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a b s t r a c t 

Personalized support and assistance are essential for cancer survivors, given the physical and psycholog- 

ical consequences they have to suffer after all the treatments and conditions associated with this illness. 

Digital assistive technologies have proved to be effective in enhancing the quality of life of cancer sur- 

vivors, for instance, through physical exercise monitoring and recommendation or emotional support and 

prediction. To maximize the efficacy of these techniques, it is challenging to develop accurate models of 

patient trajectories, which are typically fed with information acquired from retrospective datasets. This 

paper presents a Machine Learning-based survival model embedded in a clinical decision system archi- 

tecture for predicting cancer survivors’ trajectories. The proposed architecture of the system, named PER- 

SIST, integrates the enrichment and pre-processing of clinical datasets coming from different sources and 

the development of clinical decision support modules. Moreover, the model includes detecting high-risk 

markers, which have been evaluated in terms of performance using both a third-party dataset of breast 

cancer patients and a retrospective dataset collected in the context of the PERSIST clinical study. 

© 2023 Published by Elsevier B.V. 
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. Introduction 

Cancer is a significant public health concern worldwide and the 

econd leading cause of death in the United States and Europe. For 

omen, breast cancer, lung cancer, and colorectal cancers account 

or 51% of all new diagnoses, with breast cancer alone accounting 

or almost one-third [1] . According to the American Cancer Society, 

ne in eight women will develop an invasive breast tumor dur- 

ng her life, constituting one of the most common cancers in the 

omen population —second only to skin cancer [2] . Despite the 

utstanding progress in identifying many risk factors that increase 

omen’s chance of developing breast cancer, its detection remains 

n open challenge caused by a combination of genetic, hormonal, 

nd environmental factors [2,3] . 

Patient trajectories play a crucial role in detecting high-risk 

arkers of breast cancer patients. On the one hand, patient trajec- 

ories describe the probability that a particular event occurs over 

ime (e.g., death or relapse). On the other hand, covariates such 
∗ Corresponding author. 
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s type of treatments, cancer stage, and age affect the trajectories’ 

hape, enabling clustering and risk factors detection. Patient cohort 

nd trajectory analysis are essential supporting tools for patient 

tratification, identifying risks, and preventing adverse events. 

According to the World Health Organization (WHO), improve- 

ents in treatment adherence would be more beneficial to the pa- 

ient’s health than the development of new drugs [4] . However, 

he accurate staging of some cancers and their prognosis is still 

 challenging task [5] , which often leads to insufficient or unnec- 

ssary treatments (e.g., for inaccurate staging in oral cancer [6] ). 

herefore, the development of assistive technologies that (i) effec- 

ively evaluate the significance of prognostic variables (e.g., death 

r relapse), (ii) facilitate the detection of patient’s high-risk mark- 

rs, (iii) support treatment decisions, and (iv) improve the patients’ 

reatment adherence, is imperative. 

This paper presents the Survival Analysis components for the 

ERSIST modular architecture, enabling clinical support decisions 

or breast cancer patients. The PERSIST survival module provides 

atients stratification based on their trajectory analysis and en- 

bles the detection of high-risk markers. Numerical evaluations 

how the Survival Analysis outputs effectiveness in providing in- 

https://doi.org/10.1016/j.cmpb.2023.107373
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107373&domain=pdf
mailto:gaetano.manzo@nih.gov
https://doi.org/10.1016/j.cmpb.2023.107373
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S

ightful prediction and classification results in breast cancer sur- 

ivor patient support the evaluation has been performed using the 

ell-known METABRIC dataset [7] , as well as the data collected 

ithin the context of the PERSIST clinical trial [8] . 

The rest of the paper is organized as follows. Section 2 presents 

he state of the art followed by the open challenges. The multi- 

gent-modeled architecture of PERSIST is introduced in Section 3 , 

ogether with its components, interactions, and modules. The PER- 

IST Survival Analysis module is presented in Section 4 , whereas 

ection 5 provides its evaluation and results. A discussion on the 

esults is provided in Section 6 . Finally, Section 7 presents the con- 

lusions of the paper, limitations, and future work. 

. State of the art 

.1. Survival analysis 

Survival analysis methods are fundamentally based on the type 

f disease intended to prevent. In the case of breast cancer, authors 

n [9] performed patient cohorts based on administered treatment 

o identify and rank all prognostic biomarkers —genes capable of 

redicting the expected survival of the patients. In [9] , such an 

nalysis was performed using the Cox Proportional Hazard (CPH) 

odel [10] , a standard parametric method that assesses patient co- 

ariates using linear combinations [11] . Similarly, in [12] , authors 

lassified cancer hallmark genes according to their correlation to 

he survival cohort of distinct cancer types. Although the CPH 

odel presents explanatory output and fast computation for sur- 

ival analysis, its performance and accuracy drastically drop when 

imensionality increases (i.e., the number of covariates growths). 

oreover, the CPH model fails to represent non-linearity and time- 

ependent covariates. 

In [13] , authors compared the performance of the classical CPH 

odel with several Machine Learning (ML) techniques in predict- 

ng breast cancer survival. They used SHapley Additive exPlanation 

SHAP) [14] values to exemplify the performance of the classical 

PH regression and the best-performing ML techniques, facilitat- 

ng their interpretation. Machine Learning, the primary technical 

asis for data mining, provides a methodology for analyzing raw 

ata from medical records. In [15] , authors applied ML techniques 

sing survival statistics to predict graft survival. An advanced ML 

ipeline for survival analysis was assembled by [16] . The authors 

sed seven well-known ML techniques and Cox regression-based 

urvival analysis to identify breast cancer sub-types most signif- 

cant miRNA biomarkers. The mission of [17] was reducing un- 

lanned and early re-admissions, which burdens limited hospi- 

al resources imposing costs on the healthcare system. The au- 

hors in [17] proposed applications of survival models to support 

anagerial decision-making and performance measures suitable 

or assessing the survival models for these applications. Authors 

n [18] and [19] proposed the architecture of a multi-agent sys- 

em that enables patients’ cohort and trajectory analysis, which in- 

pired our work. 

