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Abstract: The explainability of connectionist models is nowadays an ongoing research issue. Before
the advent of deep learning, propositional rules were generated from Multi Layer Perceptrons
(MLPs) to explain how they classify data. This type of explanation technique is much less prevalent
with ensembles of MLPs and deep models, such as Convolutional Neural Networks (CNNs). Our
main contribution is the transfer of CNN feature maps to ensembles of DIMLP networks, which are
translatable into propositional rules. We carried out three series of experiments; in the first, we applied
DIMLP ensembles to a Covid dataset related to diagnosis from symptoms to show that the generated
propositional rules provided intuitive explanations of DIMLP classifications. Then, our purpose was
to compare rule extraction from DIMLP ensembles to other techniques using cross-validation. On
four classification problems with over 10,000 samples, the rules we extracted provided the highest
average predictive accuracy and fidelity. Finally, for the melanoma diagnostic problem, the average
predictive accuracy of CNNs was 84.5% and the average fidelity of the top-level generated rules
was 95.5%. The propositional rules generated from the CNNs were mapped at the input layer by
squares in which the relevant data for the classifications resided. These squares represented regions
of attention determining the final classification, with the rules providing logical reasoning.

Keywords: ensembles; bagging; arcing; model explanation; rule extraction; convolutional neural
network

1. Introduction

Deep neural networks (DNNs) are at the core of the considerable progress achieved
recently. Nevertheless, the explainability of connectionist models is nowadays an ongoing
research issue, because in the long run, the acceptance of these models will depend on it.
DNN-based applications raise ethical and juridical barriers that restrain their acceptance by
society. Their usefulness is frequently overshadowed by the impossibility to explain their
decisions. Understanding the knowledge embedded within DNNs would help demystify
Artificial Intelligence (AI) and enhance user confidence in these tools. Explainable AI (XAI)
consists of AI methods that aim to explain why or how a model generates its results.

The capabilities of DNNs make them extremely useful for a wide variety of tasks. For
example, critical systems that rely on autonomous decision-making mechanisms, such as
automatic medical diagnosis, are difficult to certify because they cannot be tested in all
possible circumstances and contexts. The ability to explain system decisions in a holistic
manner would greatly facilitate the task of validating and certifying these systems for
critical activities. Part of the current scepticism about intelligent autonomous systems is
their inability to interact with humans. Transparent systems that can interact with the user
and justify their actions would probably be much more welcome.

Interpretability and explainability are often used synonymously in the literature [1].
Furthermore, a mathematical definition of interpretability has not yet been formulated [1].
Namatevs et al. defined interpretability as follows: “Interpretability means the ability for a
human to understand and trust the decision of the deep learning model’s results” [1]. A
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good explanation is interpretable and faithful [2], with faithfulness involving an accurate
characterization of the behavior of a model. As a consequence, Namatevs et al. defined
explainability as follows: “Explainability means the ability by which a human can justify the
cause of the explanatory rule of the DL model’s results” [1].

Data are said to be tabular if it is possible to organize it in tables, i.e., in rows and
columns where each type of information is always placed in the same place. The images are
not tabular, because the same object could be in several different places. For tabular data,
DNNs do not provide a clear benefit over well-established Machine Learning (ML) models,
such as Multi Layer Perceptrons (MLPs), Support Vector Machines (SVMs), an ensemble
of models, etc. A number of scholars attempted to explain the knowledge incorporated
in MLPs and SVMs by propositional rules. Andrews et al. presented a comprehensive
overview of rule extraction techniques to explain neural network (NN) responses [3]. For
SVMs, a review of many explainability techniques was proposed in [4].

Models combined in an ensemble are often more accurate than a single model. Several
learning methods for ensembles were proposed, such as bagging [5] and boosting [6].
However, even an MLP translatable into propositional rules loses its explainability when
combined in an ensemble. Recently, a large number of XAI approaches have been intro-
duced for DNNs, with the number of reviews constantly increasing [7]. Comprehensive
overviews of XAI methods were presented in [8–10].

In this work, we propose a rule extraction technique applied to the various layers
of a CNN. In that way, we determine the inference process that leads to classifications.
Specifically, propositional rules are produced by transferring CNN feature maps to the
Discretized Interpretable Multi Layer Perceptron (DIMLP) [11–14]. For this last model, the
key idea of rule extraction is the identification of discriminative hyperplanes. In a DIMLP,
each neuron in the first hidden layer receives a connection from a single input neuron. Thus,
hyperplanes are not oblique but parallel to the axis of the input variables. The hyperplanes
discriminate different classes based on the values of the weights after the first hidden layer.
As a result, the input space is split into hyper-rectangles representing propositional rules.
The production of rulesets is carried out by a greedy algorithm that determines whether
hyperplanes are discriminative or not. For more details see [13].

After the training phase of a CNN, each feature map is used to train a DIMLP network.
Finally, the outputs of these DIMLPs make it possible to constitute again a new dataset
which is learned by a DIMLP ensemble. Therefore, at the low level we have many DIMLPs
that learn CNN feature maps and at the top level lies a DIMLP ensemble that aggregates
the DIMLP classifications obtained at a lower level. The rule extraction method is carried
out from the DIMLPs in two steps. First, top-level rule extraction generates propositional
rules that involve rule antecedents related to the outputs of low-level DIMLPs. Then, from
the high-level rules, we generate low-level rules, with rule antecedents related to the CNN
feature maps. In other words, we accomplish transfer learning of CNN feature maps to
simpler models, such as DIMLPs. Thus, we do not explain the inference mechanism of a
CNN, but rather the one of many DIMLPs in an ensemble. Our approach is viable, provided
that our simplified model can be as accurate as the original CNN.

We performed three series of experiments. In the first, we applied DIMLP ensem-
bles to a Covid dataset related to diagnosis from symptoms, to show how the generated
propositional rules provide intuitive explanations of DIMLP classifications. Then, our
purpose was to compare rule extraction from DIMLP ensembles to other techniques by
cross-validation. On four classification problems with over 10,000 samples, the rules we
extracted provided the highest average predictive accuracy. Finally, we applied transfer
learning of CNN feature maps to DIMLP ensembles. CNNs were trained on images of
melanoma and DIMLPs were as accurate as CNNs. The generated rules explaining DIMLP
classifications were illustrated with several examples.
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1.1. Related Work

Propositional rules include two parts: one or more rule antecedents and a conclusion.
A rule antecedent Ai is formally defined as ai < ti, or ai ≥ ti; with ai an input variable and
ti a constant. Then, a propositional rule with k antecedents is: “if A1 and . . . and Ak then
Conclusion”. In the context of data classification, “Conclusion” is a class. Golea showed
that the explainability problem of MLPs by means of propositional rules is NP-hard [15].
Since Saito and Nakano’s early work on single MLPs [16], only a few authors tackled rule
extraction from NN ensembles.

