes datasets, the average rule length for
DEXiRE’s rule sets is 4.8 and 8.4, respectively. Both results are shorter than those obtained
by ECLAIRE (6.4 and 11.8, respectively). The DEXiRE and ECLAIRE’s average rule lengths
for the banknote dataset are mostly similar, with a value of 13.8.

On the one hand, rule length overlaps can be due to the influence of the dataset charac-
teristics and model internal structure (see Section 6.3.1). On the other hand, the difference
(if any) in the average rule length relies on the DEXiRE’s use of binarized hidden layers,
explainable layers, and related activation patterns. Differently, ECLAIRE uses continuous
activations and decision trees to induce the features and intermediate rule sets. DEXiRE
and ECLAIRE reach the same objective (generate a rule from a DL predictor) with different
approaches—yet obtain comparable performance. For example, from an accuracy/fidelity
point of view, DEXiRE sensibly outperforms ECLAIRE on the Prima Indians diabetes
dataset, it equates ECLAIRE w.r.t. in the banknote dataset, and it sensibly underperforms
w.r.t. BCWD (see Table 1—columns 3 and 4). However, concerning the execution time,
DEXiRE outperforms ECLAIRE (90% faster in the best-case scenario—BCWD, 48% w.r.t.
the Prima Indianas dataset) and mostly identical w.r.t. the banknote dataset.

Electronics 2022, 11, 4171 16 of 35

Although the results obtained by DEXiRE and ECLAIRE are comparable, DEXiRE is
able to provide additional insights about the internal decision process carried out by the
neurons in the DL predictor (i.e., identify those neurons and their output values highly
related with the predicted output). This benefit is provided due to the binarization process
and activation pattern generated per class within DEXiRE.

6.2. Analysis Scenario (SC2)

Table 2 column 4 shows the average rule length obtained by DEXiRE in the scenario SC2.
It is worth recalling that DEXiRE employs a coverage threshold that allows to control the

number of terms in each rule set (intermediate and final) by setting a minimum coverage
threshold (Th) percentage and filtering all the rules with coverage (Definition 6) below
the threshold. In the digits dataset, the rule length is 73% shorter than the one produced
by ECLAIRE. However, the accuracy and fidelity obtained by DEXiRE are very poor.
To achieve the performance obtained by ECLAIRE, we have decreased the Th value. In
particular, with a Th value of 25%, accuracy and fidelity are 3% and 2% away from matching
the ECLAIRE’s performance while improving on the average rule length, which is 57%
shorter than the for ECLAIRE.

In the case of the Iris dataset, the average rule length obtained by DEXiRE is 33%
shorter than the one obtained by ECLAIRE. Whereas in the case of the wine quality
dataset, the ECLARE’s average rule length is sensibly shorter than the one from DEXiRE.
The difference (if any) in the average rule length depends on two main factors: (i) the
interrelation between the dataset characteristics and the DL predictor’s internal structure
and (ii) the differences in rule-extraction algorithms’ approaches. While DEXiRE employs
binarized hidden layers and related activation patterns to extract rules, ECLAIRE uses
continuous activations and decision trees to induce the features and intermediate and final
rule sets.

Another benefit to DEXiRE’s approach is SEEN in the overall execution time. DEXiRE
outperforms ECLAIRE in all datasets (197% faster in the best-case scenario – Iris dataset,
17% w.r.t the wine quality dataset). Additionally, in this scenario, the standard deviation of
the execution time is low for DEXIRE (never exceeding 9 ms). Low variance levels are due
to the use of the activation pattern to identify the most relevant neurons in each hidden
layer, thus reducing the time for the generation of the intermediate datasets.

In this scenario, DEXiRE and ECLAIRE exhibit comparable results in terms of accuracy
and fidelity. While DEXiRE indicates a tendency to produce shorter rule sets and execution
times due to the binarization process and activation pattern generated per class, DEXiRE
is able to provide additional insights about the internal decision process carried out by
the neurons in the DL predictor and filter out those neurons that are not relevant to the
decision process carried out by the DL predictor.

6.3. Discussion

This section discusses the results obtained w.r.t. the Hypotheses 1–4 initially formulated.

6.3.1. Data and Models Interdependency

DEXiRE can have similar rule sets’ lengths with (partial) overlapping terms with
ECLAIRE. Such overlap(s) can occur since, although they use different procedures, both
rely on the same inputs (model and the training dataset) to induce the set of rules.

The final rule set(s) are logical formulations containing (the most relevant) data features
integrating the intermediate rule sets. Both ECLAIRE and DEXiRE have similar procedures
to induce (predict) intermediate rule sets, relying on the data features. DEXiRE can employ
one of two methods (ExpL or decision trees) to generate the feature rule set (Step S7 in
Section 3). Similarly, ECLAIRE employs decision trees to induce the features’ rule set.

To understand the effect of the input features on the final rule set, let us analyze the
case of the BCWD dataset. This dataset has 30 input features. Although the final rule sets
generated by ECLAIRE and DEXiRE differ in the number of terms and the composition of

Electronics 2022, 11, 4171 17 of 35

rules, most of them contain the feature concave_points_worst. This tendency raises a question:
why is the feature concave_points_worst present in the majority of rule sets produced by
different rule-extraction algorithms?

To answer this question, we must analyze the behavior of the feature concave_points_worst
w.r.t the DL model’s preconditions and the other features in the dataset. Figure 8 shows the
feature ranking according to variance per class w.r.t. DL predictor’s labels (ŷ). The features
in the upper area present lower variance per class and higher information gain value (see
Tables A8 and A9). Thus, there is a high probability that this feature is selected by the rule
generation algorithms (ExpL, decision trees) and included in the final rule set.

Finally, we can infer that features with a high discrimination capability have high
chances (yet no certainty) of being included in the final rule set, regardless of the rule induc-
tion algorithm employed—explaining the (partial) overlapping obtained in some datasets.

Figure 8. Feature ranking based on variance reduction per class w.r.t DL predictor’s labels (ŷ).
Features on the top of the figure present the highest variance reduction per class. Highlighted in
bold blue is the feature concave_point_worst overlapping term between DEXiRE’s and ECLAIRE rule
sets. Highlighted in bold magenta is the perimeter_worst feature present in ECLAIRE’s rule set, and
highlighted in bold orange is the perimeter_mean feature present in DEXiRE’s rule set.

Concerning the influence of the DL predictor’s internal structure (architecture, activa-
tions, weights) on the final rule set, it is worth noticing that both DEXiRE and ECLAIRE are
decompositional rule-extraction algorithms. This implies that they use the DL predictor’s
internal structure to induce rules and identify the neurons responsible for the decisions
(verifying Hypotheses 1 and 2).

In conclusion, DL predictors and datasets are essential inputs for rule-extraction
algorithms. For this reason, their composition and structure profoundly influence the final
rule sets. Finally, it is worth highlighting the interdependence between the data and the
DL predictors: the latter (being data-driven models) learn from the former, adjusting their
structure and parameters to fit the task.

6.3.2. The Role of Binarization

Extracting rules from hidden layers in neural networks is still an open challenge. The
hidden layer’s activations are continuous and non-linear, which is an excellent character-
istic for learning parameters with the back-propagation algorithm. However, it is more
difficult to interpret their output values w.r.t. to the inputs. To solve this challenge, several
decompositional rule-extraction algorithms approximate continuous activations through
discrete segments to induce rules on each segment [29]. Nevertheless, these approaches
have some limitations. For example, they tend to generate long rule sets (with many

Electronics 2022, 11, 4171 18 of 35

terms/rules—not human-readable) and require several phases of pruning and re-training.
Moreover, most decompositional approaches are limited to one or a predefined number
of hidden layers. DEXiRE overcomes these limitations and simplifies the identification of
frequent activation patterns (verifying Hypotheses 1–3).

In particular, Hypothesis 1 states that it is possible to identify activation patterns more
simply by binarizing the hidden layers of a DL predictor (fΘ). To test Hypothesis 1, we
binarized a trained DL predictor and then extracted the binary activations per hidden layer
for each instance in the training set. Finally, using the binary activations, we calculate the
kernel density estimation (KDE) for each neuron and visualize it in Figures 9 and 10.