One of the latest survival analysis approaches was conducted 

n [20] using deep learning. The authors introduced deep survival 

nalysis, a hierarchical generative approach to survival analysis for 

lectronic health records. Compared to the clinically validated risk 

core, deep survival analysis is superior in stratifying patients ac- 

ording to their risk [20] . In addition, performance was enhanced 

n [21] and [22] for model ranking and accurate prediction on the 

verall survival patients. Those ML-based approaches catch highly 

omplex and non-linear relationships between prognostic features 

nd individual risks. However, previous studies have demonstrated 

ixed results on predicting risk, failing to show improvements be- 

ond the linear Cox model [23,24] . 
2

The studies presented lay at the intersection of several disci- 

lines and domains, including patient survival analysis, decision 

upport systems, and eHealth patient support. Challenges and op- 

ortunities arising from the combined synergy of these areas can 

e summarized as follows: (i) a system that enables the collec- 

ion of patient trajectory data for enabling profiling and prediction 

f trajectory outcomes; (ii) The support of persuasive strategies 

or self-efficacy evaluation; (iii) A clinical-decision-support-system 

hat bridges statistical, rule-based, and data-driven approaches. 

Breast cancer patients could benefit from such combinations 

nabling advanced trajectory analysis and identification/detection 

f markers to support clinician decisions. 

.2. AI-based models 

The following briefly describes the artificial intelligence (AI) 

ased models found in the literature, which are used for the sur- 

ival classification task in Section 5 . We first introduce the unsu- 

ervised algorithm for the risk evaluation of the health trajecto- 

ies. Then, we present the supervised algorithms adopted for the 

urvival classification task. 

The Gaussian mixture model is a probabilistic model adopted 

o evaluate patient risk levels. The model assumes that all the data 

oints are generated from a mixture of a finite number of Gaus- 

ian distributions with unknown parameters [25] . One can think 

f mixture models as generalizing k-means clustering to incorpo- 

ate information about the covariance structure of the data as well 

s the centers of the latent Gaussians. We adopt such a model to 

valuate patients’ risk given patient health trajectories. 

Logistic Regression (LR) is a statistical model that estimates the 

robability of an event occurring based on a data set of indepen- 

ent variables. It is the first model that we adopt for the survival 

lassification task (e.g., estimation of patient vital status). The out- 

ome is a probability, so the dependent (or result) variable takes 

alues in the range [0,1]. In LR, a logit transformation is applied to 

he probability of success divided by the probability of failure [26] . 

Support-vector machine (SVM) is a machine-learning method 

or classification problems. Unlike LR, SVM maps the non-linearly 

nput vectors into a very high-dimension feature space. In this fea- 

ure space, a linear decision surface is constructed. Special proper- 

ies of the decision surface ensure the high generalization ability 

f the learning machine [27] . 

A Decision Tree (DT) is a non-parametric supervised learning al- 

orithm with a hierarchical tree structure consisting of a root node, 

ranches, internal nodes, and leaf nodes [28] . The goal is to cre- 

te a model that predicts the value of a target variable by learning 

imple decision rules inferred from the characteristics of the input 

ata. Such model provides explainable output based on patients’ 

ovariates. 

We use Artificial Neural Network (ANN or NN) to finalize the 

urvival classification task. NN is a deep-learning structure inspired 

y the human brain replicates the way biological neurons commu- 

icate with each other [29] . NNs are composed of layers of nodes 

alled neurons. They contain an input layer, one or more hidden 

ayers, and an output layer. These networks can receive several fea- 

ures at their input layer, perform the relevant operations, and pro- 

ide a prediction at their output layers, offering high performance. 

eurons are connected and have an associated weight and thresh- 

ld, which allow neurons to be activated and transmit information 

o the next layer only if its output is above the threshold. 

. Architecture 

This section presents the agent-based modelization of the PER- 

IST infrastructure to realize personalized agents leveraging the 
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Fig. 1. PERSIST architecture described in terms of multi-agent interactions among its components. 
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1 The records are anonymized before being processed by the agency. Neverthe- 

less, the link between the trajectories and aggregated information and the real pa- 

tient identity is kept (hospital-side) to allow the doctor to identify and monitor 

given patients. 
utcome of big data analytics of cancer survivors to support a bet- 

er therapy definition, patients adherence to the treatment, and 

ollow-up monitoring. The requirements of the PERSIST clinical de- 

ision support system have been published in [30] , and the system 

as been used during the PERSIST clinical trial [8] . 

The overall PERSIST infrastructure helps to (i) improve the 

anagement of the several dimensions of the disease and 

ts treatments, promoting better health and well-being; (ii) 

nhance decision-making support and effectiveness in cancer 

reatment/follow-up; and (iii) reduce the probability of secondary 

iseases and fatal events —improving prevention strategies. 

The agency is virtualized and interconnected by Docker- 

ompose, which extends and amends the architecture presented 

n [19] and [18] due to data (i.e., EHRs) and analysis (i.e., both 

ule and data-driven) requirements. Figure 1 shows the PERSIST 

rchitecture, modeled as decentralized agents with specific behav- 

ors. In particular, this model describes the system components as 

our types of agents: Personal Patient Agent (PPA), Doctor Support 

gent (DSA), Data Aggregator Agent (DAA), and Clinical Support 

gent (CSA). 

