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ABSTRACT 

The dependency of the results from a network adjustment on the application used is investigated. For that 
purpose, the results obtained by each tested application on several sets of simulated measurements are 
compared. In each simulation, only one parameter varies. We first present our comparison methodology and 
the method that was used to add Gaussian-like errors to theoretical measurements. We then apply it to study 
the impact of the side length of the network and of the ellipsoidal height difference among points in the network 
for several network adjustment applications: Columbus, CoMeT, Geolab, JAG3D, LGC, Move3, Star*Net and 
Trinet+. 

 
I. INTRODUCTION 

Adjusting geodetic networks is one of the most 
important tasks in the daily business of modern 
geodesists. In applied geodesy, such networks are the 
basis for planning landscape reorganization in, for 
example, urban development, operating and extending 
mechanical engineering facilities like particle 
accelerators, or the monitoring of structural facilities 
such as dams, bridges, or radio telescopes. 

Many network adjustment applications are available 
today. Each user is free to use the application that best 
suits their own needs and preferences. In case of 
software replacement, for economic or practical 
reasons, of sending raw data to someone else, who is 
using different software, or for control purposes, the 
question of the dependency of the results on the 
software used (so called software effect) arises. 

In the last decade, several studies have investigated 
this problem, using field measurements from given 
networks. The results from different adjustment 
applications are then compared, in terms of values and 
standard deviations for all estimated coordinates and 
relevant quality parameters (Lösler and Bähr, 2010; 
Schwieger et al., 2010; Herrmann et al., 2015). 

In Durand et al. (2020) a comparison methodology to 
study the impact of the software on the results for 
applications using the Gauss-Markov model was 
proposed, based on the comparison of the results 

obtained by each application, on the same simulated 
measurements. The main advantage of using generated 
measurements is that it allows the controlled alteration 
of one parameter at a time, between sets of 
measurements: shape or size of the network, refraction 
coefficient value, a priori accuracy, and so on. Thus, the 
generated measurements allow us to investigate the 
impact of each parameter. 

In Durand et al. (2020), the comparison methodology 
was used to investigate the impact of the size of the 
network on the compatibility among the network 
adjustment applications developed in the authors 
institutions, i.e., CoMeT, LGC, and Trinet+. 

The main objectives of this contribution are to include 
more network adjustment applications in the 
comparisons, and to show that our methodology is 
relevant to better understand the impact of a particular 
parameter on the discrepancies between the 
applications. 

In the first part of this contribution, we present our 
comparison methodology, based on the adjustment of 
a set of networks with simulated measurements. In the 
second part, we focus on the method that was used to 
add Gaussian-like errors to theoretical measurements 
fulfilling the following properties: 

1) Adjusted coordinates are equal to the theoretical 
values and the computation is achieved in only 
one iteration step. 
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2) The estimated variance factor of unit weight is 
equal to the empirical one. 

3) For a selected significance level, standardized 
residuals are not rejected in Baarda’s test. 

In the last part, we apply our comparison 
methodology to study the impact of two parameters on 
the results of the adjustment process: the side length of 
the network and the ellipsoidal height of the unknown 
point in the network. 

We present and discuss the results obtained after 
processing the same simulated measurements with the 
following network adjustment applications. These are 
all using three-dimensional mathematical functional 
models, with an ellipsoidal approach, except for the LGC 
application where, for practical reasons, a spherical 
approach has been used in this instance: 

1. Columbus, from Best-Fit computing, version 
4.6.2.41 (http://bestfit.com/; 

2. CoMeT (Compensation de Mesures 
Topographiques), from the Cnam/GeF, version 
2017.02.14 (http://comet.esgt.cnam.fr); 

3. Geolab, from Bitwise Ideas Inc., version 2021.1.1 
(https://www.geolabsolutions.com);  

4. JAG3D (Java Applied Geodesy 3D), using the 
ellipsoidal approach, version 20211123 
(https://software.applied-geodesy.org); 

5. LGC (Logiciel Général de Compensation), from 
the CERN, version 2.03.01 
(https://move3software.com); 

6. Move3, from Sweco, version 4.5.1 
(https://move3software.com); 

7. Star*Net, from MicroSurvey, version 10.0.15.974 
(https://www.microsurvey.com/products/starnet); 

8. Trinet+, from the Heig-Vd, version 7.2. 
 

II. TEST METHODOLOGY 

A. Using simulated test networks 

As in Durand et al. (2020), our test methodology is 
based on simply shaped networks, all with only one 
variable parameter. Each network is made up of two 
points (S1 and S2) with known coordinates and one 
point M with coordinates to be estimated. In order to 
build these networks, we defined a point P0 as the 
barycentre of all our networks, with ETRS89 Cartesian 
and ellipsoidal coordinates as defined in Table 1, and 
with no geoidal undulation with respect to the IAG 
GRS80 ellipsoid. To ensure compatibility with the LGC 
application, this P0 point has the same definition as the 
CERN P0 point used in the LGC application and linked to 
the CERN Coordinate System (CCS). 