Figure 9 shows the KDE for the first hidden binary layer (hidden layer 0) discriminated
by class (class 0 and 1). Moreover, we can observe the high level of polarization present in
neurons h_0_0, h_0_7, and h_0_8. Empty plots in this figure indicate neurons with zero
variance (the same value for all the instances). Neurons with zero variance do not provide
discriminative information, while highly polarized neurons become effective discriminators.
Thus, the polarization induced by binary hidden layers and binary neural networks (BNN)
allows the identification of activation patterns as described in Algorithm 1.

Figure 10 shows the KDE for the second hidden binary layer (hidden layer 1) discrimi-
nated by class (class 0 and 1). Similar to the previous layer, we can identify the relevant
neurons in the decision of the classifier (neuron h_1_0) and discard those with zero variance.
It is worth noticing that the number of discriminative neurons decreases, and the polariza-
tion increases as we approach the output layer. Thus, we can consider Hypotheses 2 and 3
validated. Additional KDE analysis for different datasets and DL predictors can be found
in Appendix C.

2 0 2
h_0_0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_1

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_2

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_3

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_4

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_5

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_6

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

2 0 2
h_0_7

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

2 0 2
h_0_8

0

1

2

3

4

5

6

7

8

D
en

si
ty

y_true
0
1

0.0 0.5 1.0
h_0_9

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

Histogram of activations BNN layer 0

Figure 9. Histogram of binary activations generated employing KDE for neurons in hidden layer
zero in DL predictor for BCWD dataset. Each plot shows the activation density function per neuron
discriminated by class (class 0 is shown in red, and class 1 is shown in blue). Empty plots correspond
to neurons that have zero variance and present the same activation value for all the samples, thus are
not class-discriminatory.

Electronics 2022, 11, 4171 19 of 35

2 1 0 1 2
h_1_0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
en

si
ty

y_true
0
1

0.0 0.2 0.4 0.6 0.8 1.0
h_1_1

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

0.0 0.2 0.4 0.6 0.8 1.0
h_1_2

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

y_true
0
1

Histogram of activations BNN layer 1

Figure 10. Histogram of binary activations generated employing KDE for neurons in hidden layer
one in DL predictor for BCWD dataset. Each plot shows the activation density function per neuron
discriminated by class (class 0 is shown in red, and class 1 is shown in blue). Neurons h_1_1 and
h_1_2 show an empty plot because they have zero variance and present the same activation value for
all the samples, thus are not class-discriminatory.

6.3.3. From Neurons to Decisions: Activation Pattern

As was discussed above, binary activations in the hidden layers generate binary
patterns representing the input examples transformed by each hidden layer. From those
binary patterns, we can filter out those neurons with zero variance because they do not
apport discriminative information. With the filtered set of binary patterns, we can identify
the most frequently active neurons and their activation values per class, generating an
activation pattern.

Figure 11 (automatically generated) shows the activation pattern for class 0 in the
banknote dataset. The activation pattern is highlighted in red and involves neurons: h_1_0
with activation value −1, h_2_0 with activation value 1, and the output neuron y_0_1 with
activation value 1. The activation pattern reveals layer by layer the most likely decisions
the network is making to reach the final decision.

Figure 12 describes the activation pattern for class 1 in the banknote dataset. The
activation pattern is highlighted in red and involves neurons: h_1_1 with activation value
1, h_2_0 with activation value -1, and the output neuron y_1_1 with activation value 1. The
activation pattern reveals layer by layer the most likely decisions the network makes to
reach the final decision. Comparing the activation pattern for class 0 and class 1, we can
gain insight into the internal decision process carried out by the binary DL predictor. For
example, we know that decision relies on neurons h_1_0 and h_1_1 for the first hidden
layer. For the second hidden layer, the decision is taken by neuron h_2_0, which, acting as
a switch, selects the output neuron to activate.

Finally, we can infer that the activation pattern is a valuable explainable artifact that
complements the rule sets and provides additional insight into the internal decision process
carried out by the binary DL predictor.

Electronics 2022, 11, 4171 20 of 35

x_0
h_1_0=-1.0

h_1_1

h_1_2

h_1_3

x_1

x_2

x_3
h_2_0=1.0

h_2_1

y_0=1.0

y_1

Figure 11. Banknote dataset activation pattern (automatically generated) for class 0 is highlighted in
red over the DL predictor architecture. In addition, the most frequent activation values are shown for
neurons in the activation pattern.

x_0
h_1_0

h_1_1=1.0

h_1_2

h_1_3

x_1

x_2

x_3
h_2_0=-1.0

h_2_1

y_0

y_1=1.0

Figure 12. The activation pattern (automatically generated) for class 1 is highlighted in red over the
DL predictor architecture on the Banknote dataset. In addition, the most frequent activation values
are shown for neurons in the activation pattern.

6.3.4. Rationales behind Rule Induction

This work employs two methods to induce the feature rules: explainable layers (ExpL)
for binary classification tasks (SC1) and decision trees for multiclass classification (SC2).

Electronics 2022, 11, 4171 21 of 35

In scenario SC1, an ExpL is added between the input layer and the first hidden layer.
After a fine-tuning training with the rest of the layers frozen, the weights of ExpL codify a
threshold value (vi) per feature (xi) that splits the input space in two, indicating the point
of maximum information gain per feature. Using the learned threshold values is possible
to induce simple rules per feature (xi) in the form of i f (xi ≥ vi) then class 1; else class 0,
combining these simple rules into the intermediate rule set the final rule set is obtained [60].
ExpL layers are suitable for binary classification tasks, given their ability to split the space
into binary buckets with complementary rules. Figure 13 shows the density function
discriminated by class for the feature variance_of_the_wavelet_transform (class 0 in blue and
class 1 in orange), and the learned threshold value (vi) (shown as a vertical red line) that
splits the input space for class 0 and 1.

2 0 2
Variance_of_Wavelet_Transformed_image

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
en

si
ty

class
0
1

Figure 13. the threshold value learned by the explainable layer ExpL (shown as vertical red line) and
the density function for the feature variance_of_the_wavelet_transform discriminated per class (class 0
is shown in blue, and class 1 is shown in orange).

In the multiclass task case, and given its binary rule induction characteristic, ExpL
must employ a series of One-vs-Rest setups. However, one-vs-Rest setups imply a high
computational cost due to the increasing number of models to train as the number of classes
increases. Equation (9) provides the number of models to train in a One-vs-Rest setup.
Applying such a formula to a dataset with three target classes, the required number of
models to induce the rule set is 3. However, if we extend the target classes to 10 (Digits
dataset), the models to train scale to 45. Additionally, ExpL produces binary splits per class
(One-vs-Rest), which are not expressive enough to model the complex decision boundaries
of multiclass models, producing low-accurate rule sets in the case of the multiclass task.
Due to these reasons, in scenario SC2, we have employed as features’ rule inductor the
decision trees algorithm (C4.5). Finally, through SC1 and SC2, we have shown that DEXiRE
can be applied for both binary and multiclass classification—verifying Hypothesis 4.

Cnclasses ,2 =
nclasses!

2!(nclasses − 2!)
(9)

6.3.5. Beyond Rule Sets

DEXiRE provides characteristics that go beyond other rule-extraction algorithms.
In particular:

Electronics 2022, 11, 4171 22 of 35

1. Tuneable threshold rule set granularity: DEXiRE provides a fine granularity control
over the number of terms in the intermediate and final rule sets. While algorithms
such as ECLAIRE control term expansion indirectly through decision tree parameters,
DEXiRE provides fine control over the number of terms and the number of clauses
through the coverage threshold (Th) parameter. It filters out terms and clauses
with low coverage or those conflicting with other rules with higher coverage or
confidence values.

2. Understand per class discriminative neurons: As discussed above, using binary
activations and identifying the activation pattern allow us to obtain clues about the
predictor’s decision process. It is also possible to identify those neurons discriminating
by class and their value and concentrate the analysis on them, removing those neurons
with zero variance.

3. activation pattern supports the knowledge injection: The activation pattern allows
identifying the more frequently activated binary neurons per class in each hidden
layer along with its activation value. This information helps to describe the DL
estimator’s internal decision process, and additionally, the activation pattern can also
be used to inject symbolic knowledge within the neural network [69–71]. Symbolic
artificial intelligence (AI) relies on high-level knowledge usually expressed as rules,
logic predicates, or ontologies [22]. On the other hand, subsymbolic AI is data-driven,
as in the case of DL predictors. Nevertheless, subsymbolic and symbolic AI paradigms
can be combined following the Hypothesis 2, which states that binary neurons behave
as a Boolean logic function. Therefore, first-order logic predicates can be embedded
into a Boolean function and then integrated as a binary neuron or layer into the binary
DL predictor, with the additional advantage that both symbolic and subsymbolic
neurons can co-exist and interact in the same network.