1.1.1. Rule Extraction from Ensembles of NNs

An algorithm for learning rules from ensembles of NNs was presented in [17]. In
particular, NNs were used to generate additional data for rule learning. Additionally,
continuous attributes were always discretized. The REFNE algorithm (Rule Extraction from
NN Ensemble) was presented in [18]. With this approach, a trained ensemble produced
supplementary samples and then generated propositional rules. Furthermore, attributes
were discretized during rule extraction and it also used particular fidelity evaluation
mechanisms. Finally, rules were limited to only three antecedents. An ensemble of simple
Perceptrons was presented in [19]. By discretizing the inputs, propositional rules were
produced from the oblique hyperplanes defined by the Perceptrons. With C4.5Rule-PANE,
the C4.5 Decision Tree (DT) induction algorithm [20] builds a ruleset that imitated the
inference process of a NN ensemble [21]. As in REFNE, additional instances were generated
from the ensemble and rules were extracted from all those instances. In [22], a genetic
programming approach was applied to derive rules from ensembles of 20 NNs. Rule
extraction from ensembles was considered an optimization problem in which a trade-off
between accuracy and comprehensibility is crucial. A rule extraction technique for a limited
number of MLPs in an ensemble was introduced in [23,24]. Here, rule extraction was based
on the Re-RX algorithm [25]. More recently, DIMLP ensembles were trained by optimizing
their diversity [26], with rule extraction achieved for every single network in the ensemble.
Then, for a given sample the rule that was chosen was the one with the highest confidence
score. Finally, an algorithm named RE-E-NNES (Rule Extraction with Ensemble of NN
Ensembles) used the C4.5 algorithm to extract rulesets from MLP ensembles trained by a
boosting algorithm (NNBOOST), with at most ten MLPs [27]. RE-E-NNES generated rules
from the first MLP, then with the second MLP these rules were refined and so on with the
other MLPs.

A drawback of the rule extraction techniques presented in [17–19] is the discretization
of continuous attributes, which need not be accomplished with DIMLP ensembles. Fur-
thermore, in [18], rules were limited to three antecedents. With DIMLPs, there are no such
limitations. In [19], the generated rules have linear combinations of the attributes in the an-
tecedents. Thus, with a large number of variables, they are difficult to understand. For the
techniques proposed in [21,27], it was observed in another work that the simple approach
of adapting a DT to a DNN generally gives unsatisfactory results in terms of accuracy and
fidelity [28]. The work presented in [22] focused on genetic algorithms. Although the latter
represents an optimization algorithm capable of solving very complex problems, tuning the
parameters is difficult due to its large number. With DIMLP ensembles, the rule extraction
algorithm has no parameters to set. With the technique presented in [23,24], rule extraction
was only defined for small ensembles, which could be a drawback when trying to achieve
better results with large ensembles. With DIMLPs, the size of an ensemble is a parameter
that can be set for small or large ensembles, which offers good flexibility.

1.1.2. Explainability with Deep Models

Several scholars presented local methods to explain the decisions taken by CNNs.
Among these works, some have acquired a status of reference. For instance, the Local
Interpretable Model-Agnostic Explanations (LIME) is a method that produces local explanations
by fitting a transparent model around a single observation, capturing how the model
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behaves at that locality [29]. Shapley values are used in another well-established local
explanation technique called SHAP that quantifies the contribution of features to a given
model prediction [30]. In addition, Grad-CAM provides saliency maps that use the gradient
flowing into the final convolutional layer to highlight class-relevant regions in the input [31].

Frosst and Hinton proposed a particular DT that imitated the input-output associ-
ations [32]. However, the DT did not explain the network logic, clearly. Another work
proposed a DT that determined with respect to the images, which filters were activated by
the portions of the object and to what extent they contributed to the final classification [33].
The Explainable Deep Neural Network (xDNN) was proposed in [34]. Essentially, it is an
MLP that combines reasoning with respect to prototypes. Each generated rule antecedent
represents the similarity to a prototype, which can be a training sample. With DeconvNet,
strong activations were propagated backwards to determine the parts of the images that
caused the activations [35]. An optimization technique based on image priors to invert a
CNN was proposed to visualize the information represented at each layer [36]. Layer-wise
Relevance Propagation (LRP) is a technique that determines heatmaps of relevant areas
contributing to the final classification [37].

The main disadvantage of local algorithms such as LIME is their inability to grasp
a process in its entirety. SHAP is used for local or global explanations. Nevertheless, a
drawback is a computational complexity, which is exponential [38]. Furthermore, the char-
acterization of the contribution of the variables to the outcome does not allow for a precise
explanation of the reasoning of the model. For the explanation methods that generate maps
(LRP, DeconvNet, and CNN inversion), how discrimination between different classes is car-
ried out remains undetermined [2]. Note that this is also true for the relevance of variables
to the outcome (SHAP). One of the qualities of xDNN is that the generated rules express a
form of neural network reasoning with respect to the similarity of prototypes. Therefore,
for the explainability of CNNs, we prefer to generate propositional rules because classes
are precisely characterized by logical reasoning. The difference between our approach and
xDNN is that the antecedents of our rules represent the pixel values of the feature maps,
which allows us to determine the relevant pixel squares in the input images. Table 1 gives a
summary of the methods described, with their characteristics.

Table 1. Summary of representative explainability techniques in deep learning (non-exhaustive list).
From left to right are illustrated the names, the type of the method, the type of result provided by the
method and the reference.

Method Type Result Reference

LIME local relevance of features [29]

SHAP local/global relevance of features [30]

Grad-CAM map relevant image pixels [31]

DeconvNet map relevant pixels at each layer [35]

CNN inversion map relevant pixels at each layer [36]

LRP map relevant pixels at each layer [37]

DT learning CNN
input/output associations global DT predicates on relevant

pixels [32]

DT learning CNN
input/output associations global DT predicates on feature maps [33]

xDNN global Propositional rules relative to
the similarity of prototypes [34]

2. Materials and Methods

In this work, the key idea is the transfer of CNN feature maps to an explainable model,
such as DIMLP ensembles. So, we define a model based on DIMLPs with two hierarchical
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levels. At the lowest, many single DIMLPs learn the feature maps of a trained CNN. On top
of these networks, a DIMLP ensemble aggregates all the lowest level DIMLP classifications.
Rule extraction is achieved in two steps. First, propositional rules are generated from
the DIMLP ensemble at the highest level and then secondary rules are derived from the
DIMLPs that have been trained on the CNN feature maps.

2.1. MLP and DIMLP
2.1.1. MLP

MLPs are made of consecutive layers of neurons, with x(0) as a vector denoting the
input layer. For layer l + 1 (l ≥ 0), the activation values x(l+1) of the neurons are given by

x(l+1) = φ(W l x(l) + b(l)). (1)

W l is a matrix of weight parameters between two successive layers l and l + 1, b(l) is a
vector also called the bias and φ is an activation function. For φ, we use here a sigmoid
σ(x):

σ(x) =
1

1 + exp(−x)
. (2)

2.1.2. DIMLP

A Discretized Interpretable Multi Layer Perceptron is very similar to an MLP. In fact, as a
small difference, W0 is a diagonal matrix. Moreover, the activation function applied to x(1)

is a staircase function S(x). Here S(x) approximates with Θ stairs a sigmoid function:

S(x) = Amin, if x ≤ Amin; (3)

Amin represents the abscissa of the first stair. By default Amin = −5.