In the local astronomical system of point P0, given a 
side length 𝑑, the horizontal coordinates for the points 
of each network are computed to form an equilateral 
triangle, with point P0 as barycentre, point M being 
located north of point P0, and point S1 and S2 being 
located east and west of point P0, respectively, as 
illustrated in Figure 1. 

Table 1. ETRS89 Cartesian and ellipsoidal coordinates of 
point P0, the barycentre of all the test networks 

 
 

ETRS89 
Cartesian 

Coordinates 

Ellipsoidal 
coordinates 

(w.r.t. IAG GRS80)

X [m] 4395400.3638 -- 
Y [m] 465785.0567 -- 
Z [m] 4583458.2260 -- 
Latitude [grad] -- 51.3692 
Longitude [grad] -- 6.72124 
Ellipsoidal height [m] -- 433.65921 

 

 
Figure 1. Common design of the test networks with side 

length 𝑑, in the local astronomical system of P0. 
 

Such a simple network without peculiarities is 
sufficient to investigate the software effect. An 
application that yields different results for such a simple 
network design will also give different results in 
complex networks. However, the effect will be easier to 
be detected in a simple network design than in a 
complex one. 

The local vertical coordinates of points S1, S2, and M 
were fixed to be respectively +10 m, −10 m, and 0 m. 
These local coordinates were used to compute ETRS89 
geodetic Cartesian coordinates for all points in the test 
networks (with no deflection of the vertical for point P0 
with respect to the IAG GRS80 ellipsoid). 

These ETRS89 Cartesian coordinates were used to 
compute simulated observations between points in the 
networks, as the sum of a theoretical value and an error 
value. The theoretical value of the observation was 
computed using the three-dimensional mathematical 
functional models of the CoMeT application, with an 
ellipsoidal datum (IAG GRS80 ellipsoid, deflection of the 
vertical of zero for all points). The error value was 
computed in a particular way explained in part III. As 
illustrated in Table 2, conventional measurements, i.e., 
horizontal direction, zenith angle, and slope distance, 
are made from points S1 and S2 to point M and only 
horizontal direction observations are included from S1 
to S2 and from S2 to S1.  

 
Table 2. Type of observations between points in the test 

networks 

 
 

From S1 to: From S2 to:

Horizontal direction M, S2 M, S1 
Zenith angle M M 
Slope Distance M M 
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Therefore, the adjustment of each network entails 
the estimation, using least squares, of the coordinates 
of point M as well as the orientation unknowns for the 
instrument stations at S1 and S2. 

 
B. Functional and stochastic parameters 

Even if all the applications involved in this study make 
use of three-dimensional mathematical functional 
models, with an ellipsoidal datum, some differences 
may exist both in the functional and stochastic 
implementations. Table 3 summarizes the main 
parameters used in this work to both simulate and 
process the measurements, in order to avoid any 
unwanted discrepancies in the results. We used a 
convergence criterion of 0.1 mm, as this is the smallest 
selectable value in some applications. 

 
Table 3. Relevant functional and stochastic parameters for 

both simulation and processing 

Parameter 
 

Value 

Refraction coefficient None 
Standard deviation (angle measurements) 0.3 mgrad
Standard deviation (slope distance) 5 mm 
Convergence criterion 0.1 mm 

 
The distance dependent part of the a priori 

uncertainty for slope distances is left out because their 
processing differs in each application. Let 𝑎, in meters, 
and 𝑏, in parts per million (ppm), denote the constant 
and distance-dependant parts respectively of the 
standard deviation for a slope distance 𝐷 between the 
station and the target. As indicated in Shih (2013), there 
exists two interpretations of electronic distance meter 
accuracy specifications, based on different 
assumptions: the “additive” method, in which the 
standard deviation 𝜎 is computed from Equation 1, and 
the “propagated” one, which uses Equation 2. 