6.3.6. Constraints and Limitations

Besides the advantages discussed above, as of today, DEXiRE is still subjected to some
constraints (C) and limitations (L):

C: To identify the activation pattern, DEXiRE requires that the output layer has as many
neurons as classes and that the class labels are encoded in one hot encoder.

L: Currently, DEXiRE has been tested on the classification task (binary and multiclass
classification) with comparable results to the state-of-the-art rule extractors. However,
DEXiRE needs to be extended to perform additional tasks, such as rule extraction in
the regression task and in the multi-labeling task. These additional capabilities are
proposed in future work.

L: To date, DEXiRE can work with a feed-forward neural network (with any number of
hidden layers). DEXiRE has not been designed to work with convolutional neural
networks (CNN), recurrent neural networks (RNN), or Transformers. However, based on
the verified hypotheses, it can also be extended to work with these kinds of DL models.

7. Conclusions and Future Work

This paper presents DEXiRE, a decompositional rule-extraction algorithm based on
hidden layers’ binarization, path identification, and layer-by-layer rule induction. DEXiRE
has been developed following the Hypotheses 1–4, and it has been tested in two sce-
narios, binary classification (SC1) and multiclass classification (SC2), with six publicly
available datasets.

Attributes and performance of DEXiRE have been compared with ECLAIRE (state-of-
the-art for decompositional rule extraction), leading to the conclusion that:

• DEXiRE can be applied to extract rules from DL predictors with any number of
hidden layers. The layer-by-layer generated rules do not affect nor depend on rules in
other layers. The resulting independence reduces the complexity of the intermediate
rule sets and eliminates the limitation of being able to process only one or a fixed

Electronics 2022, 11, 4171 23 of 35

predefined number of layers. Indeed, approaches such as FERNN [48] do not scale as
they express the rules of a given layer as a function of those from other layers.

• DEXiRE has been tested in binary and multiclass classification scenarios, obtaining
performance (accuracy and fidelity) comparable to ECLAIRE.

• Binary neurons with a high degree of polarization in each hidden layer become
effective discriminators capable of identifying, through a binary pattern, instances
that belong to a particular class. Binary neurons can be expressed as Boolean functions
and the relative Boolean intermediate rule sets.

• The activation pattern identifies the most frequently activated binary neurons per class
for each layer and filters out irrelevant or redundant neurons. The activation pattern
provides additional explainable insights about the DL predictor’s internal decision
process and reduces the size of the intermediate rule sets and the execution time.

As the feature work, we envision extending DEXiRE to (i) handle regression tasks,
(ii) develop a module for convolutional neural networks, and (iii) develop a module for
recurrent neural networks.

Author Contributions: The contribution to this paper are shared as follows. Conceptualization:
D.C., V.C., L.F. and N.M. Methodology: V.C. and D.C. Software: V.C. and N.M.; Validation: V.C.,
D.C., L.F. and N.M.; State of the Art, G.M., L.F. and Y.M.; Writing—original draft preparation: V.C.,
D.C. Writing—review and editing: G.M., Y.M., L.F., N.M., J.-P.C. and D.C.; Supervision, Project
administration, and Funding acquisition: D.C. and M.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been par ally supported by the CHISTERA grant CHIST-ERA-19-XAI-005,
and by the Swiss National Science Foundation (G.A. 20CH21_195530), the Italian Ministry for Univer-
sities and Research, the Luxembourg National Research Fund (G.A. INTER/CHIST/19/14589586),
the Scientific and Research Council of Turkey (TÜBİTAK, G.A. 120N680).

Data Availability Statement: The datasets employed in this study are open-source and publicly
available. They can be found at the links listed below:

• Breast Cancer Wisconsin Diagnosis Dataset: https://www.kaggle.com/datasets/uciml/breast-
cancer-wisconsin-data (accessed on 3 November 2022);

• Banknote authentication dataset: https://archive.ics.uci.edu/ml/datasets/banknote+authentication
(accessed on 3 November 2022);

• Prima Indians diabetes mellitus dataset: https://www.kaggle.com/datasets/uciml/pima-
indians-diabetes-database (accessed on 3 November 2022);

• Digits dataset: https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+
Digits (accessed on 3 November 2022);

• Iris dataset: https://archive.ics.uci.edu/ml/datasets/iris (accessed on 3 November 2022);
• Wine Quality dataset: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.

data (accessed on 3 November 2022);

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Datasets Description

Appendix A.1. BCWD Feature Description

Table A1 shows the features of the Breast Cancer Wisconsin diagnosis (BCWD). BCWD
is composed of 30 features extracted from histopathology images. For every image, ten
features were extracted: area, radius, concave points, perimeter, compactness, texture,
concavity, smoothness, fractal dimension, and symmetry. For each feature, three values
were reported mean, worst value, and standard error (se).

https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

Electronics 2022, 11, 4171 24 of 35

Table A1. Breast Cancer Wisconsin Diagnosis (BCWD) Dataset Feature description.

Feature Description

area_se Area standard error

area_worst Average of three largest area values

perimeter_se Perimeter standard error

radius_mean Average of cell’s radius value

concave points_worst Average of three largest concave points in the contour values

radius_worst Average of three largest radius values

concave points_mean Average of concave points in the contour

compactness_worst Average of three largest compactness values

concavity_worst Average of three largest concavity values

symmetry_worst Average of three largest symmetry values

smoothness_worst Average of three largest smoothness values

compactness_se Compactness standard error

fractal_dimension_se Fractal dimension standard error

texture_se Texture standard error

fractal_dimension_mean Fractal dimension mean

texture_mean Texture mean

perimeter_mean Perimeter mean

area_mean Area mean

smoothness_mean Smoothness mean

compactness_mean Compactness mean

concavity_mean Concavity mean

symmetry_mean Symmetry mean

radius_se Radius standard error

smoothness_se Smoothness standard error

concavity_se Concavity standard error

concave points_se Concavity points standard error

symmetry_se Symmetric standard error

texture_worst The average of the largest three texture values

perimeter_worst The average of the largest three texture values

fractal_dimension_worst The average of the largest three fractal dimension values

Appendix A.2. Banknote Authentication Dataset

Table A2 describes the features of the banknote authentication dataset. The Features
in this dataset were generated from statistics measures on the wavelet transform from
banknotes’ images.

Table A2. Feature description for the banknote authentication dataset.

Features Descriptions

Feature 1 variance of Wavelet Transformed image (continuous)

Feature 2 skewness of Wavelet Transformed image (continuous)

Feature 3 kurtosis of Wavelet Transformed image (continuous)

Feature 4 entropy of image (continuous)

Electronics 2022, 11, 4171 25 of 35

Appendix A.3. Prima Indians Diabetes Mellitus Classification Dataset

Table A3 describes the features of the Prima Indians diabetes mellitus classification
dataset. The Features in this dataset were collected on women older than 21 years old, and
its objective is given the features predict if the patient has diabetes or not. Features describe
laboratory test results and demography information about the patients.

Table A3. Feature description for the Prima Indians diabetes mellitus classification dataset.

Features Descriptions

Pregnancies Number of times pregnant.

Glucose Plasma glucose concentration a 2 h in an oral glucose tolerance test.

BloodPressure Diastolic blood pressure (mm Hg).

SkinThickness Triceps skin fold thickness (mm).

Insulin 2-h serum insulin (mu U/mL).

BMI Body mass index (weight in kg/(height in m)2).

DiabetesPedigree Diabetes pedigree function.

Age Age (years)

Appendix A.4. Digits Dataset

Table A4 describes the features of the Digits classification dataset. The Features in this
dataset represent the intensity of pixels in gray-scale mode.

Table A4. Feature description for the digits dataset.

Features Descriptions

Pixel_0_0 . . . Pixel_7_7 Pixel Intensity level

Appendix A.5. Iris Dataset

Table A5 describes the features of the Iris dataset. The Features in this dataset represent
flowers’ sepal and petal length and width. This dataset aims to give the features that classify
a flower into three classes (Setosa, Virginica, Versicolor).