The Personal Patient Agent (PPA) represents a mobile app 

multi-platform chatbot app) that enables patients to submit 

oth self-reported values (e.g., patient reported outcomes) and 

earable-related data (e.g., heart rate, BMI, and steps). The mo- 

ile app enables patients to ask for information (e.g., quality of 

ife), and to get possible updates of their therapy. Moreover, pa- 

ients can use the PPA (implemented as the app) to obtain person- 
3 
lized medical advice from the clinician(s) in charge, and obtain 

ertinent alerts and notifications. The details of this implementa- 

ion have been presented in [31] . 

The data collected by the PPA are transferred to the Data Aggre- 

ator Agent (DAA), which holds the user profile records, and relates 

hem with the EHR obtained from the hospital. The DAA pseudo- 

nonymizes 1 the multi-source EHRs (i.e., collected from healthcare 

acilities), enabling a dedicated partner to perform semantic en- 

ichment [32] . Such data are stored on the OVH cloud platform 

n Health Level Seven (HL7) Fast Healthcare Interoperability Re- 

ources (FHIR) standard, which supports data exchange among dif- 

erent hospitals or clinics. 

The Doctor Support Agent (DSA) aims to support clinical deci- 

ions by providing patient cohorts, risk markers, and trajectories. 

t is characterized by two main sets of behaviors (i.e., rule-driven 

nd data-driven). The DSA’s behaviors enable the agents’ interac- 

ion and support the doctors through a web-based dashboard. In 

articular, it (i) enables clinicians to communicate with patients 

ia the PPA, (ii) has access to the patients’ profiles and EHRs via 

he DAA, and (iii) can access the periodic reports composed by the 

linical Support Agent (CSA). 
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Each agent plays a crucial role. Nevertheless, the CSA is the 

nowledge digger, constantly pulling together EHRs, patients’ be- 

aviors, models, and predictions (enabling the main contribution 

f this study). The following section details the CSA, its interac- 

ions with the DAA to the Big Data platform, personalization for 

atient stratification, and output to visualize patients’ trajectories. 

.1. CSA: Architecture and characterization 

The CSA’s main aim is to estimate patients’ survival and risk 

evels preventing fatal events (e.g., relapse). To do so, it uses the 

ollowing behaviors, 

1 Data retrieving: it gets access to the data that have been pre- 

processed, filtered, annotated, and enriched by the DAA. In par- 

ticular, it performs elasticsearch queries to the DAA to fetch 

data from PERSIST aggregated EHRs [8,32] . Elasticsearch enables 

retrieving specific covariates efficiently (i.e., data retrieval com- 

putational time) by offloading the edge network based on FHIR. 

2 Data preparation: Once retrieved the data, they are pre- 

processed (cleaned, encoded, and normalized). The pre- 

processing strongly depends on the survival model adopted. 

Therefore, a filter is applied to the dataset enabling the system 

to handle missing, heterogeneous, and multidimensional data. 

Finally, CSV-like files containing data are ready to be processed. 

3 Computation of the survival models: It leverages several mod- 

els, such as Kaplan-Meier Estimator and Cox Proportional Haz- 

ard [10] , to estimate patients’ trajectories, cohorts, and risk lev- 

els. The reasoning engine operates on the output produced by 

b2 and according to the parameters set by the doctors (via 

the DSA). Such parameters are used to select time features and 

events grouped by a given list of covariates. The current engine 

uses models such as Kaplan-Meier Estimator, Cox Proportional 

Hazard, and Artificial Neural Networks to compute the patients’ 

trajectories and cohorts (see Section 4 for more details). 

4 Rule-driven Behavior: it analyzes a tree structure that identifies 

patients’ risks by patients’ covariates such as nipple discharge, 

bilateral mastectomy, or skin retraction features. Each tree leaf 

is a checkpoint for a specific set of covariates; a risk is flagged 

if one of the values is above a given threshold. The rule-driven 

outputs recommended treatments, diagnosis, prognosis, and a 

related risk score, which matches the outcome score from the 

Survival Analysis module. This latter relies on patients’ EHRs 

to estimate their survival trajectories. The rule-based analy- 

sis is executed punctually and with a short-term aggregation 

(daily), whereas the data-driven analysis is performed over a 

more extended period to investigate trajectories and more re- 

silient changes. 

5 Data summary and aggregation: this task can be triggered peri- 

odically by the CSA, or on-demand by the DSA. It elaborates on 

b3/b4’s outputs and organizes the data in a JSON format ready 

to be displayed by the DSA. 

The code of the proposed architecture can be found in the foot- 

ote. 2 

. Methods 

Within the Clinical Support Agent, we propose the inclusion of 

he Cohort and Trajectory Analysis (CTA) models, whose purpose 

s to provide decision-support information for clinicians regarding 

isks, symptoms, and disease associations. This section describes 

he statistical models of the survival analysis architecture previ- 

usly presented. 
2 https://github.com/tanoManzo/persist 
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t  
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4 
Patient trajectories describe the probability over time that a 

articular event, such as death or disease recurrence, occurs (i.e., 

atient’s evolution from the diagnosis of the disease). On the other 

and, cohorts aim at grouping patients with similar disease pro- 

ression, pre-and post-treatment, and other covariates. Through 

he analysis of trajectories and cohorts, it is possible to identify 

nd quantify associations between symptoms and events, enabling 

he detection of high-risk markers for detrimental treatment ef- 

ects, subsequent cancer disease, and metastatic cancer disease. 