S(x) = Amax, if x ≥ Amax; (4)

Amax represents the abscissa of the last stair. By default Amax = 5. Between Amin and
Amax, S(x) is:

S(x) = σ(Amin +

[
Θ · x− Amin

Amax − Amin

]
(

Amax − Amin
Θ

)). (5)

For l ≥ 2, DIMLP and MLP are the same models.
In a DIMLP, for a classification problem, the input space is partitioned into hyper-

rectangles representing propositional rules [13]. The staircase activation function and the
diagonal matrix W0 allow us to determine the precise location of axis-parallel hyperplanes
representing the antecedents of the rules [13]. For each input neuron, the number of
discriminant hyperplanes is at most equal to the number of stairs in the staircase activation
function. The rule extraction algorithm first builds a decision tree with at each node a
hyperplane; when then the tree is completed, each path from the root to a leaf represents
a propositional rule. Finally, a greedy algorithm progressively removes antecedents and
rules [13]. Its computational complexity is polynomial [14]; specifically, with S samples
and V input variables it is O(S2V4).

2.2. Ensembles

The accuracy of several combined models is often higher than that provided by a single
model. Two important representative learning algorithms for ensembles are bagging [5]
and boosting [6]. They have been applied to both DTs and NNs. In this work, we use
DIMLP ensembles trained by bagging [5] and arcing [39], which is a simplified form of
boosting. Recently, DIMLP ensembles were compared to ensembles of DTs trained by
bagging and boosting [40], with DIMLPs achieving good predictive accuracy.
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Bagging and arcing are rooted in resampling methods. With p training samples,
bagging selects for each classifier p samples drawn with replacement from the original
training set. Hence, many of the generated samples may be repeated while others may be
left out. As a result, the individual models are slightly different and this proves beneficial
compared to the combined ensemble of classifiers.

With arcing, a selection probability is associated with each training sample. Before
training, all training samples are assigned the same probability (= 1/p). Then, after the
first classifier has been trained, the probability of selecting a sample from a new training set
is increased for all unlearned samples and decreased for the others. Rule extraction from
DIMLP ensembles is performed with the same algorithm applied to a single network since
an ensemble can be represented by a single DIMLP network with an additional hidden
layer [14].

2.3. Convolutional Neural Networks
2.3.1. Architecture

In CNNs, the convolution operator is fundamental. Considering two-dimensional
convolution operator applied to images, given a two-dimensional kernel wpq of size PxQ
and a data matrix of elements mab, the calculation of an element fij of a convolutional
layer is

fij = φ(
P

∑
p

Q

∑
q

wpq ·mi−p,j−q + bpq); (6)

with φ an activation function and bpq the bias. Here, for φ we use the ReLU (Rectified Linear
Unit):

ReLU(x) = Max(0, x). (7)

Another important operator in CNNs is max-pooling. It reduces the size of a matrix by
applying a “Max” operator over non-overlapping regions. For instance, if we apply the
Max-pooling operator defined with blocks of size 3× 3, with the following 3× 3 matrix the
result is a scalar equal to 9.  1 2 3

4 5 6
7 8 9


In a CNN, one typically stacks a number of convolutional and Max-pooling layers and

then stacks dense layers. The lower layers operate like feature extractors, which are then
processed by the dense layers representing an MLP.

2.3.2. Transferring Featrure Maps to DIMLPs

Let us denote D as a dataset. For each sample of D, Equation (6) puts into play a
feature map. Hence, with all the samples in D, each feature map is associated with a new
dataset ∆k; with k representing the index of the feature maps (k = 1, . . . , λ; λ is the total
number of feature maps.). Since DIMLPs are explainable models and our main purpose is
explainability, the key idea is to learn each dataset ∆k with a DIMLP network νk. For all the
feature maps of a CNN, we obtain an ensemble of DIMLPs, with each DIMLP trained on a
different dataset. Each network νk is a weak learner, but our hope is that the ensemble of
all the νk becomes a strong learner that is as accurate as a CNN. Figure 1 depicts the idea of
transferring each CNN feature map to a DIMLP network that must be trained.
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Figure 1. Transferring of a CNN feature map to a DIMLP network νk. Each 2D sample propagated in
a CNN is flattened to a 1D vector and then used to train a DIMLP. Here the network on the right is
represented by only two input neurons, but in practice, there will be many hundreds or thousands.

Once the νk networks have been trained, the question arising is how to combine their
outputs to obtain a classification. For clarity, let us define the output vector Yk

i of the DIMLP
network νk:

Yk
i = νk(δ

k
ij); (8)

Yk
i depicts the output layer vector of νk, δk

ij designates the ith sample of dataset ∆k; with
j representing the columns, since before the flattening it is a 2D feature map. Moreover, let
us define Oi as

Oi =
⋃

l

Yl
i ; (9)

Oi is a vector representing all the outputs provided by all the νk, as shown by Figure 2.
In addition, let us define γc as the components of the Oi vectors; with c = 1, . . . , µ (with
µ the number of Oi components). To summarize, for each sample of the original dataset
D used to train a CNN, we can build a new data matrix Γ representing all the Oi vectors.
Finally, Γ is used to train another explainable model, which is again a DIMLP ensemble
denoted as E.

Figure 2. An example of the creation of the Γ dataset resulting from the outputs of three DIMLPs
(νk networks). With three DIMLPs each having two output neurons, the Γ dataset has six vector
components (bottom right). As we use 128 feature maps in this work, the number of components
with two classes is 256.

The rule extraction technique presented here first generates propositional rules from E
trained with dataset Γ and then rules are produced from the lower layers with networks
νk and datasets ∆k. Specifically, the rules generated from E involve in the antecedents the
outputs Oi of the weak learners νk, which in turn represent the probabilities of each class in
a given classification problem. This is of interest to characterize the way the νk interacts to
classify data, which also represents explainability at a higher level of abstraction.

To obtain rules from the feature maps, we go backwards from the E ensemble to the νk
networks. Each rule antecedent generated from E defines a new classification problem with
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respect to a νk network and a ∆k dataset. Note that for each new classification problem,
the positive class is defined when a rule antecedent generated from E is true and negative
otherwise. As an example, suppose that from E we generate a rule with an antecedent
given as a > 0.8, meaning that the probability of a class corresponding to a certain output
neuron of a νk network is above 0.8; then, to generate the rules from a νk network we must
add two additional layers of neurons, as shown by Figure 3. Their role is to define a new
class when it is true that a > 0.8 and another when a ≤ 0.8.