Table A5. Feature description for the Iris dataset.

Features Descriptions

Feature 1 sepal length in centimeters

Feature 2 sepal width in centimeters

Feature 3 petal length in centimeters

Feature 4 petal width in centimeters

Appendix A.6. Wine Quality Dataset

The wine quality dataset employs several features that influence the wine quality and
taste. Features are used to classify wine into three classes: high, medium, and low quality.
Table A6 describes each feature employed in this dataset.

Electronics 2022, 11, 4171 26 of 35

Table A6. Feature description for the wine quality dataset.

Features Descriptions

Feature 1 Alcohol

Feature 2 Malic acid

Feature 3 Ash

Feature 4 Alkalinity of ash

Feature 5 Magnesium

Feature 6 Total phenols

Feature 7 Flavanoids

Feature 8 Nonflavanoid phenols

Feature 9 Proanthocyanins

Feature 10 Color intensity

Feature 11 Hue

Feature 12 OD280/OD315 of diluted wines

Feature 13 Proline

Appendix B. Rule Generated

The Appendix B presents examples of the rules generated per dataset and method
(ECLAIRE and DEXiRE).

Appendix B.1. Breast Cancer Dataset

Table A7 shows the intermediate rule sets generated by DEXiRE for the BCWD dataset.

Table A7. Intermediate rule set, for the BCWD dataset generated by DEXiRE.

Layer Rules

output layer IF h3,0 THEN Benign
output layer IF h3,1 THEN Malign

hidden layer 1 IF h1,0 THEN Benign
hidden layer 1 IF ¬h1,0 THEN Malign

hidden layer 0 IF h0,0 ∨ ¬h0,8 THEN Benign
hidden layer 0 IF ¬h0,0 ∧ h0,8 THEN Malign

In Table A8 is shown the final rule set, for BCWD dataset inducted by DEXiRE
on this dataset.

Table A8. Final rule set, for the BCWD dataset generated by DEXiRE.

Rules

IF [(concave_points_worst > 0.388)] ∨ [(perimeter_mean > 0.4003)] THEN Malign
IF [(concave_points_worst ≤ 0.388) ∧ (perimeter_mean ≤ 0.4003)] THEN Benign

Table A9 shows the final rule set for the BCWD dataset inducted by ECLAIRE.

Table A9. Final rule set, for the BCWD dataset generated by ECLAIRE.

Rules

IF [(perimeter_worst ≤ 0.2355)] ∨ [(concave_points_worst ≤ 0.388)] THEN Benign
IF [(concave_points_worst > 0.388)] ∨ [(perimeter_worst > 0.2355)] THEN Malign

Electronics 2022, 11, 4171 27 of 35

Appendix B.2. Banknote Authentication Dataset

Table A10 shows the intermediate rule set generated by DEXiRE for the banknote
authentication dataset.

Table A10. DEXiRE Intermediate rule set for the banknote authentication dataset.

Layer Rules

output layer IF h1,0 THEN 0
output layer IF h1,2 THEN 1

Hidden layer 0 IF h0,0 ∧ h0,1 THEN 0
Hidden layer 0 IF ¬h0,0 ∧ h0,2 THEN 1

In Table A11 is shown the final rule set inducted by DEXiRE for the banknote authenti-
cation dataset.

Table A11. Final rule set, for the banknote authentication dataset generated by DEXiRE.

Rule

IF[(Kurtosis_o f _Wavelet_Trans f ormed_image > 0.3402) ∧
(Skewness_o f _Wavelet_Trans f ormed_image > −0.6451)] ∨
[(Skewness_o f _Wavelet_Trans f ormed_image > 0.486) ∧
(Variance_o f _Wavelet_Trans f ormed_image > −1.0579)] ∨
[(Skewness_o f _Wavelet_Trans f ormed_image > 0.328) ∧
(Variance_o f _Wavelet_Trans f ormed_image > 0.1144)] ∨
[(Kurtosis_o f _Wavelet_Trans f ormed_image > −0.7389) ∧
(Variance_o f _Wavelet_Trans f ormed_image > 0.1144)] THEN 0
IF[(Kurtosis_o f _Wavelet_Trans f ormed_image ≤ −0.7389) ∧
(Skewness_o f _Wavelet_Trans f ormed_image ≤ 0.328)] ∨
[(Variance_o f _Wavelet_Trans f ormed_image ≤ −1.0579)] ∨
[(Skewness_o f _Wavelet_Trans f ormed_image ≤ −0.6451) ∧
(Variance_o f _Wavelet_Trans f ormed_image ≤ 0.1144)] ∨
[(Kurtosis_o f _Wavelet_Trans f ormed_image ≤ 0.3402) ∧
(Skewness_o f _Wavelet_Trans f ormed_image ≤ 0.486) ∧
(Variance_o f _Wavelet_Trans f ormed_image ≤ 0.1144)] THEN 1

Table A12 shows the rules obtained from ECLAIRE for the banknote authentication dataset.

Table A12. Final rule set for the Banknote authentication dataset generated by ECLAIRE.

Rules

IF[(Kurtosis_o f _Wavelet_Trans f ormed_image > 1.2494) ∧
(Variance_o f _Wavelet_Trans f ormed_image > −0.7811)] ∨
[(Variance_o f _Wavelet_Trans f ormed_image > 0.1144)] ∨
[(Skewness_o f _Wavelet_Trans f ormed_image > 0.5262) ∧
(Variance_o f _Wavelet_Trans f ormed_image > −1.0579)]THEN 0
IF[(Kurtosis_o f _Wavelet_Trans f ormed_image ≤ 1.2494) ∧
(Skewness_o f _Wavelet_Trans f ormed_image ≤ 0.5262) ∧
(Variance_o f _Wavelet_Trans f ormed_image ≤ 0.1144)] ∨
[(Variance_o f _Wavelet_Trans f ormed_image ≤ −1.0579)] ∨
[(Skewness_o f _Wavelet_Trans f ormed_image ≤ 0.5262) ∧
(Variance_o f _Wavelet_Trans f ormed_image ≤ −0.7811)] THEN 1

Appendix B.3. Prima Indians Diabetes Dataset

In Table A13 are shown the intermediate rule sets generated by DEXiRE for the Prima
Indians dataset.

Electronics 2022, 11, 4171 28 of 35

Table A13. DEXiRE Intermediate rule sets for the Prima Indians dataset.

Layer Rules

output layer IF h1,0 THEN 0
output layer IF h1,2 THEN 1

Hidden layer 0 IF h0,0 ∧ h0,1 THEN 0
Hidden layer 0 IF ¬h0,0 ∧ h0,2 THEN 1

In Table A14 is shown the final rule set for Prima Indians diabetes dataset, inducted
by DEXiRE on this dataset.

Table A14. Final rule set, for the Prima Indians diabetes dataset, generated by DEXiRE.

Rule

IF [(BMI > 0.8576) ∧ (Glucose ≤ −0.341)] ∨ [(BMI ≤ −0.2212) ∧
(Glucose > 0.2067) ∧ (Pregnancies ≤ −0.1025)] ∨ [(BMI ≤ 0.8576) ∧
(Glucose ≤ 0.2067)] THEN 0
IF [(BMI ≤ −0.2212) ∧ (Glucose > 0.2067) ∧ (Pregnancies >
−0.1025)] ∨ [(BMI > 0.8576) ∧ (Glucose ≤ 0.2067) ∧ (Glucose >
−0.341)] ∨ [(BMI > −0.2212) ∧ (Glucose > 0.2067)] THEN 1

Table A15 shows the final rule set generated by ECLAIRE for Prima Indian diabetes dataset.

Table A15. Final rule set for the Prima Diabetes dataset generated by ECLAIRE.