.1. Survival models 

Given t , the time from the beginning of the observation period, 

e denote S(t) as the survival function. We assume that at the be- 

inning of the study, all the patients are alive, S(t = 0) = 1 . We as-

ume that the survival function is a monotonically non-increasing 

unction, S(u ) < S(t) , ∀ u < t , therefore, S(t → ∞ ) = 0 . Given T ,

hen an event occurs (e.g., check-up time), the probability that the 

atient is alive after T is P (t > T ) , which corresponds to S(t) for

 ∈ [ 0 , ∞ ) . On the other hand, the probability that the patient did 

ot survive after T is 1 − P (t > T ) or P (t ≤ T ) . 

The hazard function, denoted λ, is the event rate at time t con- 

itional on survival until time t . The hazard function describes the 

robability that the patients will not survive for an additional time 

t after surviving at t: 

(t) = lim 

dt→ 0 

P r(t ≤ T < t + dt) 

dt S(t) 
= −S ′ (t) 

S(t) 
, (1) 

here S ′ (t) is the survival event density function [33] . 

Given a dataset with patients observing time and event out- 

ome, we can estimate the survival curve through the Kaplan- 

eier Estimator [34] : 

(t) = 

t ∏ 

i =0 

1 − P r(T = i, t ≥i ) = 

t ∏ 

i =0 

1 − d i 
n i 

. (2)

With d i the number of patients that had an event at time i , and

 i the number of patients that survived at time i . Please note that 

atient data are not collected continuously but at discrete inter- 

als. 

The Kaplan-Meier (KM) estimates the survival function from 

ifetime data. KM estimates patients’ trajectories such as cancer 

elapse, recovery rates, and mental disorders based on the avail- 

ble data. Covariates group population in the KM estimator. For in- 

tance, KM outputs trajectories of breast cancer patients grouped 

y cancer stage or treatments. For survival analysis (i.e., to evalu- 

te the probability of death), KM requires the observation time T 

nd the event —death or alive. The KM formula is a non-parametric 

tatistic obtained with the chain rule for random variables. Indeed, 

he KM estimator is evaluated considering that the probability is 

roken up into the product of probabilities during specific inter- 

als. Moreover, KM takes into account censored data — any data 

or which we do not know the exact event time (e.g., patients 

ithdraw from the study or die by other causes). Given its non- 

arametric nature, KM is limited to estimate survival adjusted for 

ovariates. Indeed, KM considers only the observation time and the 

vent, neglecting other covariates. Parametric models such as Cox 

roportional Hazard estimate covariates-adjusted survival. 

The Cox Proportional Hazard (CPH) model estimates individ- 

al trajectories leveraging on patients’ covariates [35] . CPH en- 

bles personalized patient treatments evaluating the hazard func- 

ion previously introduced —the immediate death risk probabil- 

ty for a patient that survived at time t . In this work, we de- 

ne the factor risk as a linear combination of the patient’s fea- 

ures X = (x 1 , x 2 , . . . , x n ) and the respective features’ weights � =
θ , θ , . . . , θn ) , with n the number of patient. In the CPH model,
1 2 

https://github.com/tanoManzo/persist
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ovariates are multiplicatively related to the hazard, which is as- 

umed to respond exponentially; each unit increase in X results 

n proportional scaling of the hazard (here the name Proportional 

azard ): 

(t| X ) = λ0 e 
(θ1 x 1 ,θ2 x 2 , ... ,θn x n ) = λ0 e ( 

∑ n 
i =0 θi x i ) = λ0 e 

(�T X ) , (3) 

here t is the observation period and λ0 is the baseline risk (i.e., 

escribing how the risk of event changes over time at baseline 

evels of covariates). Please notice that the survival function 2 is 

trictly related to the hazard function, as follows: 

(t) = −S ′ (t) 

S(t) 
(4) 

nd vice versa by integrating both members, 

(t) = e −
∫ t 

0 λ(u ) du , (5) 

The CPH model assumes that the baseline hazard function 

0 follows a given function and that the covariates are time- 

ndependent. Those limitations are overcome using data-driven AI 

pproaches such as Artificial Neural Networks and Clustering pre- 

ented below. 

.2. Risk-markers detection 

Kaplan-Meier and Cox Proportional Hazard models enable CTA 

o build comprehensive trajectories to support clinical decisions. 

omplementary to these features, we propose incorporating su- 

ervised and unsupervised machine learning approaches to help 

nderstand individual trajectories based on similar healthcare 

ecords. 

The first task is to classify patients’ status based on time- 

ependent covariates, such as cancer stage, ECOG, and treatments. 

his task uses binary estimators such as Support Vector Machine 

SVM) and Random Forest (RF). Those models handle continuous 

nd categorical features, outliers, and missing data. In particular, 

VM and RF provide explanatory outcomes and help identify the 

ecision boundary (i.e., covariates importance). We use deep learn- 

ng models based on Artificial Neural Networks, which capture 

omplex feature relationships (e.g., cancer type and Nottingham 

rognostic Index) and improve classification outcomes (i.e., output 

he label group to which the patient belongs). 

While classification methods investigate event-covariates rela- 

ionships, clustering approaches identify patients’ cohorts and in- 

eractions among those groups. Such interactions are the covari- 

tes enabling patients to change groups or, in other words, reveal 

isk-makers. Therefore, detecting the risk-markers means detecting 

ovariates that allow patients to pass from low to high-risk predic- 

ion and vice versa (i.e., to change cluster). 

To segregate patients with similar traits and assign them 

nto clusters, we use K-Means, Gaussian Mixture Models, and 

rajectory-based clustering algorithms. Using clustering, the CTA 

nds and labels (e.g., low-high risks) similar trajectories without 

re-defined assumptions about their patient’s characteristics (i.e., 

nsupervised learning). Such risk-markers are withdrawn by API, 

hich makes them available for the CSA. 