 
𝜎 𝑎 𝑏 10 𝐷 (1) 

 

𝜎 𝑎 𝑏 10 𝐷  (2) 

 
Depending on the applied model and especially for 

long distances, different results are obtained. This 
effect must be taken into account when comparing 
adjustment applications. Table 4 indicates for each 
application involved in this study which approaches are 
implemented and used by default. 

The refraction correction to zenith angle 
measurements is also not applied since the method 
used to compute this correction differs for each 
program or does not exist (Durand et al., 2020). Let 𝑉  
denote the zenith angle observation, 𝑉  the corrected 
value from the refraction effect, and 𝑘 the coefficient of 
refraction. 

In the LGC application, no refraction corrections are 
applied to zenith angle measurements - the application 

was developed primarily for networks located in 
underground tunnels, or buildings. 

 
Table 4. Implemented stochastic models to obtain the a 

priori uncertainty of a slope distance 

Software 
 

Additive approach 
(Equation 1) 

Propagated approach 
(Equation 2) 

Columbus Yes No 
CoMeT Yes Yes (default) 
Geolab No Yes 
JAG3D No Yes 
LGC Yes No 
Move3 Yes No 
Star*Net Yes (default) Yes 
Trinet+ Yes No 

 
As indicated in their user manuals, the Columbus and 

CoMeT applications apply the following formula (Eq. 3): 
 

𝑉 𝑉
𝑘 𝐷
2 𝑅

 (3) 

 
In the Columbus application, 𝑅 corresponds to the 

sum of the radius of the Earth and the ellipsoidal height 
at the station. In the CoMeT application, 𝑅 corresponds 
to the semi-major axis of the selected ellipsoid. 

In the Trinet+ and JAG3D applications, the correction 
is computed using a slightly different formula (Eq. 4): 

 

𝑉 𝑉
𝑘 𝐷
2 𝑅

 (4) 

 
where 𝐷  denotes the horizontal distance between 
points. In the JAG3D application, the Earth radius is 
approximated using the latitude of the barycentre P0. 
In the Trinet+ application, 𝑅 can be selected in the 
range 6000, 7000  km. 
 

The documentation of the Geolab and Move3 
applications do not clearly indicate which formula is 
used to compute the refraction correction. 
Nevertheless, in these applications it is possible to 
output a measurement value including the refraction 
correction, and potentially deduce the refraction 
correction formula. From tests that we have conducted, 
it seems that the Geolab and Move3 applications use a 
formula very close to the one in Equation 3. 

The user manual of the Star*Net application indicates 
that the refraction error is computed following 
(Bomford, 1971). In practice, using the same notations 
as above, this corresponds to the formula (Eq. 5): 

 

𝑉 𝑉
𝑘 𝐷

𝑅
 (5) 

 
In this representation, the largest difference is the 

factor 2, which means that in the Star*Net application, 
the refraction coefficient, 𝑘, may not be directly 
comparable with those used in Equations 3 and 4. This 
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effect of the refraction handling must be taken into 
account when comparing adjustment applications. 

For all applications involved in this work, known and 
initial coordinates for all points are entered directly as 
ETRS89 Cartesian or ellipsoidal (w.r.t. IAG GRS80 
ellipsoid) coordinates. There are only a few exceptions. 
The JAG3D application does not process global Earth-
fixed coordinates but supports local tangent plane 
coordinates. For that reason, the ETRS89 Cartesian 
geodetic coordinates are converted into local 
coordinates in the local tangent plane system of point 
P0 w.r.t. the IAG GRS80 ellipsoid. In the Trinet+ 
application, observation equations are expressed in 
terms of topocentric coordinates. The topocentre as 
well as the points in the network have to be defined 
using CH1903+ Cartesian coordinates and the values of 
the deflection of the vertical with respect to the Bessel 
1841 reference ellipsoid. Thus, the ETRS89 Cartesian 
coordinates were converted to CH1903+ Cartesian 
coordinates. Starting from zero value deflection of the 
vertical on each point relative to the IAG GRS80 
reference ellipsoid, the deflection of the vertical 
relative to the Bessel 1841 reference ellipsoid was 
computed. In the case of geodetic calculations in the 
LGC application, coordinates have to be entered in a 
CERN 2D+1 system derived from the CERN Coordinate 
System (CCS). Thus, the ETRS89 Cartesian coordinates 
of each point in each network were transformed into 
the Cartesian CCS system. Subsequently, the Z-
coordinates were converted to ellipsoidal heights using 
the CERN Spherical vertical datum (Durand et al., 2020) 
- to avoid the application of a geoid model. 