Rules

IF[(Glucose > 0.6918)] ∨ [(Pregnancies > 0.343) ∧ (SkinThickness > 0.7191)] ∨
[(BMI > 0.7878)(Glucose > −0.028)] ∨ [(BMI > 0.4832) ∧ (Glucose >
−0.1219)] ∨ [(Glucose > 0.7857)] ∨ [(BMI > −0.2021) ∧ (Glucose >
0.6605)] THEN 1
IF[(BMI ≤ 0.0898)] ∨ [(Glucose ≤ 0.0346) ∧ (SkinThickness ≤ 1.0327)] ∨
[(Glucose ≤ −0.1532)] ∨ [(Glucose ≤ −0.1219) ∧ (Pregnancies ≤
0.6399)] ∨ [(BMI ≤ 0.3309) ∧ (Glucose ≤ 0.1598)] ∨ [(Glucose ≤
0.0659)AND(SkinThickness ≤ 0.5936)] ∨ [(BMI ≤ −0.2656)AND(Glucose ≤
0.3476) ∧ (SkinThickness ≤ 0.5936)] THEN 0

Appendix B.4. Digits Dataset

Table A16 shows the final rule set for the digits dataset generate by DEXiRE.

Table A16. Final rule set for the digits dataset generated by DEXiRE.

Rules

IF[(pixel_4_4 > −1.7367)] ∨ [(pixel_2_3 ≤ 0.8632) ∧ (pixel_2_5 >
−1.26) ∧ (pixel_3_2 ≤ −0.4994) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_6_5 >
−1.4526)]THEN3
IF[(pixel_2_5 ≤ −1.26) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_5_2 > 0.1711) ∧
(pixel_6_4 > 0.1101)] ∨ [(pixel_1_5 ≤ 0.1362) ∧ (pixel_2_5 > −1.26) ∧
(pixel_3_2 > −0.3378) ∧ (pixel_4_1 > 0.1898) ∧ (pixel_4_4 > −1.7367)]THEN4

Electronics 2022, 11, 4171 29 of 35

Table A16. Cont.

Rules

IF[(pixel_2_5 > −1.26) ∧ (pixel_3_2 ≤ −0.3378) ∧ (pixel_4_1 > 0.1898) ∧
(pixel_4_4 > −1.7367)] ∨ [(pixel_2_3 ≤ 0.8632) ∧ (pixel_2_5 > −1.26) ∧
(pixel_4_1 ≤ 0.1898) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_7_4 ≤ −0.975)] ∨
[(pixel_2_3 ≤ 0.8632) ∧ (pixel_3_2 ≤ −0.4994) ∧ (pixel_4_1 ≤ 0.1898) ∧
(pixel_4_4 > −1.7367) ∧ (pixel_6_5 ≤ −1.4526)] ∨ [(pixel_2_3 ≤ 0.8632) ∧
(pixel_2_5 > −1.26) ∧ (pixel_3_2 ≤ 0.3083) ∧ (pixel_3_2 > −0.4994) ∧
(pixel_4_4 > −1.7367) ∧ (pixel_7_4 ≤ −0.975)]THEN7
IF[(pixel_2_3 > 0.8632) ∧ (pixel_2_5 > −1.26) ∧ (pixel_4_1 ≤ 0.1898) ∧
(pixel_4_4 ≤ −0.0508)] ∨ [(pixel_4_1 ≤ −0.6724) ∧ (pixel_4_4 ≤ −1.7367)] ∨
[(pixel_2_3 ≤ 0.8632) ∧ (pixel_2_5 > −1.26) ∧ (pixel_3_2 > −0.4994) ∧
(pixel_4_1 ≤ 0.1898) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_4_6 > −0.8227) ∧
(pixel_7_4 > −0.975)]THEN9
IF[(pixel_1_5 > 0.1362) ∧ (pixel_2_5 > −1.26) ∧ (pixel_3_2 > −0.3378) ∧
(pixel_4_1 > 0.1898) ∧ (pixel_4_4 > −1.7367)] ∨ [(pixel_2_3 > 0.8632) ∧
(pixel_2_4 > 0.794)∧ (pixel_2_5 > −1.26)∧ (pixel_4_1 ≤ 0.1898)∧ (pixel_4_4 >
−0.0508)] ∨ [(pixel_0_5 ≤ −0.8441) ∧ (pixel_2_5 ≤ −1.26) ∧ (pixel_3_3 >
0.5405) ∧ (pixel_4_6 ≤ −0.8227) ∧ (pixel_5_2 ≤ 0.1711)]THEN1
IF[(pixel_2_3 > 0.8632) ∧ (pixel_2_4 ≤ 0.794) ∧ (pixel_2_5 > −1.26) ∧
(pixel_4_1 ≤ 0.1898) ∧ (pixel_4_4 > −0.0508)] ∨ [(pixel_2_5 > −1.26) ∧
(pixel_4_1 ≤ 0.1898) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_5_2 > 0.3241) ∧
(pixel_5_5 > −0.3928) ∧ (pixel_6_5 > −1.4526)] ∨ [(pixel_2_3 ≤ 0.8632) ∧
(pixel_2_5 > −1.26) ∧ (pixel_3_2 > −0.4994) ∧ (pixel_4_1 ≤ 0.1898) ∧
(pixel_4_4 > −1.7367) ∧ (pixel_4_6 ≤ −0.8227) ∧ (pixel_7_4 > −0.975)]THEN8
IF[(pixel_0_5 ≤ −0.8441) ∧ (pixel_2_5 ≤ −1.26) ∧ (pixel_3_3 ≤ 0.5405) ∧
(pixel_4_6 ≤ −0.8227) ∧ (pixel_5_2 ≤ 0.1711)] ∨ [(pixel_2_3 ≤ 0.8632) ∧
(pixel_3_2 ≤ −0.4994) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_5_5 ≤ −0.3928) ∧
(pixel_6_5 > −1.4526)]THEN24
IF[(pixel_4_1 > −0.6724) ∧ (pixel_4_4 ≤ −1.7367)]THEN0
IF[(pixel_0_5 > −0.8441) ∧ (pixel_2_5 ≤ −1.26) ∧ (pixel_5_2 ≤ 0.1711)]THEN5
IF[(pixel_2_5 ≤ −1.26) ∧ (pixel_4_4 > −1.7367) ∧ (pixel_5_2 > 0.1711) ∧
(pixel_6_4 ≤ 0.1101)]THEN6

Table A17 shows the final rule set for the Digits dataset inducted by ECLAIRE.

Table A17. Final rule set for the digits dataset generated by ECLAIRE.

Rules

IF[(pixel_2_2 ≤ −1.2134) ∧ (pixel_5_3 ≤ −0.8119)] ∨ [(pixel_3_2 ≤ −0.6609) ∧
(pixel_3_6 ≤ −0.6289) ∧ (pixel_5_2 ≤ 0.1711) ∧ (pixel_6_3 ≤ 0.0882)] ∨
[(pixel_2_3 ≤ 0.1736) ∧ (pixel_3_2 ≤ −0.984) ∧ (pixel_5_5 > −0.3928) ∧
(pixel_6_3 ≤ 0.6623)]THEN 3
IF[(pixel_4_6 ≤ −0.8227) ∧ (pixel_5_2 > −0.5938) ∧ (pixel_6_3 ≤ 0.4709)] ∨
[(pixel_2_5 > 0.1927) ∧ (pixel_3_3 > −0.4797) ∧ (pixel_4_6 ≤ −0.8227) ∧
(pixel_5_2 > −0.5938)] ∨ [(pixel_4_6 ≤ −0.8227) ∧ (pixel_5_2 > −0.5938) ∧
(pixel_5_3 ≤ 0.2751) ∧ (pixel_6_3 ≤ 0.4709)]THEN 8
IF[(pixel_2_2 > 0.1928) ∧ (pixel_2_5 ≤ −1.0986) ∧ (pixel_5_2 ≤
0.1711) ∧ (pixel_7_5 ≤ 0.2095)] ∨ [(pixel_0_6 > −0.4097) ∧ (pixel_2_5 ≤
−1.0986)]THEN 5

Electronics 2022, 11, 4171 30 of 35

Table A17. Cont.