. Results 

In this section, we evaluate the performance of the Survival 

nalysis module previously presented for the personalized classifi- 

ation of trajectory patterns, cohorts, and high-risk markers detec- 

ion. We first introduce the PERSIST breast cancer dataset stored 

n the Big Data platform to evaluate our models. Then, we explore 

he trajectory based on the KM and CPH models. Finally, we de- 

ict the high-risk markers (i.e., covariates importance) and cohort 

he patients in several risk levels based on their trajectories and 
5 
HRs. Please notice that, in the following experiments, we define 

he survivor function S(t) as the survival probability of the pa- 

ient(s) over time (i.e., years). S(t) can be visualized on a partic- 

lar sub-population (e.g., breast cancer patients that received spe- 

ific treatments). Moreover, as shown at the end of this section, 

(t) outcomes play a crucial role in detecting the patient risk level 

nd cohorts. The Survival Analysis module generates aggregated in- 

ormation, data visualization, and risk alerts to the DSA crucial for 

linicians as decision support for diagnosis, treatments, and prog- 

osis. 

.1. Dataset and data wrangling 

We use external and internal breast cancer datasets to eval- 

ate the Survival Analysis module. As a third-party dataset, we 

se METABRIC (Molecular Taxonomy of Breast Cancer International 

ataset Consortium [7] ). The METABRIC dataset consists of gene 

xpression data and clinical features for 2,498 patients labeled as 

ollows: 33 . 34% “Living”, 25 . 74% “Died due to breast cancer”, 19 . 80% 

Died due to other causes”, and the rest “not observed”. 

As an internal dataset, the Big Data Platform in the PERSIST ar- 

hitecture stores patient data from four European hospitals: Centre 

ospitalier Universitaire De Liege (CHU de Liége, Belgium), Uni- 

erzitetni Klinicni Center Maribor (UKCM, Slovenia), Latvijas Uni- 

ersitate (LU, Latvia), and National Patients Organisation (NPO, Bul- 

aria). The heterogeneity of this dataset is an additional challenge, 

s the coding systems differ between hospitals and within the hos- 

itals themselves. For instance, hospitals may switch from the cod- 

ng system ICD-9 to a newer version without updating retrospec- 

ive data. Therefore, we restrict the target cohort to CHU de Liége 

atients in order to enhance data homogeneity as a first step. To 

chieve this goal, we design two handlers for our Dataset Builder 

odule . The first one selects patients of a chosen hospital, while 

he second one selects breast cancer patients. The resulting CHU de 

iége breast cancer dataset comprises 2085 patients, of which 399 

ied. All patients were born between 1915 and 1991. The dataset 

ncludes 45 different features such as patient age, ECOG status, 

ER2 levels, tumor stage, and treatments. 

Multiple missing values for features such as BMI, ECOG, and 

ER2 were encountered and addressed as follows. Features with 

ore than 70% of the missing values were erased since dras- 

ically reducing the sample population —poor estimator perfor- 

ance. Features with less than 70% of missing values were treated 

ith median based on the feature type. Age and BMI were missing 

or less than 30% of the patients. Looking at the result of Cox Pro- 

ortional Hazard, these two features have a very low impact on the 

urvival probability of the patients. Concerning ECOG and HER2, 

nly 8% respectively 17% of the values were missing. Therefore we 

ecided to fill the missing values of these four features with their 

espective median. Please notice that even if filling missing values 

ith median does not affect the distribution of the feature, it can 

ntroduce biases. Therefore, in most cases, we prefer leaving the 

alue to “none”, indicating the algorithm of a missing value. 

.2. Survival analysis 

We present the main results of our data analysis outputting the 

urvival patients’ trajectories. We start analyzing the dataset us- 

ng the KM estimator. Figure 2 shows the impact of treatments on 

he survival probability for breast cancer patients. Surgeries such 

s mastectomy or lymphadenectomy have a higher probability of 

urviving longer than other treatments. On the other hand, sur- 

ival probability is dropping faster for patients treated with injec- 

ions such as antibiotics or chemotherapeutics. According to the es- 

imation, patients following these treatments have around 80% of 

hances to survive at least ten years. Please notice that such results 
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Fig. 2. Kaplan-Meier survival probability estimation of the breast cancer population 

in PERSIST grouped by treatments. 

Fig. 3. Kaplan-Meier survival probability estimation of the breast cancer population 

in PERSIST grouped by tumor size. 
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Fig. 4. Kaplan-Meier survival probability estimation of the breast cancer population 

in PERSIST grouped by cancerous lymph node presence. 

Fig. 5. Kaplan-Meier survival probability estimation of the breast cancer population 

in PERSIST grouped by metastases presence. 
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ust be consulted with other covariates. Indeed, even if a muta- 

ion of the BRCA1 gene increases the risk for breast cancer, not all 

omen carrying the BRCA1 mutation develop cancer [36] . 

In the PERSIST dataset, the cancer stage is categorized using the 

NM staging, both clinical and pathological. TNM is based on tu- 

or size (T), cancer cells spread in lymph nodes (N), and presence 

f metastases (M). We estimate the impact of these three compo- 

ents on survival probability using KM model. Please notice that 

e used clinical TNM for missing pathological TNM values. 

Figure 3 shows the survival probability for patients grouped 

y tumor size, which strongly affects the survival probability. In- 

eed, patients with small tumor size (T1) or not assessable tumors 

T0) are more likely to survive longer given the small size of the 

ass. As the tumor size increases (e.g. T4) the survival probabil- 

ty decreases rapidly. According to the estimations, middle size tu- 

or (T2-T3) has almost the same probability of surviving 6 years. 

lease notice that patients were given additional cancer treatment 

o lower the relapse risk —adjuvant. 