In Figure 3, the first additional layer with a unique neuron detects whether the C1
activation is above threshold t1. When it occurs, neuron C′1 at the top is very close to one
after the sigmoid is applied and neuron C′2 is very close to zero. Otherwise, C′1 is close to
zero and C′2 is close to one. Likewise, it is possible to code a rule antecedent such as a ≤ t1
by different weight values of the last two layers. In this way, rules are generated from
the νk networks, with the antecedents of the rules representing the features of the CNN at
different convolution levels.

Figure 3. Encoding of a rule antecedent given as C1 > t1: on the right, a νk network with two
additional layers compared to the network on the left detects this antecedent in the first additional
layer with a single neuron whose activation is close to one, after the application of the sigmoid; then,
neuron C′1 at the top is also very close to one and neuron C′2 very close to zero.

3. Results

We performed the experiments in three parts. First, we presented a classification
problem on a COVID-19 diagnosis to illustrate examples of generated propositional rules.
In the second part, we assessed the performance of our ensemble models by cross-validation
on four classification problems with more than 10,000 samples. In the last part of the
experiments, we applied CNNs to a melanoma diagnosis problem, then we transferred the
CNN feature maps to DIMLP ensembles and finally we generated propositional rules.

Table 2 illustrates the main characteristics of several retrieved datasets from two
sources: the Machine Learning Repository at the University of California, Irvine [41]
(MLR-UCI) and the Kaggle platform.
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Table 2. Datasets used in the experiments. From left to right, columns designate: dataset name;
number of samples; number of input features; type of features (categorical, real); number of classes;
and platform.

Dataset #Samp. #Attr. Attr. Types #Class Platform

Chess 28,056 6 cat. 18 MLR-UCI
Connect4 67,557 42 cat. 3 MLR-UCI

Covid symptoms 5434 20 cat. 2 Kaggle
EEG eye state 14,980 14 real 2 MLR-UCI

Letter recognition 20,000 16 real 26 MLR-UCI
Melanoma diagnosis 3297 150,528 real 2 Kaggle

Training sets were normalized by Gaussian normalization. All DIMLP ensembles were
trained by back-propagation with default learning parameters:

• Learning parameter = 0.1;
• Momentum = 0.6;
• Flat Spot Elimination = 0.01;
• Number of stairs in the staircase activation function = 50.

Since predictive accuracy is defined as the ratio of the number of correctly classified
samples to the total number of samples in a test set [42], the Tables of the results include:

• Average predictive accuracy of the model;
• Average fidelity on the testing set, which is the degree of matching between the

generated rules and the model. Specifically, with P samples in the test set and Q
samples for which the classifications of the rules match the classifications of the model,
the fidelity is Q/P;

• Average predictive accuracy of the rules;
• Average predictive accuracy of the rules when rules and model agree. Specifically, it is

the proportion of correctly classified samples among the Q samples defined above;
• Average number of extracted rules;
• Average number of rule antecedents.

3.1. Experiments with a COVID-19 Dataset

Our aim here is to illustrate an example of the explainability of neural models with a
particular classification problem in COVID-19 detection. The total number of samples in the
used dataset is 5434, where COVID-19 positive samples were 4383 and COVID-19 negative
samples were 1051 [43]. Twenty Boolean variables representing symptoms or observations
were defined, such as absence/presence of: dry cough; fever; breathing problems; runny nose;
abroad travel; etc. DIMLP architectures were defined with two hidden layers. The default
number of neurons in the first hidden layer was equal to the number of input neurons. For
the second hidden layer, this number was defined empirically, in order to obtain a number
of connections less than or similar to the number of training samples. Consequently, the
number of neurons in the second hidden layer was set to 100. Finally, out-of-bag samples
were used to avoid the overtraining phenomenon, by applying an early-stopping technique.
Specifically, the out-of-bag set constitutes a subset of the training dataset that is not used to
fit the weight values of the NNs.

We carried out experiments based on ten repetitions of stratified 10-fold cross-validation
trials. Table 3 illustrates the results for arced ensembles of DIMLPs (DIMLP-AT) and bagged
ensembles of DIMLPs (DIMLP-BT). The average predictive accuracy obtained by DIMLP-
BT was higher than that provided by DIMLP-AT. In addition, the average complexity in
terms of the number of rules and a number of rule antecedents was quite similar for both
models. Finally, with this classification problem, the fidelity was perfect, with an average
value equal to 100%.
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Table 3. Average results obtained on the “COVID-19 Symptoms” dataset. From left to right are
presented average results on predictive accuracy, fidelity on the testing sets, the predictive accuracy
of the rules, the predictive accuracy of the rules when ensembles and rules agree, the number of rules
and the number of antecedents per rule. Standard deviations are given between brackets.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

DIMLP-AT 97.5 (0.2) 100 (0.0) 97.5 (0.2) 97.5 (0.2) 25.5 (1.1) 4.0 (0.1)
DIMLP-BT 98.1 (0.1) 100 (0.0) 98.1 (0.1) 98.1 (0.1) 26.3 (0.6) 4.1 (0.0)

Listing 1 illustrates an example of generated rules from DIMLP-BT during cross-
validation trials. The predictive accuracy of this ruleset was 99.5%, with fifteen of the
27 rules presented here. The first rule says that if a person presents fever, a dry cough and a
sore throat, then she/he is Covid positive. Rule ten means that someone who does not have
problems breathing, who does not have a sore throat, who has not travelled abroad and
who has not attended a large gathering is negative. All these rules are easy to understand
and explain the classifications of DIMLP ensembles.

Listing 1. Examples of rules generated from DIMLP-BT. Meaningful antecedents are represented in
italics. The numbers in parenthesis represent the number of samples covered in the training set, with
the rules ranked in descending order with respect to these.

Rule 1: IF Fever AND Dry_Cough AND Sore_throat THEN COVID (2551)
Rule 2: IF Abroad_travel THEN COVID (2186)
Rule 3: IF Dry_Cough AND Attended_Large_Gathering THEN COVID (1908)
Rule 4: IF Sore_throat AND Attended_Large_Gathering THEN COVID (1877)
Rule 5: IF Breathing_Problem AND Attended_Large_Gathering THEN COVID (1725)
Rule 6: IF Breathing_Problem AND Dry_Cough AND Contact_with_COVID_Patient THEN COVID (1574)
Rule 7: IF Breathing_Problem AND Dry_Cough AND Sore_throat AND Asthma THEN COVID (1141)
Rule 8: IF Sore_throat AND NOT Diabetes AND Contact_with_COVID_Patient THEN COVID (1140)
Rule 9: IF Breathing_Problem AND Fever AND Sore_throat AND NOT Asthma THEN COVID (1074)
Rule 10: IF Breathing_Problem AND Hyper_Tension AND Family_working_in_Public_Exposed_Places THEN COVID (770)
Rule 11: IF NOT Breathing_Problem AND NOT Sore_throat AND NOT Abroad_travel AND NOT Attended_Large_Gathering
THEN NEGATIVE (511)
Rule 12: IF NOT Breathing_Problem AND NOT Dry_Cough AND NOT Attended_Large_Gathering THEN NEGATIVE (414)
Rule 13: IF NOT Breathing_Problem AND NOT Dry_Cough AND NOT Sore_throat THEN NEGATIVE (382)
Rule 14: IF Breathing_Problem AND Fever AND Sore_throat AND NOTRunning_Nose AND NOT Hyper_Tension THEN
COVID (377)
Rule 15: IF NOT Dry_Cough AND NOT Sore_throat AND NOT Attended_Large_Gathering THEN NEGATIVE (351)

Listing 2 shows how rules cover the test samples against the same ruleset presented
above. The first row signifies that the first rule was activated by 308 test samples, with
306 correctly classified samples and two misclassified samples, resulting in 99.4% accuracy.
Note that for many rules the predictive accuracy is 100%.
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Listing 2. Activations of the rules by the test samples of a cross-validation trial. From left to right,
the columns show the rule number, the number of activations of the rule, the number of correctly
classified samples, the number of wrongly classified samples, the resulting accuracy and the class of
the rule.