Rules

IF[(pixel_3_2 ≤ 0.3083) ∧ (pixel_4_4 > 0.4549) ∧ (pixel_7_4 ≤ −0.975)] ∨
[(pixel_3_2 ≤ 0.3083) ∧ (pixel_4_4 > 0.4549) ∧ (pixel_7_4 ≤ −1.1777)]THEN 7
IF[(pixel_3_6 > −0.6289) ∧ (pixel_5_2 ≤ −0.4409) ∧ (pixel_5_4 ≤ −0.5868)] ∨
[(pixel_3_2 > −1.4686) ∧ (pixel_3_5 > 0.0764) ∧ (pixel_5_2 ≤ 0.0181) ∧
(pixel_5_4 ≤ −1.0662)] ∨ [(pixel_3_5 > 0.9281) ∧ (pixel_4_2 ≤ −0.2637) ∧
(pixel_5_4 ≤ −0.5868)] ∨ [(pixel_3_5 > 0.9281) ∧ (pixel_5_2 ≤ −0.4409) ∧
(pixel_5_4 ≤ −0.5868)]THEN 9
IF[(pixel_4_1 > 0.4772) ∧ (pixel_7_2 ≤ −1.0894)] ∨ [(pixel_4_1 > 1.6269)] ∨
[(pixel_0_2 ≤ −0.8846) ∧ (pixel_1_5 ≤ −0.8553) ∧ (pixel_4_1 > 0.1898) ∧
(pixel_5_4 > −0.1074)] ∨ [(pixel_0_2 ≤ −0.8846) ∧ (pixel_1_5 ≤ −0.5248) ∧
(pixel_5_1 > 1.146)]THEN 4
IF[(pixel_1_2 ≤ −1.7311) ∧ (pixel_2_3 ≤ 1.0355) ∧ (pixel_3_3 > 0.2004)] ∨
[(pixel_1_2 ≤ −1.7311) ∧ (pixel_2_3 ≤ 1.0355) ∧ (pixel_2_4 > 1.2799)] ∨
[(pixel_1_2 ≤ 0.483) ∧ (pixel_2_3 > 1.0355) ∧ (pixel_2_4 > 0.47) ∧ (pixel_4_6 ≤
−0.8227)] ∨ [(pixel_1_2 ≤ −0.0705) ∧ (pixel_2_3 > 1.0355) ∧ (pixel_2_4 >
0.956)] ∨ [(pixel_2_3 > 1.0355) ∧ (pixel_7_7 > 0.8795)]THEN 1
IF[(pixel_2_3 ≤ 1.2079) ∧ (pixel_7_7 > −0.196)] ∨ [(pixel_4_5 ≤ −1.4899) ∧
(pixel_6_6 > −0.7574) ∧ (pixel_7_7 ≤ −0.196)] ∨ [(pixel_2_3 ≤ 0.6908) ∧
(pixel_7_7 > −0.196)] ∨ [(pixel_3_2 ≤ −0.984) ∧ (pixel_4_3 ≤ 0.3077) ∧
(pixel_4_5 ≤ −0.2972) ∧ (pixel_6_3 > 0.0882)]THEN 2
IF[(pixel_3_4 ≤ −0.9637) ∧ (pixel_4_4 ≤ −1.7367)]THEN 0
IF[(pixel_2_5 ≤ −1.26) ∧ (pixel_5_2 > 0.1711) ∧ (pixel_6_1 ≤ 0.7421) ∧
(pixel_6_4 ≤ −0.0785)]THEN 6

Appendix B.5. Iris Dataset

Table A18 shows the final rule set for the Iris dataset inducted by DEXiRE.

Table A18. Final rule set for the Iris dataset generated by DEXiRE.

Rules

IF [(petal_length_(cm) > 0.4713)] THEN 2
IF [(petal_length_(cm) ≤ 0.4713)AND(petal_length_(cm) > −1.0618)] THEN 1
IF [(petal_length_(cm) ≤ −1.0618)] THEN 0

Table A19 shows the final rule set for the Iris dataset inducted by ECLAIRE.

Table A19. Final rule set for the Iris dataset generated by ECLAIRE.

Rules

IF [(petal_width_(cm) ≤ 0.6518) ∧ (sepal_width_(cm) ≤ −0.1082)] THEN 1
IF [(petal_width_(cm) > 0.3884)] THEN 2
IF [(petal_width_(cm) ≤ −0.7966)] THEN 0

Appendix B.6. Wine Quality Dataset

Table A20. Final rule set for the wine quality dataset generated by DEXiRE.

Rules

IF [(hue ≤ −0.2959) ∧ (proline ≤ 0.6054)] THEN 2
IF [(hue > −0.2959) ∧ (proline ≤ 0.6054)] THEN 1
IF [(proline > 0.6054)] THEN 0

Electronics 2022, 11, 4171 31 of 35

Table A21. Final rule set for the wine quality dataset generated by ECLAIRE.

Rules

IF [(od280/od315_o f _diluted_wines ≤ −0.7086)] THEN 2
IF [(proline > 0.2806)] ∨ [(proline > 0.8538)] THEN 0
IF [(color_intensity ≤ −0.4837)] ∨ [(color_intensity ≤ −0.1636) ∧ (magnesium ≤
−0.6138)] THEN 1

Appendix C. Model Analysis

Appendix C.1. Binary Classification

Appendix C.1.1. Banknote Dataset

In Figure A1 is shown the histogram of binary activation in hidden layer 0. In several
neurons there is a complementary activation between classes 0 (identified with color red)
and 1 (identified with color blue).

1 0 1
h_0_0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

y_true
0
1

1 0 1
h_0_1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
en

si
ty

y_true
0
1

1 0 1
h_0_2

0.0

0.5

1.0

1.5

2.0

2.5

3.0
D

en
si

ty

y_true
0
1

2 0 2
h_0_3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

y_true
0
1

Histogram of activations BNN layer 0

Figure A1. Histogram of binary activations for neurons in hidden layer zero in DL predictor for
banknote authentication dataset. Each plot shows the activation density function per neuron discrim-
inated by class (class 0 is shown in red, and class 1 is shown in blue).

Appendix C.1.2. Prima Indians Diabetes

Figure A2 shows the histogram of binary activation in hidden layer 0. In several
neurons there is clear a strong complementary activation between classes 0 (identified with
color red) and 1 (identified with color blue). This dataset exhibits greater complexity in its
activation pattern than the previous one, producing more complex rule sets.

Electronics 2022, 11, 4171 32 of 35

2 0 2
h_0_0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

y_true
0
1

2 0 2
h_0_1

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

y_true
0
1

2 0 2
h_0_2

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

y_true
0
1

2 0 2
h_0_3

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

y_true
0
1

Histogram of activations BNN layer 0

Figure A2. Histogram of binary activations for neurons in hidden layer zero in DL predictor for Prima
Indians diabetes dataset. Each plot shows the activation density function per neuron discriminated
by class (class 0 is shown in red, and class 1 is shown in blue).

References
1. Zhong, G.; Wang, L.N.; Ling, X.; Dong, J. An overview on data representation learning: From traditional feature learning to

recent deep learning. J. Financ. Data Sci. 2016, 2, 265–278. [CrossRef]
2. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
3. Ghosh, S.; Das, N.; Das, I.; Maulik, U. Understanding deep learning techniques for image segmentation. ACM Comput. Surv.

(CSUR) 2019, 52, 1–35. [CrossRef]
4. Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput.

Surv. (CSUR) 2019, 52, 1–38. [CrossRef]
5. Mahdavifar, S.; Ghorbani, A.A. Application of deep learning to cybersecurity: A survey. Neurocomputing 2019, 347, 149–176. [CrossRef]
6. Koroteev, M. BERT: A review of applications in natural language processing and understanding. arXiv 2021, arXiv:2103.11943.
7. Jeong, Y.; Kim, J.H.; Chae, H.D.; Park, S.J.; Bae, J.S.; Joo, I.; Han, J.K. Deep learning-based decision support system for the

diagnosis of neoplastic gallbladder polyps on ultrasonography: Preliminary results. Sci. Rep. 2020, 10, 7700. [CrossRef]
8. Carli, R.; Najjar, A.; Calvaresi, D. Risk and Exposure of XAI in Persuasion and Argumentation: The case of Manipulation.

In Proceedings of the International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems,
Auckland, New Zealand, 9–13 May 2022; pp. 204–220.

9. Carli, R.; Najjar, A.; Calvaresi, D. Human-Social Robots Interaction: The blurred line between necessary anthropomorphization
and manipulation. In Proceedings of the International Conference on Human-Agent Interaction, Christchurch, New Zealand, 5–8
December 2022; pp. 321–323.

10. Graziani, M.; Dutkiewicz, L.; Calvaresi, D.; Amorim, J.P.; Yordanova, K.; Vered, M.; Nair, R.; Abreu, P.H.; Blanke, T.; Pulignano, V.;
et al. A global taxonomy of interpretable AI: Unifying the terminology for the technical and social sciences. Artif. Intell. Rev.
2022, 1–32. [CrossRef]

11. Anjomshoae, S.; Najjar, A.; Calvaresi, D.; Främling, K. Explainable agents and robots: Results from a systematic literature review.
In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,
ON, Canada, 13–17 May 2019; pp. 1078–1088.