 

III. GENERATION OF RANDOM ERRORS 

Simulated measurements are the sum of theoretical 
measurements and error values, which could be equal 
to zero, or randomly selected from a Gaussian 
distribution. In this work, we have developed a 
particular method for computing the error values, 
hereafter detailed. 

Suppose an unknown vector 𝑋 𝑥 , … , 𝑥    is to 
be estimated from observation vector 𝐿 𝑙 , … , 𝑙 , 
where 𝑛 𝑚. In classical least squares estimation, they 
are related by (Eq. 6): 

 
𝐿 𝑓 𝑋 𝑉, 𝑉~𝒩 0, 𝑠 𝑄  (6) 

 
where 𝑓 denotes the functional relation between 
measurements and parameters, 𝑉 the error vector, 𝑠  
the a priori variance factor of unit weight and 𝑄 the 
cofactor matrix of the observations. Equation 6 
assumes the absence of systematic and gross errors. 
Only random errors are considered. 

 
As indicated for example in (Caspary and Rüeger, 

2000), in an iterative least squares method, Equation 6 
is linearized by approximation to a first-order Taylor 
series expansion (Eq. 7): 

 
𝐵 𝐿 𝑓 𝑋 𝐴 𝑋 𝑋 𝑉, 𝑉~𝒩 0, 𝑠 𝑄 (7) 

 
where 𝐵 𝐿 𝑓 𝑋  is the difference between the 
measurements and their estimated values using 𝑋 , the 
initial values of the parameters. Solution of Equation 6 
is computed using an iterative process on the least 
squares solution of Equation 7, until the adjusted 
estimate of Equation 7 is sufficiently close to the initial 
value 𝑋  used in the last iteration step. Using matrix 𝑄 

to define the norm, the least squares solution 𝑋  to 
Equation 7 is expressed as (Eq. 8): 

 

𝑋 𝑋 𝐴 𝑄 𝐴 𝐴 𝑄 𝐵 (8) 

 
At the end of the iterative process, we obtain the 

estimated least squares solution of Equation 7. It is thus 
possible to compute the vector of residuals (Eq. 9): 

 

𝑉 𝐵 𝐴 𝑋 𝑋  (9) 

 
And the estimated variance factor of unit weight 

(Eq. 10): 
 

�̂�
𝑉 𝑄 𝑉
𝑛 𝑚

   (10) 

 
In the process of simulating measurements for a 

particular network, the theoretical coordinates of all 
points, the different measurements between the points 
introduced and the a priori standard deviations of the 
measurements are known. Let 𝑋  denote the vector 
containing the theoretical coordinates of all points in a 
network, as well as initial or randomly selected values 
for the orientation unknowns. Let 𝑉  denote a simulated 
error vector. It is possible to directly use Equation 6 to 
compute simulated values for the measurements 
(Eq. 11): 

 
𝐿 𝑓 𝑋 𝑉  (11) 

 
The simulated error vector 𝑉  could be obtained using 

several methods: a null vector (no error), randomly 
selected values, randomly selected values with respect 
to a Gaussian distribution with the a priori standard 
deviation of each measurement, to cite but a few. 

In this study, we used a particular method to compute 
the error vector 𝑉 . We wanted to compute an error 
vector which fulfilled the following conditions: 

(i) Vector 𝑉  is not null, nor unique; 
(ii) If the initial coordinates for all points are the 

theoretical ones (which means 𝑋 𝑋 , then 
the adjusted coordinates are equal to the 

theoretical ones (which means 𝑋 𝑋  and the 
iterative process is achieved in only one iteration 
step; 

(iii) The global model test used as a first step in 
outlier detection as described in (Caspary and 
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Rüeger, 2000) is not rejected regardless of the 
selected significance level;  

(iv) For a selected significant level 𝛼, standardized 
residuals are not rejected in Baarda’s test. 