Rule 1: 308 306 2 0.993506 Class = COVID
Rule 2: 265 265 0 1.000000 Class = COVID
Rule 3: 211 211 0 1.000000 Class = COVID
Rule 4: 210 210 0 1.000000 Class = COVID
Rule 5: 203 203 0 1.000000 Class = COVID
Rule 6: 174 173 1 0.994253 Class = COVID
Rule 7: 119 118 1 0.991597 Class = COVID
Rule 8: 137 136 1 0.992701 Class = COVID
Rule 9: 135 134 1 0.992593 Class = COVID
Rule 10: 93 93 0 1.000000 Class = COVID
Rule 11: 61 61 0 1.000000 Class = NEGATIVE
Rule 12: 43 43 0 1.000000 Class = NEGATIVE
Rule 13: 38 38 0 1.000000 Class = NEGATIVE
Rule 14: 43 43 0 1.000000 Class = COVID
Rule 15: 38 38 0 1.000000 Class = NEGATIVE
Rule 16: 37 37 0 1.000000 Class = NEGATIVE
Rule 17: 25 25 0 1.000000 Class = COVID
Rule 18: 25 24 1 0.960000 Class = NEGATIVE
Rule 19: 18 18 0 1.000000 Class = NEGATIVE
Rule 20: 21 21 0 1.000000 Class = NEGATIVE
Rule 21: 11 11 0 1.000000 Class = NEGATIVE
Rule 22: 17 17 0 1.000000 Class = NEGATIVE
Rule 23: 14 14 0 1.000000 Class = NEGATIVE
Rule 24: 8 8 0 1.000000 Class = COVID
Rule 25: 5 5 0 1.000000 Class = NEGATIVE
Rule 26: 5 5 0 1.000000 Class = COVID
Rule 27: 2 2 0 1.000000 Class = NEGATIVE

3.2. Comparison with Other Explainability Methods

In [40], we performed a comparative study on rule extraction from DIMLP ensembles
with eight classification problems of size less than 1000 samples. Overall, the rules extracted
from the ensembles were very competitive with respect to other approaches. As we have
almost never trained our NNs with more than 10,000 samples, we decided to apply the
DIMLP ensembles to four datasets of this size. For comparison purposes, as in [44], we
achieved experiments based on five repetitions of stratified five-fold cross-validation.

For DIMLPs, the number of neurons in the second hidden were the following:

• Chess: 200;
• Connect4 : 40;
• EEG eye state: 100;
• Letter recognition: 200;

These numbers were again set so that the number of connections was less than the
number of samples. Table 4 illustrates average results provided by DIMLP ensembles with
standard deviations between brackets. For each classification problem, bold face indicates
the highest average accuracy or fidelity, while for rules, bold depicts the lowest average
with respect to their number and their number of antecedents per rule. Average fidelity
was always over 90% and the average predictive accuracy of the extracted rules, when rules
and ensembles agreed (fifth column) was higher than that obtained by the rules (fourth
column). One possible explanation is that the test samples for which the extracted rules
and the model disagreed were the most difficult samples to classify. Hence, when they
were excluded, the average predictive accuracy improved.
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Table 4. Five-fold cross-validation results by DIMLP ensembles.

Data, Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

Chess, DIMLP-AT 43.3 (0.2) 99.7 (0.0) 43.2 (0.2) 43.3 (0.2) 1435.1 (16.6) 7.7 (0.1)
Connect4, DIMLP-AT 85.6 (0.3) 93.7 (0.1) 84.4 (0.1) 88.0 (0.1) 6041.3 (56.4) 8.4 (0.0)
EEG eye, DIMLP-AT 79.4 (3.7) 94.3 (1.0) 77.1 (3.6) 80.1 (4.0) 1069.0 (118.4) 5.7 (0.2)

Letter, DIMLP-AT 96.7 (0.0) 93.1 (0.2) 91.8 (0.2) 98.1 (0.1) 1879.1 (8.1) 7.5 (0.0)

Chess, DIMLP-BT 45.0 (0.2) 99.8 (0.0) 45.7 (0.2) 45.8 (0.2) 1178.6 (9.3) 7.4 (0.1)
Connect4, DIMLP-BT 84.7 (0.1) 96.2 (0.1) 83.7 (0.0) 86.0 (0.1) 3900.4 (23.1) 8.2 (0.0)
EEG eye, DIMLP-BT 85.0 (0.2) 94.3 (0.2) 82.3 (0.2) 85.7 (0.2) 1107.0 (20.7) 5.6 (0.0)

Letter, DIMLP-BT 95.5 (0.0) 93.1 (0.1) 91.4 (0.1) 97.4 (0.1) 1815.8 (9.5) 7.6 (0.0)

The authors of [44] applied the Synthetic Minority Oversampling Technique (SMOTE)
to the training datasets to upsample the minority classes [45]. For comparison purposes,
we have also applied SMOTE to these classification problems. Table 5 illustrates the
results. The average predictive accuracy and the average fidelity of the rules generated
from DIMLP ensembles were substantially higher than that provided by C4.5-PANE [21] or
Trepan [46]. In addition, the average number of rules extracted from DIMLP ensembles
was lower than that generated by C4.5-PANE. For the EEG dataset, Trepan generated only
two rules on average. The reason for this small number of rules is that Trepan is forced to
generate small rulesets that must cover large areas of the input space [44]. Nevertheless,
the average predictive accuracy provided by Trepan was much lower than that obtained by
DIMLP ensembles.

Table 5. Five-fold cross-validation results by DIMLP ensembles; SMOTE was used to balance the
minority classes. The last four rows show the comparison with the C4.5-PANE technique and Trepan
achieved in [44].