12. Ciatto, G.; Schumacher, M.I.; Omicini, A.; Calvaresi, D. Agent-based explanations in AI: Towards an abstract framework.
In Proceedings of the International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems,
Auckland, New Zealand, 9–13 May 2020; pp. 3–20.

13. Gunning, D.; Aha, D. DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 2019, 40, 44–58.

http://doi.org/10.1016/j.jfds.2017.05.001
http://dx.doi.org/10.1109/TPAMI.2013.50
http://www.ncbi.nlm.nih.gov/pubmed/23787338
http://dx.doi.org/10.1145/3329784
http://dx.doi.org/10.1145/3158369
http://dx.doi.org/10.1016/j.neucom.2019.02.056
http://dx.doi.org/10.1038/s41598-020-64205-y
http://dx.doi.org/10.1007/s10462-022-10256-8

Electronics 2022, 11, 4171 33 of 35

14. Lahav, O.; Mastronarde, N.; van der Schaar, M. What is interpretable? using machine learning to design interpretable decision-
support systems. arXiv 2018, arXiv:1811.10799.

15. Molnar, C. Interpretable Machine Learning. Available online: https://books.google.it/books?hl=it&lr=&id=jBm3DwAAQBAJ&
oi=fnd&pg=PP1&dq=Interpretable+Machine+Learning&ots=EgyP1nBDY4&sig=icOdLXXGmIkOMx35kXC1tBNCu40#v=
onepage&q=Interpretable%20Machine%20Learning&f=false (accessed on 3 November 2022).

16. Wang, T. Multi-value rule sets for interpretable classification with feature-efficient representations. In Proceedings of the
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, Montreal, QC, Canada, 3–8 December 2018.

17. Dieber, J.; Kirrane, S. Why model why? Assessing the strengths and limitations of LIME. arXiv 2020, arXiv:2012.00093.
18. Duval, A.; Malliaros, F.D. Graphsvx: Shapley value explanations for graph neural networks. In Proceedings of the Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, Bilbao, Spain, 13–17 September 2021; pp. 302–318.
19. Zarlenga, M.E.; Shams, Z.; Jamnik, M. Efficient Decompositional Rule Extraction for Deep Neural Networks. arXiv 2021,

arXiv:2111.12628.
20. Främling, K. Explaining results of neural networks by contextual importance and utility. In Proceedings of the AISB’96

Conference, Brighton, UK, 1–2 April 1996.
21. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable ai: A review of machine learning interpretability methods.

Entropy 2020, 23, 18. [CrossRef] [PubMed]
22. Calegari, R.; Ciatto, G.; Omicini, A. On the integration of symbolic and sub-symbolic techniques for XAI: A survey. Intell. Artif.

2020, 14, 7–32. [CrossRef]
23. He, C.; Ma, M.; Wang, P. Extract interpretability-accuracy balanced rules from artificial neural networks: A review. Neurocomputing

2020, 387, 346–358. [CrossRef]
24. Taylor, B.; Darrah, M. Rule extraction as a formal method for the verification and validation of neural networks. In Proceedings

of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 5,
pp. 2915–2920. [CrossRef]

25. Andrews, R.; Diederich, J.; Tickle, A.B. Survey and critique of techniques for extracting rules from trained artificial neural
networks. Knowl.-Based Syst. 1995, 8, 373–389. [CrossRef]

26. Fu, L. Rule Learning by Searching on Adapted Nets. In Proceedings of the AAAI, Anaheim, CA, USA, 14–19 July 1991; Volume 91,
pp. 590–595.

27. Fu, L. Rule generation from neural networks. IEEE Trans. Syst. Man Cybern. 1994, 24, 1114–1124.
28. Towell, G.G.; Shavlik, J.W. Extracting refined rules from knowledge-based neural networks. Mach. Learn. 1993, 13, 71–101. [CrossRef]
29. Setiono, R.; Thong, J.Y. An approach to generate rules from neural networks for regression problems. Eur. J. Oper. Res. 2004,

155, 239–250. [CrossRef]
30. Sethi, K.K.; Mishra, D.K.; Mishra, B. Extended taxonomy of rule extraction techniques and assessment of kdruleex. Int. J. Comput.

Appl. 2012, 50. [CrossRef]
31. Thrun, S.B. Extracting Provably Correct Rules from Artificial Neural Networks; Technical Report. Available online: https:

//citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e0fbfb6243bd4ca84f906413a656a4090782c8a5 (accessed on 3
November 2022).

32. Saad, E.W.; Wunsch, D.C. Neural network explanation using inversion. Neural Netw. 2007, 20, 78–93. .
unet.2006.07.005. [CrossRef] [PubMed]

33. Bologna, G. Is it worth generating rules from neural network ensembles? J. Appl. Log. 2004, 2, 325–348. [CrossRef]
34. Hruschka, E.R.; Ebecken, N.F. Extracting rules from multilayer perceptrons in classification problems: A clustering-based

approach. Neurocomputing 2006, 70, 384–397. [CrossRef]
35. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

36. Garreau, D.; Luxburg, U. Explaining the explainer: A first theoretical analysis of LIME. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, Online, 26–28 August 2020; pp. 1287–1296.

37. Augasta, M.; Kathirvalavakumar, T. Pruning algorithms of neural networks—A comparative study. Open Comput. Sci. 2013,
3, 105–115. [CrossRef]

38. Staniak, M.; Biecek, P. Explanations of model predictions with live and breakDown packages. arXiv 2018, arXiv:1804.01955.
39. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30. Available

online: https://www.proceedings.com/content/034/034099webtoc.pdf (accessed on 3 November 2022).
40. Shrikumar, A.; Greenside, P.; Kundaje, A. Learning important features through propagating activation differences. In Proceedings

of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 3145–3153.
41. Binder, A.; Montavon, G.; Lapuschkin, S.; Müller, K.R.; Samek, W. Layer-wise relevance propagation for neural networks with

local renormalization layers. In Proceedings of the International Conference on Artificial Neural Networks, Barcelona, Spain, 6–9
September 2016; pp. 63–71.

https://books.google.it/books?hl=it&lr=&id=jBm3DwAAQBAJ&oi=fnd&pg=PP1&dq=Interpretable+Machine+Learning&ots=EgyP1nBDY4&sig=icOdLXXGmIkOMx35kXC1tBNCu40#v=onepage&q=Interpretable%20Machine%20Learning&f=false
https://books.google.it/books?hl=it&lr=&id=jBm3DwAAQBAJ&oi=fnd&pg=PP1&dq=Interpretable+Machine+Learning&ots=EgyP1nBDY4&sig=icOdLXXGmIkOMx35kXC1tBNCu40#v=onepage&q=Interpretable%20Machine%20Learning&f=false
https://books.google.it/books?hl=it&lr=&id=jBm3DwAAQBAJ&oi=fnd&pg=PP1&dq=Interpretable+Machine+Learning&ots=EgyP1nBDY4&sig=icOdLXXGmIkOMx35kXC1tBNCu40#v=onepage&q=Interpretable%20Machine%20Learning&f=false
http://dx.doi.org/10.3390/e23010018
http://www.ncbi.nlm.nih.gov/pubmed/33375658
http://dx.doi.org/10.3233/IA-190036
http://dx.doi.org/10.1016/j.neucom.2020.01.036
http://dx.doi.org/10.1109/IJCNN.2005.1556388
http://dx.doi.org/10.1016/0950-7051(96)81920-4
http://dx.doi.org/10.1007/BF00993103
http://dx.doi.org/10.1016/S0377-2217(02)00792-0
http://dx.doi.org/10.5120/7928-1236
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e0fbfb6243bd4ca84f906413a656a4090782c8a5
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e0fbfb6243bd4ca84f906413a656a4090782c8a5
http://dx.doi.org/10.1016/j.neunet.2006.07.005
http://www.ncbi.nlm.nih.gov/pubmed/17029713
http://dx.doi.org/10.1016/j.jal.2004.03.004
http://dx.doi.org/10.1016/j.neucom.2005.12.127
http://dx.doi.org/10.2478/s13537-013-0109-x
https://www.proceedings.com/content/034/034099webtoc.pdf

Electronics 2022, 11, 4171 34 of 35

42. Silva, A.; Gombolay, M.; Killian, T.; Jimenez, I.; Son, S.H. Optimization methods for interpretable differentiable decision trees
applied to reinforcement learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Online,
26–28 August 2020; pp. 1855–1865.