Now let 𝑉  denote an error vector fulfilling these four 
conditions. From Equation 11, the measurements 
vector to process is 𝐿 𝑓 𝑋 𝑉 . As the theoretical 
coordinates are used as initial values in the adjustment 
process, we have, for the first iteration step, as 
indicated in Equation 7, (Eq. 12): 

 
𝐵 𝐿 𝑓 𝑋 𝑉  (12) 

 
From Equation 8, the least squares solution for the 

first iteration step yields (Eq. 13): 
 

𝑋 𝑋 𝐴 𝑄 𝐴 𝐴 𝑄 𝑉  (13) 

 

Condition (ii) means that 𝑋 𝑋 0. The first 
consequence is that the vector of residuals corresponds 
to the simulated error vector (Eq. 14): 

 

𝑉 𝐿 𝑓 𝑋 𝐴 𝑋 𝑋 𝑉  (14) 

 
The second consequence is that vector 𝑉  lies in the 

kernel of the linear map with corresponding matrix 
(Eq. 15): 

 
𝐻 𝐴 𝑄 𝐴 𝐴 𝑄  (15) 

 
As matrix 𝑄 is symmetric positive definite, it is 

possible to find an upper triangular matrix 𝑅 such that 
𝑄 𝑅 𝑅, and to define matrix 𝐾 as (Eq. 16): 

 
𝐾 𝐴 𝑄 𝐴 𝐴 𝑅  (16) 

 
Thus, if 𝑉 ∈ ker 𝐻  then 𝑦 𝑅𝑉 ∈ ker 𝐾 . As 𝐾 is 

a matrix of size 𝑛 𝑚 and of rank 𝑚, ker 𝐾  is of 
dimension 𝑛 𝑚. Let 𝛽 be an orthogonal basis of 
ker 𝐾 . By definition, for each vector 𝑧 ∈  ℝ , 𝑦
𝛽𝑧 lies in ker 𝐾 . This gives us a practical way to 
compute an error vector that fulfils conditions (i) and 
(ii). We just have to randomly select a non-zero vector 
𝑧 ∈ ℝ , to compute an orthogonal basis 𝛽 of ker 𝐾  
(from the singular value decomposition (SVD) of matrix 
𝐾 for example), and to compute (Eq. 17): 

 
𝑉 𝑅  𝛽𝑧 (17) 

 
The third condition is related to the global model test 

commonly used as a first step in outlier detection. As 
explained, for example in (Caspary and Rüeger, 2000), 
its aim is to verify that the error vector is compatible 
with a statistical distribution of the errors according to 
the 𝒩 0, 𝑠 𝑄  normal law. The statistic used for this 
test is, according to the definitions in Equations 9 and 
10, (Eq. 18): 

 

 

𝑇
𝑉 𝑄 𝑉

𝑠
𝑛 𝑚

�̂�
𝑠

   ~ 𝜒  (18) 

 
After selecting a significance level 𝛼 for the test, and 

according to the 𝜒  distribution, one has to verify 
that the observed test statistic 𝑇 is located in the 
acceptance region. As the central value of the 𝜒  
distribution is equal to 𝑛 𝑚 , if the observed test 
statistic is equal to 𝑛 𝑚 , it is in the acceptance 
region, whatever the selected significant level. 

Thus, we have to compute an error vector 𝑉  in such 
a way that the corresponding observed test statistic 
yields 𝑇 𝑛 𝑚. 

As vector 𝑉  fulfils conditions (i) and (ii), it is of the 
form 𝑉 𝑅  𝛽𝑧 with 𝑧 ∈ ℝ  and corresponds to 
the vector of residuals. The observed test statistic is 
(Eq. 19): 

 

𝑇
𝑉 𝑄 𝑉

𝑠
𝑧 𝑧
𝑠

   (19) 

 
To fulfil condition (iii), we just have to compute a 

vector 𝑧 ∈ ℝ  in such a way that (Eq. 20): 
 

𝑧 𝑧 𝑛 𝑚 𝑠  (20) 

 
The fourth condition is related to the test strategy 

proposed by Baarda, which is commonly used to detect 
outliers when the residuals are normally distributed 
(Baarda, 1968; Caspary and Rüeger, 2000). This test 
assumes that the variance factor 𝑠  is known and uses 
the standardized residual as the test statistic (Eq. 21): 
 

∀𝑖 1, … , 𝑛, 𝑤
𝑣

𝑠 𝑞
 (21) 

 
In Equation 21, 𝑣  denotes the 𝑖-th element of the 

vector of residuals 𝑉 and 𝑞  is the corresponding 

element 𝑖, 𝑖  of the cofactor matrix 𝑄  of 𝑉 defined by 
(Eq. 22): 
 

𝑄 𝑄 𝐴 𝐴 𝑄 𝐴 𝐴  (22) 

 
Selecting a significance level 𝛼, it is possible to 

compute the critical value 𝛾 of the test statistic using 
the normal distribution 𝒩 0,1 . No gross error is 
detected if the absolute value of the standardized 
residual 𝑤  is less than 𝛾. 