Data, Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

Chess, DIMLP-AT 38.2 (0.2) 95.7 (0.2) 37.0 (0.2) 38.3 (0.2) 3518.6 (55.6) 8.4 (0.0)
Connect4, DIMLP-AT 84.1 (0.2) 90.2 (0.2) 81.1 (0.2) 87.2 (0.1) 6357.6 (138.5) 8.2 (0.0)
EEG eye, DIMLP-AT 82.8 (3.3) 93.2 (0.9) 80.5 (3.2) 84.1 (3.5) 1308.8 (140.0) 5.8 (0.1)

Letter, DIMLP-AT 96.7 (0.1) 92.6 (0.1) 91.4 (0.1) 98.1 (0.0) 1975.4 (19.6) 7.4 (0.0)

Chess, DIMLP-BT 41.1 (0.2) 97.2 (0.1) 40.5 (0.3) 41.3 (0.3) 2644.1 (34.1) 8.1 (0.0)
Connect4, DIMLP-BT 83.6 (0.1) 91.8 (0.1) 80.9 (0.1) 85.9 (0.1) 6176.7 (42.6) 8.1 (0.0)
EEG eye, DIMLP-BT 85.4 (0.2) 94.3 (0.3) 82.7 (0.2) 86.1 (0.2) 1228.4 (16.5) 5.6 (0.0)

Letter, DIMLP-BT 95.5 (0.1) 92.1 (0.2) 90.6 (0.1) 97.6 (0.1) 2020.2 (11.2) 7.5 (0.0)

Chess, C4.5-PANE - 32.9 24.3 - 24,769 16.1
Connect4, C4.5-PANE - 77.9 67.3 - 7115 18.8

EEG eye, Trepan - 68.6 60.1 - 2 9.0
Letter, C4.5-PANE - 79.8 69.0 - 13,826 15.2

3.3. Experiments with CNNs

We trained the CNNs ten times with a skin cancer dataset based on 224× 224 coloured
images. The interested reader will find other tumour-related problems in [47–49]. The
dataset includes a training set of 2637 samples and a test set of 660 samples with classes
“Benign” and “Malignant”. The former class represents 54.6% of the training set and
54.5% of the testing set. A tuning set randomly selected from the training set consisting of
500 samples was used for early-stopping.

After preliminary experiments, we defined a NN architecture with four convolutional
layers and three fully connected layers. Each convolutional layer was followed by a
Max-Pooling layer. For clarity, here we summarize the architecture:

1. 2D-Convolution with 32 kernels of size 5× 5 and ReLU activation function.
2. Max-Pooling layer with blocks of size 4× 4 (32 units).
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3. 2D-Convolution with 32 kernels of size 3× 3 and ReLU activation function.
4. Max-Pooling layer with blocks of size 2× 2 (32 units).
5. 2D-Convolution with 32 kernels of size 3× 3 and ReLU activation function.
6. Max-Pooling layer with blocks of size 2× 2 (32 units).
7. 2D-Convolution with 32 kernels of size 3× 3 and ReLU activation function.
8. Max-Pooling layer with blocks of size 2× 2 (32 units).
9. Fully connected layer with sigmoid activation function (128 neurons).
10. Fully connected layer with sigmoid activation function (64 neurons).
11. Fully connected layer with sigmoid activation function (2 neurons).

After any convolutional layer or any Max-pooling layer, we have the feature maps.
For instance, after the first convolutional layer, we have 32 feature maps of size 220× 220
and after the first Max-pooling layer, another 32 feature maps with a size of 55× 55. We
used all four layers of feature maps to train DIMLPs. Specifically, the first layer of feature
maps was selected at the first Max-pooling layer, the second at the second Max-pooling
layer, the third at the third Max-pooling layer, and the fourth at the fourth Max-pooling
layer. Each feature map defines itself as a new training set that can be learned by a DIMLP
with two hidden layers. For clarity, let us enumerate at the level of each feature map the
number of DIMLP input neurons:

• First level of feature maps: 32 DIMLPs with 55× 55 = 3025 inputs and five neurons in
the second hidden layer (in the first hidden layer the number of neurons is the same
as in the input layer).

• Second level of feature maps: 32 DIMLPs with 26× 26 = 676 inputs and ten neurons
in the second hidden layer.

• Third level of feature maps: 32 DIMLPs with 12× 12 = 144 inputs and 30 neurons in
the second hidden layer.

• Fourth level of feature maps: 32 DIMLPs with 5× 5 = 25 inputs and 50 neurons in the
second hidden layer.

The number of hidden neurons in the second hidden layer of DIMLPs was empiri-
cally defined, after preliminary tests. In addition, for each DIMLP network, a tuning set
represented by the same examples used to train each CNN was used for early stopping.

3.3.1. Extraction of Rules at the Top Level (E Ensemble Γ Dataset)

After the trainng of the 32 ∗ 4(= 128) DIMLPs, we agregated all DIMLP outputs (Γ
dataset, cf. Section 2.3.2). Since each DIMLP consists of two output neurons, we obtained
256 neurons representing the probability of the classes for each DIMLP network trained
with a different feature map. With these new 256 variables, we trained DIMLP-BTs to
determine whether the average predictive accuracy was comparable to that obtained with
CNNs. This procedure was repeated ten times for both CNNs and DIMLP ensembles.
Finally, we generated propositional rules, with the results shown in Table 6.

Table 6. Comparison of the average predictive accuracy obtained by CNNs and DIMLP ensembles
trained with the CNN feature maps.

Model Acc. Fid. Acc. R. (a) Acc. R. (b) Nb. R. Nb. Ant.

CNN 84.5 (0.9) - - - - -
DIMLP-BT 84.7 (0.9) 95.5 (1.0) 83.6 (1.0) 85.8 (1.0) 141.7 (18.2) 5.4 (0.2)

The average predictive accuracy provided by DIMLP-BT was slightly, but not signifi-
cantly, higher than that obtained from CNNs (84.7% versus 84.5%). Thus, the transfer of
CNN feature maps to a number of simpler models such as DIMLPs was successful. The
average predictive accuracy of the rules was lower than that given by the CNNs (83.6% ver-
sus 84.5%), but whether this is statistically significant should be determined. We therefore
performed a Wilcoxon sign rank test in which the null hypothesis was defined as follows:
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the difference between two 10-component data vectors has a median of zero. Note that
the Wilcoxon signed-ranks test is a non-parametric equivalent of the paired t-test. In our
case, we required a pairwise statistical test, as the generated rulesets depend on neural
networks. The result of this statistical test did not reject the null hypothesis at the default
5% significance level (p-value= 0.0840). Thus, the median of the differences was unlikely
to be non-zero. We performed the same test replacing the first measure of rule accuracy
with the second measure (mean 85.8%) This statistical test rejected the null hypothesis at
the default 5% significance level (p-value= 0.0195) Thus, in this case, it is unlikely that the
median of the differences was zero. Table 7 shows the predictive accuracy of the models
(CNN and DIMLP-BT) and the accuracy of the rules generated for ten trials from which the
p-values shown above were calculated.

Table 7. Predictive accuracy of ten CNNs, ten DIMLP-BTs, predictive accuracy of the generated rules,
and predictive accuracy of the rules when rules and network provided the same classification.