The presence of cancer in lymph nodes highlights the relation 

etween the number of lymph node-positive breast cancer and the 

ecreasing survival probability. Figure 4 shows this relationship by 

lotting the KM trajectories grouped by node-positive breast can- 

er (N). Patients with node-negative breast cancer (N0) are likely 

o survive longer than those with positive nodes. On the one hand, 

he survival probability decreases quickly after 6 years for patients 

resenting several node-positive breast cancer (e.g N2). 
6 
Finally, Fig. 5 shows how metastasis strongly decreases the pa- 

ient survival probability. In the PERSIST datasets, patients at diag- 

osis without metastases (M0) or missing metastases information 

MX) have about 90% chance of survival for ten years and more, 

gainst 45% of patients with one metastasis (M1). 

Kaplan-Meier enables data exploration in order to gain insights 

nto the breast cancer population and their estimated trajectories. 

owever, given its non-parameter statistical property, covariates 

nly indirectly affect the shown trajectories through the observed 

vent (i.e., patient alive or death). To overcome such limitations, 

e use Cox proportional hazard for highlighting feature contribu- 

ions to the estimated survival probability. 

.3. High-risk markers detection 

We describe the detection of high-risk markers for the given 

areer population. Such markers are used as decision support for 

linicians. To detect and capture the non-linear correlation of such 

igh-risk markers, we use AI-based models. In particular, unsuper- 

ised machine learning models for detecting high-risk trajectories 

nd supervised machine learning models for the survival classifica- 

ion task. In the following, we use the CPH model to estimate the 

eature importance. Figure 6 shows the influence of the different 

eatures. Positive values mean a negative impact on the survival 

robability. In contrast, negative values mean a positive impact on 

urvival probability. Each covariate is within the confidence inter- 

al denoting the accuracy of the system for specific features. For 
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Fig. 6. Cox Proportional Hazard based on the survival analysis of the breast cancer population in PERSIST. 

Fig. 7. CPH based on a 50 patients in PERSIST. 
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nstance, given the slight interval, the system is confident to high- 

ight the patient’s age as a negative contribution to the patient’s 

urvival probability —the older the patients, the greater the impact 

n their survival trajectory. The metastases presence is the feature 

ith the most negative impact on the survival probability. The tu- 

or size is the second feature that has the greatest impact. On the 

ontrary, surgery such as unilateral mastectomy has a positive im- 

act on the survival probability. We also notice that the absence 

f node-positive breast cancer enhances the survival probability. 

he CPH shows the contribution of each covariate to the patient 

urvival probability and helps to estimate covariates-adjusted tra- 

ectories. Such trajectories can be grouped denoting patients’ risk 

evels. Therefore, the high-risk markers can be defined as the co- 

ariates that move the patients’ trajectories from a low-risk to a 

igher-risk cluster. 

We aim to enable decision support by categorizing patients ac- 

ording to their risk level. To this end, Fig. 7 shows the K-means 

odel performing the cohort analysis based on the trajectory of 

atients from the PERSIST dataset. This allowed us to generate 

ig. 7 a, which shows the results obtained for the 50 randomly se- 

ected patients. 
7 
Each survival function in Fig. 7 a represents the probability that 

 patient will survive a given number of years. We applied a k- 

eans clustering algorithm on the sample population to obtain 

hree distinct clusters: high-risk, medium-risk, and low-risk. On 

he one hand, patients in the low-risk area have shown a high sur- 

ival probability. On the other hand, patients in the high-risk area 

ave shown a low survival probability. The K-means model clusters 

he patient trajectory in one of the above-mentioned areas defining 

he patient risk. The trajectory, based on the Cox Proportional Haz- 

rd model, takes into account the relationship among the patient 

ovariates and the relationship between patients. Please notice that 

ovariates’ importance and divergence are both significantly affect- 

ng patients’ cluster membership. 

Figure 7 b, shows that the algorithm identified three clusters of 

atients. In red, the high-risk patients with the lowest 12-year sur- 

ival probability. In orange, patients with a medium 12-year sur- 

ival probability of survival and a moderate risk. In green, pa- 

ients with a very high probability of 12-year survival and there- 

ore present a low risk. However, we believe that this model is 

nly marginally representative of the level of risk incurred by the 

atient over the years since only one value of the time line (in this 
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Fig. 8. Cox Proportional Hazard survival function clustered in 3 risk groups for each years based on a 15 patients sample of the breast cancer population in PERSIST. 

Fig. 9. F-score for survival classification using Logistic Regression, SVM, Decision Tree, and Neural Networks. 
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ase, the last one) is taken into account. If we look at all the points

t, for instance, 2-year survival, most of the curves are very close 

aking it difficult to identify which patient is at risk and which is 

ot. 

Figure 8 shows how the algorithm identifies the three clusters 

i.e., risk-level) based on patients’ trajectories. Please notice that 

or the sake of clarity, in Fig. 8 we reduced the number of trajec-

ories (from 50 to 15) and removed the interpolation (from lines 

o points). To evaluate patient trajectory risk, we adopt the unsu- 

ervised Gaussian model introduced in 2 . The model takes the pa- 

ients trajectories as input and shapes the risk level based on the 

agnitude of the derivatives. We train the model with three com- 

onents, which correspond to the three risk levels, and with full 

ovariance (i.e., Cholesky decomposition of the precision matrices 

f each mixture component). 