Let 𝐺 denote the vector of length 𝑛 in which each 
entry 𝐺   corresponds to (Eq. 23): 
 

∀𝑖 1, … , 𝑛, 𝐺 𝑠 𝑞  (23) 

 
The acceptance region of Baarda’s test could be 

written in the following matrix formulation (Eq. 24): 
 

𝑈 𝑢 ∈ ℝ / 𝐺𝛾 𝑢 𝐺𝛾  (24) 
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To fulfil condition (iv), the simulated error vector 𝑉  
must be included in 𝑈. As it also fulfils conditions (i) and 
(ii), it is computed as 𝑉 𝑅  𝛽𝑧, where 𝑧 ∈ ℝ , 
(see Equation 17). Thus, the acceptance region of 
Baarda’s test could be written as (Eq. 25): 
 

𝑈 𝑢 ∈ ℝ / 𝐺𝛾 𝑅 𝛽𝑢 𝐺𝛾  (25) 

 
In practice, finding a simulated error vector that fulfils 

conditions (i) to (iv) is related to the quadratic 
optimization problem (Eq. 26): 
 

𝑚𝑎𝑥 ∈ℝ  𝜑 𝑢 𝑢 𝑢
𝑠. 𝑡. 𝐺𝛾 𝑅 𝛽𝑢 𝐺𝛾

 (26) 

 
In the general case, finding a solution of Equation 26 

is a non-deterministic polynomial-time hard problem 
(Pardalos and Vavasis, 1991) and called a nonconvex 
quadratic programming problem. It can be resolved 
using several global optimization methods for 
nonconvex QP problems (Pardalos, 1991).  

In practice, we do not really have to find the solution 
of problem (Equation 26). We just need to find 𝑢 ∈
ℝ  fulfilling conditions (i), (ii) and (iv). It is thus more 
suitable to use vertex enumeration methods like the 
ones described in (Avis and Fukuda, 1992). For the 
polyhedron defined in Equation 25, a point 𝑢 ∈ 𝑈 is a 
vertex of 𝑈 if, and only if, it is the unique solution to a 
subset of 𝑛 𝑚 inequalities, solved as equations. The 
enumeration process can be stopped when we get a 
vertex 𝑢 ∈ ℝ  such that  𝜑 𝑢 𝑛 𝑚 𝑠 . It is 
also possible to continue the enumeration process in 
order to select another vertex with the same 
properties, to simulate a kind of random selection. If 
the enumeration process finishes, we get the solution 
to the QP problem in Equation 26. 

Suppose now that we get a vertex 𝑢 ∈ ℝ  such 
that  𝜑 𝑢 𝑛 𝑚 𝑠 .  Let 𝑆 denote the sphere 
defined by (Eq. 27): 
 

𝑆 𝑢 ∈ ℝ  / 𝑢 𝑢 𝑛 𝑚 𝑠  (27) 

 
We may then compute a vector �̂� that fulfils 

conditions (i) to (iv) as the orthogonal projection of 𝑢 
onto the sphere defined in Equation 27. If for the 
solution 𝑢 of problem (Equation 26) we have 𝜑 𝑢
𝑛 𝑚 𝑠 , then it is not possible to find a point 

fulfilling the four conditions and �̂� is the point which is 
closest to fulfilling condition (iv). 

In our particular case, it is very easy to find the 
vertices of the polyhedron. As 𝛽 is an orthogonal basis 
of ker 𝐾 , 𝛽 𝛽 corresponds to the identity matrix, and 
by setting 𝜅  𝛽 𝑅𝐺𝛾, Equation 25 is simplified by (Eq. 
28): 
 

𝑈 𝑢 ∈ ℝ / 𝜅 𝑢 𝜅  (28) 

 

 
1 http://comet.esgt.cnam.fr/index.php?page=0801 

Polyhedron 𝑈 corresponds to a 𝑛 𝑚 -dimensional 
rectangle, whose 2  vertices are easy to find. For 
each vertex 𝑢, the quantity 𝜑 𝑢  is the same and 
corresponds to 𝜑 𝑢 𝜅 𝜅. 

In contrast to randomly selected values, the benefit 
of the described procedure is to control the 
synthetically generated observations w.r.t. the effect 
under investigation.   