Trial Acc. CNN Acc. DIMLP-BT Acc. R. (a) Acc. R. (b)

1 84.2 84.4 83.2 85.0
2 84.6 85.0 83.0 85.2
3 83.6 84.5 84.4 86.1
4 83.3 84.1 84.2 86.3
5 85.3 83.3 83.3 84.6
6 83.6 84.7 82.9 85.5
7 85.5 86.2 85.3 87.8
8 85.3 85.9 84.2 86.4
9 85.6 83.9 82.0 85.0
10 83.5 85.2 83.8 86.1

Average 84.5 84.7 83.6 85.8

Listing 3 shows twelve rules out of 129 generated from high-level attributes (Γ dataset
and DIMLP ensemble E). This ruleset correctly classified 85.3% of the testing samples,
with a fidelity of 94.5%. Odd attributes γc are relative to the probability of the first class,
while even attributes are relative to the second class. The number of possible antecedents is
256 (γ1, . . . , γ256); those between one and 64 concern the DIMLP networks νk trained with
the first level of feature maps (γ1, . . . , γ64); those between 65 and 128 concern the DIMLP
networks νk trained with the second level of feature maps (γ65, . . . , γ128); etc.

Listing 3. Example of rules generated from the highest level of abstraction (Γ dataset). Odd attributes
γc are relative to the probability of the “Malignant” class, while even attributes are relative to the
“Benign” class.

Rule 1: (γ2 > 0.974333) (γ231 < 0.345902) Class = BENIGN (857)
Rule 2: (γ76 > 0.995006) (γ90 > 0.471316) (γ125 < 0.516989) (γ231 < 0.76658) Class = BENIGN (733)
Rule 3: (γ158 > 0.968588) (γ231 < 0.59679) Class = BENIGN (728)
Rule 4: (γ64 < 0.867529) (γ90 < 0.471316) (γ108 < 0.497083) (γ137 > 0.711747) Class = MALIGNANT (662)
Rule 5: (γ76 < 0.940293) (γ90 < 0.682296) (γ117 > 0.613614) (γ124 < 0.440035)
(γ137 > 0.648652) Class = MALIGNANT (645)
Rule 6: (γ75 > 0.732221) (γ79 < 0.922907) (γ84 < 0.85998) (γ108 < 0.552747) (γ118 < 0.604589)
(γ124 < 0.440035) (γ138 < 0.90638) (γ214 < 0.649615) Class = MALIGNANT(305)
Rule 7: (γ76 < 0.940293) (γ85 > 0.865013) (γ89 > 0.826103) Class = MALIGNANT (295)
Rule 8:
(γ14 < 0.193456) (γ80 < 0.280448) (γ85 < 0.865013) (γ117 > 0.423161) (γ231 > 0.59679) Class = MALIGNANT (167)
Rule 9: (γ1 < 0.662443) (γ12 > 0.470797) (γ31 < 0.292203) (γ75 < 0.258964) (γ76 < 0.995006)
(γ89 < 0.523706) (γ107 < 0.736173) Class = BENIGN (152)
Rule 10: (γ64 < 0.898184) (γ75 < 0.734073) (γ76 < 0.578569) (γ89 > 0.317256) (γ108 < 0.552747)
(γ117 > 0.741718) (γ124 < 0.568405) (γ126 < 0.540938) (γ232 < 0.75759) Class = MALIGNANT (137)
Rule 11: (γ3 < 0.956632) (γ4 < 0.476277) (γ89 < 0.519966) (γ108 > 0.497083) (γ125 < 0.608677)
(γ231 < 0.76658) (γ232 < 0.784656) Class = BENIGN (113)
Rule 12: (γ64 < 0.898184) (γ76 < 0.578569) (γ89 > 0.883811) (γ117 < 0.747752) Class = MALIGNANT (111)
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3.3.2. Extraction of Rules at the Level of the CNN Feature Maps

The first rule given above covered 206 testing samples and it was wrong only in two cases.
Following the approach described in Section 2.3.2, the first antecedent (γ2 > 0.974333) yields
five rules related to the feature maps that cover this sample. The five rules derived from γ2
have rule antecedents related to regions of size 8× 8 in the input layer. Specifically, these
regions show where the convolution operator is applied, which in turn indicates where
to look to understand the classification. Figure 4a depicts one of the five rules covering a
particular testing sample, with five rule antecedents related to 8× 8 squares. In addition,
green is for antecedents with “>” and red for those with “<”. It is worth noticing that
three antecedents are in the background (on the left) and two in the centre representing a
region of interest. These last two squares seem to be located in two homogeneous areas. A
question arising here is why three antecedents related to the background are present in this
rule. One reason could be that, as in other samples we find brownish areas in these places
related to moles, some background/foreground discrimination has to be achieved.

(a) (b)

(c) (d)

Figure 4. Two samples of class “Benign” with relevant squares of attention. (a) A “Benign” case in
the testing set that was correctly classified by a propositional rule at the top level (“Rule 1” in the
third listing). The green/red squares are determined from five antecedents of a propositional rule
that covers this sample at the low level. Green is for antecedents with “>” and red for those with “<”.
These small squares related to γ2 show where the convolution operator is applied after the first Max-
pooling layer. (b) From the second antecedent of Rule 1 (γ231), five squares are derived from five rule
antecedents related to the top level. Large squares are less informative than small squares (a), because
with a large square, it is difficult to find the points that determine the classification. (c) Another
“Benign” case in the testing set that was correctly classified by “Rule 1” at the top level. The squares
are derived from three rule antecedents related to the first Max-pooling layer. (d) Similarly to (b), the
second rule antecedent at the top level (γ231) involves three rule antecedents related to the fourth
Max-pooling layer.
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The second antecedent of the first rule shown above (γ231 < 0.345902) is related to
the fourth level of the feature maps. Thus, the size of the relevant regions in the input layer
is of size 64× 64. Figure 4b depicts a rule with five rule antecedents. We notice several
antecedents related to the background and an antecedent related to the centre. The large
squares are less informative, as it is then difficult to determine the points of the mole that
determine the classification.

Another “Benign” sample covered by the first rule was taken into account. From
antecedent γ2, several rules were determined, including a rule with the three antecedents
shown in Figure 4c. Specifically, two rule antecedents are related to the background and one
is related to the mole. For the latter, the pixels of the square are rather uniform. Regarding
antecedent γ231, Figure 4d depicts the derived rule antecedents, with two of them related
to the background and one covering almost the entire mole. Again, due to the size of the
squares, γ2 is more informative than γ231.

As an example of the “Malignant” rule, we consider the seventh rule shown in the
third listing. It includes three rule antecedents related to the second level of the feature
maps: γ76; γ85; and γ89. This rule covers 78 samples of the testing set with an accuracy of
94.9%. As it was shown above, Figure 5a illustrates a rule derived from γ85, the size of the
squares being 16× 16. Three squares are in the background, while two squares are close to
the centre of the picture. In these latter squares, the uniformity of the texture seems to be
less than that observed in the “Benign” cases presented above.