43. Avellaneda, F. Efficient inference of optimal decision trees. In Proceedings of the AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7–12 February 2020; Volume 34, pp. 3195–3202.

44. Schidler, A.; Szeider, S. SAT-based decision tree learning for large data sets. In Proceedings of the AAAI Conference on Artificial
Intelligence, Online, 2–9 February 2021; Volume 35, pp. 3904–3912.

45. Verhaeghe, H.; Nijssen, S.; Pesant, G.; Quimper, C.G.; Schaus, P. Learning optimal decision trees using constraint programming.
Constraints 2020, 25, 226–250. [CrossRef]

46. Verwer, S.; Zhang, Y. Learning optimal classification trees using a binary linear program formulation. In Proceedings of the
AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1625–1632.

47. Gjærum, V.B.; Strümke, I.; Løver, J.; Miller, T.; Lekkas, A.M. Model tree methods for explaining deep reinforcement learning
agents in real-time robotic applications. Neurocomputing 2022, 515, 133–144. [CrossRef]

48. Setiono, R.; Leow, W.K. FERNN: An algorithm for fast extraction of rules from neural networks. Appl. Intell. 2000, 12, 15–25. [CrossRef]
49. Tovey, C.A. A simplified NP-complete satisfiability problem. Discret. Appl. Math. 1984, 8, 85–89. [CrossRef]
50. Schaefer, T.J. The complexity of satisfiability problems. In Proceedings of the Tenth Annual ACM Symposium on Theory of

Computing, San Diego, CA, USA, 1–3 May 1978; pp. 216–226.
51. Claessen, K.; Een, N.; Sheeran, M.; Sorensson, N. SAT-solving in practice. In Proceedings of the 2008 9th International Workshop

on Discrete Event Systems, Gothenburg, Sweden, 28–30 May 2008; pp. 61–67.
52. Li, X.W.; Li, G.H.; Shao, M. Formal verification techniques based on Boolean satisfiability problem. J. Comput. Sci. Technol. 2005,

20, 38–47. [CrossRef]
53. Lakkaraju, H.; Bach, S.H.; Leskovec, J. Interpretable decision sets: A joint framework for description and prediction. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA,
USA, 13–17 August 2016; pp. 1675–1684.

54. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized neural networks. In Proceedings of the Advances
in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona,
Spain, 5–10 December 2016; pp. 4114–4122.

55. Zhang, J.; Pan, Y.; Yao, T.; Zhao, H.; Mei, T. dabnn: A super fast inference framework for binary neural networks on arm devices.
In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 2272–2275.

56. Geiger, L.; Team, P. Larq: An open-source library for training binarized neural networks. J. Open Source Softw. 2020, 5, 1746. [CrossRef]
57. Weiss, S.M.; Indurkhya, N. Optimized rule induction. IEEE Expert 1993, 8, 61–69. [CrossRef]
58. Choi, A.; Shi, W.; Shih, A.; Darwiche, A. Compiling neural networks into tractable Boolean circuits. Intelligence 2017. Available

online: https://www-cs.stanford.edu/~andyshih/assets/pdf/CSSDvnn19.pdf (accessed on 3 November 2022).
59. Mhaskar, H.; Liao, Q.; Poggio, T. Learning real and boolean functions: When is deep better than shallow. arXiv 2016

arXiv:1603.00988v4. Available online: https://arxiv.org/abs/1603.00988 (accessed on 3 November 2022).
60. Contreras, V.; Schumacher, M.; Calvaresi, D. Integration of Local and Global Features Explanation with Global Rules Extraction

and Generation Tools. In Proceedings of the International Workshop on Explainable, Transparent Autonomous Agents and
Multi-Agent Systems, Montreal, QC, Canada, 13–14 May 2022; pp. 19–37.

61. Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Giannotti, F.; Pedreschi, D. A survey of methods for explaining black box
models. ACM Comput. Surv. (CSUR) 2018, 51, 1–42. [CrossRef]

62. Panigutti, C.; Perotti, A.; Pedreschi, D. Doctor XAI: An ontology-based approach to black-box sequential data classification
explanations. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, Spain, 27–30
January 2020; pp. 629–639.

63. Courbariaux, M.; Bengio, Y.; David, J.P. Binaryconnect: Training deep neural networks with binary weights during propagations.
Adv. Neural Inf. Process. Syst. 2015, 28. [CrossRef]

64. Gulcehre, C.; Moczulski, M.; Denil, M.; Bengio, Y. Noisy activation functions. In Proceedings of the International Conference on
Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 3059–3068.

65. Kim, H.; Park, J.; Lee, C.; Kim, J.J. Improving accuracy of binary neural networks using unbalanced activation distribution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 7862–7871.

66. Agarap, A.F.M. On breast cancer detection: An application of machine learning algorithms on the wisconsin diagnostic dataset.
In Proceedings of the 2nd International Conference on Machine Learning and Soft Computing, Phuoc Island, Vietnam, 2–4
February 2018; pp. 5–9.

67. Dua, D.; Graff, C. UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer
Sciences. Available online: http://archive.ics.uci.edu/ml (accessed on 3 November 2022).

68. Chang, V.; Bailey, J.; Xu, Q.A.; Sun, Z. Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms.
Neural Comput. Appl. 2022, 1–17. [CrossRef]

http://dx.doi.org/10.1007/s10601-020-09312-3
http://dx.doi.org/10.1016/j.neucom.2022.10.014
http://dx.doi.org/10.1023/A:1008307919726
http://dx.doi.org/10.1016/0166-218X(84)90081-7
http://dx.doi.org/10.1007/s11390-005-0004-6
http://dx.doi.org/10.21105/joss.01746
http://dx.doi.org/10.1109/64.248354
https://www-cs.stanford.edu/~andyshih/assets/pdf/CSSDvnn19.pdf
https://arxiv.org/abs/1603.00988
http://dx.doi.org/10.1145/3236009
http://dx.doi.org/10.5555/2969442.2969588
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/s00521-022-07049-z

Electronics 2022, 11, 4171 35 of 35

69. Magnini, M.; Ciatto, G.; Omicini, A. On the Design of PSyKI: A Platform for Symbolic Knowledge Injection into Sub-symbolic
Predictors. In Proceedings of the International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent
Systems, Auckland, New Zealand, 9–13 May 2022; pp. 90–108.

70. Magnini, M.; Ciatto, G.; Omicini, A. KINS: Knowledge Injection via Network Structuring. In Proceedings of the CILC 2022: 37th
Italian Conference on Computational Logic, Bologna, Italy, 29 June–1 July 2022.

71. Ciatto, G. On the role of Computational Logic in Data Science: Representing, Learning, Reasoning, and Explaining Knowledge,
Ph.D. Thesis. 2022. Available online: http://amsdottorato.unibo.it/10192/ (accessed on 3 November 2022).

http://amsdottorato.unibo.it/10192/

	Introduction
	State of the Art
	DEXiRE: Rational, Methodology, Algorithm, and Performance Evaluation
	Underlying Rational Design
	DEXiRE Algorithm, Methodology, and Performance Evaluation

	Experimental Setup
	ES1 Scenario Definition
	ES2 Datasets Gathering
	ES3 Datasets Pre-Processing
	ES4 Baseline Predictor Characterization
	ES5 DEXiRE Application

	Results
	SC1 Binary Classification
	SC2 Multiclass Classification

	Analysis and Discussion
	Analysis Scenario (SC1)
	Analysis Scenario (SC2)
	Discussion
	Data and Models Interdependency
	The Role of Binarization
	From Neurons to Decisions: Activation Pattern
	Rationales behind Rule Induction
	Beyond Rule Sets
	Constraints and Limitations

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4
	Appendix A.5
	Appendix A.6

	Appendix B
	Appendix B.1
	Appendix B.2
	Appendix B.3
	Appendix B.4
	Appendix B.5
	Appendix B.6

	Appendix C
	Appendix C.1
	Appendix C.1.1
	Appendix C.1.2

	References