 

IV. RESULTS AND DISCUSSION 

A. Criteria for comparisons 

For each network under consideration, 
measurements were simulated using the functional 
mathematical models of the CoMeT application, and 
were processed by each network adjustment 
application, using the same parameters as summarized 
in Table 3. We obtain adjusted ETRS89 coordinates for 
the unknown point M, directly or after transformation 
(JAG3D, Trinet+, LGC). Then the local coordinates of the 
estimated point M in the local astronomical system of 
the theoretical point M are computed, allowing the 
computation of coordinate deviations in the local 
horizontal plane and the local vertical. 

We also obtain quality parameters, such as residuals 
and estimated variance factors. The estimated variance 
factor can be seen as a global metric of the agreement 
between all the measurements in a network and the 
three-dimensional mathematical models used in a 
particular application. The method used to generate the 
error vector associated with simulated measurements 
ensures that when processed with an application that 
uses similar functional models, the estimated variance 
factor is close to one. This facilitates the comparisons as 
the closer the estimated variance factor is to one, the 
greater the similarity of CoMeT’s functional models to 
those of the tested application. 

 
B. Impact of the side length of the network 

This test is similar to the one proposed in Durand et 
al. (2020) and uses the same simulated measurements, 
which are available on a dedicated webpage1. All 
networks share the same shape (equilateral triangle in 
the horizontal plane) and the same barycentre P0, with 
point M located north of point P0 and side length 𝑑 as 
the varying parameter, as shown in Figure 1. In this 
contribution, we focus on the results obtained by all the 
tested applications for side lengths varying from 30 m 
up to 10 km. 

Figure 2 shows the estimated variance factors 
obtained by each adjustment application against the 
side length 𝑑 of each network. Small deviations of the 
estimated variance of unit weight is usually tolerable 
and does not significantly affect the estimates. For all 
network side lengths, the estimated variance factors 
are coherent among all the tested applications. Small 
discrepancies, about 10 percent difference, are just 
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noticeable for the Move3 and Geolab applications, for 
the network with side length 30 m. All applications are 
in good agreement whatever the network side length. 
It is evident that for the Trinet+ application, for network 
side lengths above 2 km, the estimated variance factor 
tends to decrease with the network side length (cf. 
Durand et al., 2020). This is coherent with the fact that 
the Trinet+ application was developed initially for 
application in an industrial context and not for large 
networks. 

 

 
Figure 2. Estimated variance factor against network side 

length. 
 

Figure 3 shows the differences, in the vertical 
component, between the adjusted and theoretical 
coordinates of point M, against network side length. In 
this study, a convergence criterion of 0.1 mm is used, 
indicated by the black dotted line, and absolute values 
of discrepancies less than this criterion could not be 
considered as significant. As shown in Figure 3, the 
discrepancies among the applications are negligible for 
network side lengths under 10 km. The only exception 
is the LGC application where non-negligible 
discrepancies exist: 2.3 mm at 5 km and 10 mm at 
10 km. These discrepancies are coherent with the use 
of the spherical datum, the IUGG Sphere, and not the 
IAG GRS80 reference ellipsoid. 

 

 
Figure 3. Differences, in millimetres, in the vertical 

component, between estimated and theoretical coordinates 
of point M, against network side length. 

 

Figure 4 shows the horizontal distances between the 
adjusted and theoretical coordinates of point M against 
network side length. The black dotted line indicates the 
convergence criterion value for 2D coordinates. For the 
Columbus, CoMeT, JAG3D, LGC and Trinet+ 
applications, no discrepancies exist, showing that their 
three-dimensional mathematical functional models are 

 
2 http://comet.esgt.cnam.fr/index.php?page=0802 

consistent. For Geolab, Move3 and Star*Net, 
discrepancies above the convergence criterion exist, 
but remain very small. We observe mean discrepancies 
values of 0.15 mm and 0.12 mm for the Move3 and 
Star*Net applications respectively. For Geolab the 
maximum discrepancy value is 0.19 mm for the network 
with side length 250 m. 

 

 
Figure 4. Horizontal distance, in millimetres, between 

estimated and theoretical coordinates of point M, against 
network side length. 

 

C. Impact of the ellipsoidal height of point M 

In this test, the main objective is to study the impact 
of an ellipsoidal height difference between the points 
on the results obtained by each software. The starting 
point is the network with a side length of 500 meters, 
with local vertical coordinates of 0 m, +10 m and -10 m 
for points M, S1 and S2 respectively, corresponding to 
ellipsoidal heights of 433.6658 m, 443.6658 m and 
423.6658 m respectively with respect to the IAG GRS80 
ellipsoid. 