In red, the high-risk patients with the lowest 12-year survival 

robability. In orange, patients with a medium 12-year survival 

robability and a moderate risk. In green, patients with a very high 

robability of 12-year survival present a low risk. 
8 
In Fig. 8 , from 1 to 4 years of prediction, the system fails to

plit the risk level given the high correspondence between the tra- 

ectories. However, as soon as the trajectories approach low prob- 

bilities (see years from 5 to 12), the system identifies the three 

ain clusters (i.e., low, moderate, and high risks). 

We adopted the supervised machine learning algorithms pre- 

ented in Section 2 for the survival classification task. The goal is 

o classify patients’ trajectories as a function of patient vital status 

alive/dead). All the models have been trained with 60% , validated 

ith 20% (10-fold cross-validation), and tested with 20% of the 

atasets. Please notice that for the Logistic Regression, no penalty 

s added; for the SVM a support vector classifier, a linear kernel is 

dded; for the Decision Tree, no max depth is applied; finally, for 

N, a multi-layer perceptron with two hidden layers is added. 

Figure 9 depicts the accuracy metric F-score for the survival 

lassification task, defining patients’ risk over the number of pa- 

ients used for the training phase. We see that the classifiers en- 

ance their accuracy when the number of patients in training set 

ncreases. Particularly for the Neural Network model, which re- 



G. Manzo, Y. Pannatier, P. Duflot et al. Computer Methods and Programs in Biomedicine 231 (2023) 107373 

q

s

e

6

6

o

i

f

m

f

t

s

a

d

i

a

d

a

c

i

v

s

e

s

c

a

v

t

T

s

b

b

i

s

6

c

S

i

s

e

c

c

q

s

t

c

l

c

e

A

m

i

b

a

s

n

t

6

m

c

f

c

s

a

l

t

i

s

c

e

t

r

a

t

p

t

d

r

m

7

p
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uires many examples to train its neurons. Models such as Deci- 

ion Tree and Logistic Regression provide the best accuracy level 

ven for a few train examples. 

. Discussion 

.1. PERSIST architecture and CSA 

The presented architecture aims at creating an open and inter- 

perable ecosystem to improve the care of cancer survivors. The 

mpact of such architecture can (i) boost self-efficacy and satis- 

action with care, reducing psychological stress for better manage- 

ent of the consequences of the cancer treatment; (ii) increase ef- 

ectiveness in cancer treatment and follow-up by providing predic- 

ion models from Big Data that support optimal treatment deci- 

ions; and (iii) advance the efficacy of management, intervention, 

nd prevention in order to timely treat side effects and secondary 

iseases. 

In the presented architecture, the Clinical Support Agent, with 

ts primary module Cohort and Trajectory , plays a crucial role as 

 support decision tool for clinicians. Predictions are exploited in 

iagnosis, treatments, and prognosis. For the presented scenario 

nd beyond, the trajectories help stratify patients, highlighting pe- 

uliar covariates. The predictions support treatment decisions; for 

nstance, we noticed that chemotherapy could reduce patient sur- 

ival probability over time for patients with an advanced cancer 

tage. Finally, for prognosis, patients’ trajectories help prevent side 

ffects and secondary diseases (e.g., stress, burnout, and depres- 

ion). The Clinical Support Agent must be part of the PERSIST ar- 

hitecture to leverage the other modules for data collection, man- 

gement, and visualization. But the Clinical Support Agent pro- 

ides meaning to such data, using state-of-the-art models to es- 

imate and predict trajectories, which could enhance patient care. 

he trajectory analysis results performed on the cancer survivors 

how different pathways for feeding and enriching the knowledge- 

ases of clinical decision support systems. The prediction models 

uilt on retrospective data gathered from patients provide precious 

nformation, orienting the most appropriate recommendations for 

urvivors. 

.2. Survivor analysis via tajectories 

The probabilistic foundations of the estimators provide suffi- 

ient certainty about the potential outcomes of a given patient. 

pecifically, using the analysis with the Kaplan-Meier approach, 

t is possible to estimate survival probability over time with re- 

pect to features such as the type of treatment. There are appar- 

nt trajectory differences, such as axillary lymph node excision or 

hemotherapeutic injection. These differences may lead to different 

linical and lifestyle recommendations to maintain or improve the 

uality of life after these treatments. Depending on the survivor- 

hip projections (e.g., number of years) and the type of treatment, 

he patient’s expectations and the possibilities of post-therapeutic 

are may significantly vary. 

We can summarize the results of the survivor analysis as fol- 

ows: 

• Treatments. We have shown how the survival probability is im- 

pacted by previous treatments for breast cancer. Higher survival 

probability is linked to mastectomy, and lymphadenectomy, 

among other surgeries, compared to treatments like chemother- 

apeutics. These results, however, need to be analyzed carefully, 

as covariates reveal additional information for better informing 

physicians(e.g., genetic mutations). 

• Tumor size. Survival probability is strongly impacted by tumor 

size. As expected, this probability decreases for larger sizes of 
9 
the tumor mass, although for middle-sized ones, the number 

of survival years is rather similar. 

• Lymph nodes. Presence of cancer in lymph nodes is related to 

a decrease in survival probability over time, especially after six 

years. However, before this period, it is generally too early to 

discriminate among multiple positive cancerous lymph nodes 

(N1-N3). 

• Metastases. Compared to no metastases or missing information, 

the detection of metastases has a clear negative impact on sur- 

vival probability over time, especially after four years. 