(a) (b)

(c) (d)

Figure 5. Cont.
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Figure 5. Two malignant samples with relevant squares of attention. (a) A “Malignant” case in
the testing set that was correctly classified by “Rule 7” at the top level. The squares are derived
from five rule antecedents related to the second Max-pooling layer (γ85). (b) The same sample in (a)
with squares determined from five rule antecedents related to γ89. (c) The same sample in (a) with
squares determined from four rule antecedents related to γ89. (d) Another “Malignant” case in the
testing set was correctly classified by “Rule 7” at the top level. The squares are derived from four
rule antecedents related to the second Max-pooling layer (γ85). (e) Same as (d), but the squares are
derived from a rule with three rule antecedents related to γ85. (f) Same as (d), but the squares are
derived from a rule with five rule antecedents related to γ85.

Figure 5b depicts a rule derived from γ89, with two squares close to the border of
the mole. Similarly, in Figure 5c, three squares are close to the borders and one is in the
background. The pixels close to the border do not appear to be very uniform. Finally,
Figure 5d–f illustrate another testing sample covered again by the seventh rule at the
top level.

We applied Grad-CAM to the CNN network, which allowed us to produce the previous
figures by DIMLPs. Figure 6a,b depict two samples of class “Benign”, with (c) and (d)
showing two samples of class “Malignant”. Note that class-relevant regions in the images
are highlighted with colours. Warm colours represent regions of relevance to the class,
with colder colours indicating low relevance. At the top of the figure (a and b), the entire
moles have high/moderate relevance, which is not very informative. For the sample in
(c), we see two relevant areas at the top, outside the mole, which is probably not what we
could expect. In (d), from the colours at the bottom right outside the mole, we see a highly
relevant region. In addition, a large part of the mole appearing greenish is also relevant.

(a) (b)

Figure 6. Cont.
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Figure 6. Grad-CAM results obtained from two samples of the “Benign” class (a,b) and two samples
belonging to the “Malignant” class (c,d). Warm colours represent regions of relevance to the class,
with colder colours indicating low relevance.

4. Discussion

In this work, we generated propositional rules from CNNs by performing transfer
learning with DIMLPs. The proposed approach has three main steps. In the first step, each
CNN feature map is used to train a single DIMLP network. Here, we had 128 feature maps
that were learned by 128 DIMLPs. Then, in the second step, we trained a DIMLP ensemble
(DIMLP-BT) with the outputs of the DIMLPs obtained in the first step. Specifically, with
a binary classification problem, a DIMLP ensemble of 25 DIMLPs with 256 inputs was
trained by bagging. In the third step, rule extraction was performed by extracting rules from
DIMLP-BT, and then from these rules, other rules were produced against the feature maps.

Our approach to explaining CNN responses belongs to the category of global tech-
niques and can be applied once all feature maps are available. In addition, our method
is general with polynomial computational complexity. Note also that the learning of the
feature maps can be executed in parallel. The results obtained are propositional rules that
are linked in the antecedents to pixel squares where the convolution operators are applied.
For a diagnostic application, specialists can inspect these squares to attempt an explanation.
In the pictures above related to DIMLPs, we have seen rather uniform areas of attention
for benign cases (e.g., small squares), while malignant examples have highlighted less
uniform areas (for instance on the edges of moles). The state-of-the-art highlights a family
of explainability methods based on saliency maps. The question then arises as to what
makes our approach different. Essentially, we focused on regions of attention related to
rule antecedents. Thus, to determine a sample classification, a logical inference is carried
out, which is not the case with saliency maps. Regarding the limitations of our approach,
the computational complexity is not linear; therefore, it cannot be applied to millions of
data samples but only to a few thousand.

The size of the squares in which the data relevant to the classifications resided de-
pended on the level of the feature maps. Thus, at the lowest level (after the input layer),
their size was 8× 8 and at the highest level, it was equal to 96× 96. For the larger squares,
explainability is limited, since it could include a mole in its entirety without telling us in
which part a possible anomaly would be found. It is worth noting that in the ruleset used
to illustrate the images above, antecedents only associated with the fourth level of the
feature maps were absent. Thus, each rule was also linked to small regions of attention.
By qualitatively comparing our approach to Grad-CAM, we noticed that our method is
more informative since the attention squares can be small and therefore more specific in
targeting an anomaly. Moreover, the symbolic rules obtained make it possible to determine
how the model “thinks” with respect to the pixels of the feature maps.

All the feature maps could have been transferred simultaneously, instead of trans-
ferring each map individually to a DIMLP network. The disadvantage of this alternative
approach is that the dimension of the input layer would be very large and so the rule extrac-
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tion algorithm would suffer in terms of computation time since its algorithmic complexity
is polynomial. However, it would be possible to compress the feature maps by the Discrete
Cosinus Transform (DCT), as we accomplished in [50].

5. Conclusions

With several classification problems, we have shown that DIMLP ensembles can
generate more accurate rules with higher fidelity than other rule extraction methods. We
therefore wondered whether it would have been possible to apply our approach to the
CNNs. Specifically, we accomplished an indirect approach; that is, we transferred all the
feature maps of a CNN to DIMLP networks that learned them. Then, the responses of all
DIMLPs for each of the feature maps were aggregated and learned by a new ensemble of
DIMLPs. On average, DIMLP ensembles were able to be as accurate as the original CNNs
(84.7% versus 84.5%). Furthermore, the average fidelity of the top-level generated rules
was 95.5%. Finally, the average predictive accuracy of the rules when DIMLP ensembles
agreed with the rules was 85.8%.

In future work, we might consider training DIMLPs with all the attention squares
related to the rule antecedents of the feature maps. In particular, for each propositional
rule, all underlying attention squares would be used to train a DIMLP network. Compared
to the approach proposed here, we would transfer the inputs of the attention areas and not
the feature maps of the different convolution levels. When an area of attention is too large,
we could use DCT to reduce the dimensionality. Once the DIMLP networks are trained,
the responses representing the probabilities of class membership will be aggregated into a
new ensemble, as in this work. In this way, propositional rules could be obtained with the
pixels of the input layer as antecedents. This approach would be valid, provided that an
accuracy close to that obtained by a CNN could be achieved.

Finally, it would be interesting to apply the proposed approach to pre-trained networks
such as VGG, Resnet, etc. Since these models are even deeper, we would have to transfer
a much larger number of feature maps. Rule extraction would be tractable provided that
the number of examples remains limited to a few thousand, which is the case in many
biological/medical problems.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
DCT Discrete Cosinus Transform
DIMLP Discretized Interpretable Multi Layer Perceptron
DNNs Deep neural network
DT Decision Trees
IMLP Interpretable Multi Layer Perceptrons
LIME Interpretable Model-Agnostic Explanations
ML Machine Learning
MLR-UCI Machine Learning Repository at the University of California, Irvine
MLP Multi Layer Perceptron
NN Neural Network
SMOTE Synthetic Minority Oversampling Technique
XAI Explainable Artificial Intelligence
xDNN Explainable Deep Neural Network
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