Simulated measurements were computed for 
networks in which the ellipsoidal height of point M is 
modified by an offset varying from 30 m to 2500 m. This 
generates a varying ellipsoidal height difference among 
the points in the networks. The coordinates of the 
simulated networks, as well as the measurements, are 
available on a dedicated webpage2. 

Figure 5 shows the estimated variance factors of unit 
weight, obtained from each adjustment application, 
against the offset on the ellipsoidal height of point M. 
Whilst the network length affects the estimated 
variance of unit weight slightly, a vertical variation of 
the network biases the variance significantly in some 
applications. For the Trinet+ application, the estimated 
variance factor increases with the offset value on the 
ellipsoidal height of point M, from 1.0 under 250 m, up 
to 1.12 at 2.5 km. For the Geolab application, we 
observe that for offset values above 500 m, non-
negligible biases may exist, with a maximum value of 
1.3 visible for an offset value of 1 km. 

Figure 6 depicts the vertical difference between 
adjusted and theoretical coordinates of point M, 
against the offset on the ellipsoidal height of point M. 
We observe a very good agreement among all the 
applications, with negligible discrepancies. There are 
only two exceptions. For the Geolab application, 
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significant deviations exist, with a maximum value of 
0.5 mm for the network with an offset value of 1.5 km, 
and a standard deviation of 0.32 mm on the discrepancy 
value. For the Trinet+ application, small discrepancies 
(less than 0.2 mm) are visible for offset values between 
500 m and 1.5 km. 

 

 
Figure 5. Estimated variance factor of unit weight against 

offset value on the ellipsoidal height of point M. 
 

 
Figure 6. Differences, in millimetres, in the vertical 

component, between estimated and theoretical coordinates 
of point M, against offset value on its ellipsoidal height. 

 

Figure 7 shows the horizontal distances, between 
adjusted and theoretical coordinates of point M, 
against the offset on the ellipsoidal height of point M. 
For the Columbus, CoMeT and JAG3D applications, no 
discrepancies exist. The Move3 and Star*Net 
applications show very similar results, with small 
discrepancies: mean value of 0.22 mm and 0.19 mm, 
respectively. For the LGC and Trinet+ applications, 
discrepancies increase with the offset value. These go 
from 0 mm at 100 m to 0.3 mm at 500 m for Trinet+; 
and for LGC from 0.15 mm at 1.5 km to 0.4 mm at 
2.5 km. Geolab is the application most affected by the 
variation of the offset value, with a mean discrepancy 
value of 1.7 mm and the maximum value of 3.3 mm for 
an offset value of 1.5 km. 

 

 
Figure 7. Horizontal distance, in millimetres, between 

estimated and theoretical coordinates of point M, against 
offset value on the ellipsoidal height of point M. 

V. CONCLUSION 

This paper has investigated the dependency of 
network results on the adjustment application. 
Simulated measurements were processed with all 
tested applications. The main advantage of the test 
methodology presented is that it allows the selection 
and control of a single changing parameter in 
comparable sets of measurements. It also allows 
random error values, added to the theoretical 
measurements, to be determined to facilitate the 
comparison process. Both the estimated variance 
factors and the differences between adjusted and 
theoretical coordinates of the unknown point are used 
as metrics of the agreement between the three-
dimensional mathematical models used in each of the 
tested applications. We apply our test methodology on 
several network adjustment applications, to study the 
impact of the network side length and of a difference in 
the ellipsoidal heights of the points. We show that all 
applications agree to the first order, but there can be 
non-negligible discrepancies, that have a real impact on 
the adjusted coordinates of up to several millimeters. 

Almost identical results are obtained from Columbus, 
CoMet, JAG3D and Trinet+ in the horizontal network. 
LGC approximates the Earth by a sphere instead of an 
ellipsoid. For small networks, the resulting vertical 
deviations are well below 0.1 mm and are negligible. 
However, the vertical deviation depends on the 
network extent and, thus, becomes significant in 
networks larger than 1 km. 

In the vertical network, the results are more 
heterogeneous. Geolab achieved the largest deviations 
in the results. Moreover, for Move3 and Star*Net, an 
offset was detected in the horizontal distance, which 
needs further investigation. Almost identical results 
yield Columbus, CoMet and JAG3D. 
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