These trajectory prediction outcomes can allow the clinical de- 

ision support system to base its action plans on actual data. For 

xample, in the specific case of the PERSIST project, the patient 

pp allows monitoring survivors while considering relevant infor- 

ation, such as cancer stage (TNM: tumor size, cancer cells spread 

n lymph nodes, and metastases). Furthermore, these analyses can 

e used separately or combined to elaborate (remote) care plans 

nd identify groups of patients with similar conditions and, thus, 

imilar needs. An advantage of the PERSIST approach is the combi- 

ation of different features at scale, allowing patients to be moni- 

ored. 

.3. High-risk markers detection 

We have also shown that detecting high-risk markers is of pri- 

al importance, as it allows presenting the impact of individual 

ovariates on survival probability. It helps identify risk levels in- 

ormed on real data. This has proven to be a scalable model that 

an be applied to large-size patient cohorts serving as the corner- 

tone for clinical digital solutions. Action plans for high, moderate, 

nd low-risk patients, combined with knowledge about their evo- 

ution and patient-reported outcomes, can substantially help con- 

ribute to better support for cancer survivorship. However, as seen 

n the clustering results, the risk levels are harder to identify with 

ufficient accuracy early in the timeline. In this respect, the data 

ollection behaviors described in the architecture of the PERSIST 

cosystem play a fundamental role in acquiring relevant informa- 

ion for the training and enhancement of risk classification. The 

isk marker analysis results can be summarised as follows: 

• Feature influence. Results show that age has a strong negative 

contribution to survival probability. Metastases and tumor size 

have been shown to have the largest impact on survival, while 

the absence of node-positive breast cancer, or surgeries such as 

mastectomies, have a positive impact. 

• Risk level clustering. We have shown how patients can be 

grouped into three risk levels related to the probability of sur- 

vival time and covariates. The results also show the difficulty of 

separating these clusters for the first four years after diagnosis, 

given that at that point, the trajectories overlap to a consider- 

able degree. 

In sum, the results of this study provide detailed information 

bout patient trajectories and prediction of survival with respect 

o several treatments, cancer characteristics, and other relevant as- 

ects for survivorship support. Given the importance of having 

hese outcomes distilled for clinicians, it will be necessary to con- 

uct further studies to show the clinical appropriateness of these 

esults. This would then be translated into personalized recom- 

endations and adapted treatments for patients. 

. Conclusions 

Modeling patient trajectories has the potential to radically im- 

rove personalized and data-centric support for clinical decisions, 

specially in highly-prevalent diseases such as breast cancer. More- 

ver, as we have shown, these trajectories help describe survival 
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robability with respect to different patient treatments, tumor 

haracteristics, or lymph node presence, among others. More pre- 

isely, we have provided a detailed description of our survival 

odels, relying on estimates such as Kaplan-Meier and Cox Pro- 

ortional Hazard, combined with supervised and unsupervised ma- 

hine learning approaches. The evaluation of these models, using 

he METABRIC and the PERSIST datasets, has shown the effective- 

ess and appropriateness of our techniques and their potential for 

linical decision support. 

.1. Limitations 

Although the patient trajectory analysis presented in this work 

rovides several indicators with a clear potential for enhancing 

linical decision support, certain limitations must be considered. 

irst, the algorithms may be sensitive to the type of patients and 

onditions in the training datasets. Algorithmic bias should then be 

aken into account, given that different populations may have dif- 

erent outcomes. These differences are not only due to the preva- 

ence of cancer-specific characteristics but also to demographics 

e.g., age differences among countries), region-specific lifestyles, 

uality of healthcare services, etc. In this study, we focused on 

he existing METABRIC dataset and our newly collected PERSIST 

ataset, which includes data from 4 different countries. However, 

t was limited to CHU de Liége for this work. Expanding the study 

o other retrospective databases would enhance the generalizabil- 

ty of results and reduce the impact of certain types of bias. Re- 

arding classifying patients according to risk groups, we have re- 

orted limited accuracy in short periods. Clusters can be identified 

nly after about 5–6 years, which would need to be analyzed in 

erms of clinical usefulness. Further studies would be required to 

etermine how early this classification would need to be to im- 

act clinical decisions or treatment changes. Another limitation is 

inked to survival as the main prediction target. However, other in- 

icators have special relevance for survivorship support, such as 

dherence to post-operatory treatment or other home-based treat- 

ents known to have a high risk of low compliance. Additional 

ata would be required to train models on trajectories that include 

his type of information and may lead to discovering new patient 

lusters based on lack-of-adherence risk. Moreover, this study does 

ot yet include emotional and mental-health aspects, which also 

rofoundly impact the quality of life of cancer survivors. In the 

ontext of the PERSIST project, the patient App described in the ar- 

hitecture currently collects some of this information via question- 

aires and chatbot interactions. However, the data gathered stills 

eeds to be fully acquired and processed. 

.2. Future work 

Although we have focused mainly on survival analysis and high- 

isk markers detection in the evaluation performed in this work, 

t also provides the foundation for generating further data-driven 

nsights. In future work, we plan to continue exploring prediction 

odels related to survival and adherence to cancer survivorship 

reatments, emotional outcomes, mental-health & depression, and 

elapse episodes, among others. Another important line of research 

ncludes the extension of the modular architecture to incorporate 

emi-automatic interactions through the patient module to foster 

nd potentially induce positive behavior tailored to the predicted 

rajectory of the patient. Moreover, we intend to include trajectory- 

ased persuasion strategies so that clinicians can use data-driven 

nsights to support future interventions on patient cohorts having 

imilar characteristics. 

Finally, the PERSIST clinical trial will acquire prospective data 

rom cancer survivors in four European countries in addition to 

he previous retrospective data. The complementarity of these new 
10 
atasets will further enrich the algorithms presented in this work 

nd constitute more robust models for trajectory analysis, cluster- 

ng, and prediction. 
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