Format | |
---|---|
BibTeX | |
MARCXML | |
TextMARC | |
MARC | |
DublinCore | |
EndNote | |
NLM | |
RefWorks | |
RIS |
Files
Abstract
Raman spectroscopy is a powerful and non-destructive technique for chemical and structural identification. Based on inelastic scattering of laser light by molecular vibrations, the analysis can be localized on a microscopic area when combined with a microscope. Thus, by moving the sample under the microscope objective and recording a Raman spectrum at each point, a map of the intensity of specific Raman bands can be generated, effectively creating a chemical image of the sample at the microscale. Here, we present an application of this technique for identifying and localizing active pharmaceutical ingredients in a polymer matrix.