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Abstract. Building accurate knowledge of the identity, the geographic
distribution and the evolution of species is essential for the sustainable
development of humanity, as well as for biodiversity conservation. How-
ever, the difficulty of identifying plants, animals and fungi is hindering
the aggregation of new data and knowledge. Identifying and naming
living organisms is almost impossible for the general public and is of-
ten difficult even for professionals and naturalists. Bridging this gap
is a key step towards enabling effective biodiversity monitoring sys-
tems. The LifeCLEF campaign, presented in this paper, has been pro-
moting and evaluating advances in this domain since 2011. The 2022
edition proposes five data-oriented challenges related to the identifica-
tion and prediction of biodiversity: (i) PlantCLEF: very large-scale plant
identification, (ii) BirdCLEF: bird species recognition in audio sound-
scapes, (iii) GeoLifeCLEF: remote sensing based prediction of species,
(iv) SnakeCLEF: snake species identification on a global scale, and (v)
FungiCLEF: fungi recognition as an open set classification problem. This
paper overviews the motivation, methodology and main outcomes of that
five challenges.
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1 LifeCLEF Lab Overview

Accurately identifying organisms observed in the wild is an essential step in
ecological studies. Unfortunately, observing and identifying living organisms re-
quires high levels of expertise. For instance, vascular plants alone account for
more than 300,000 different species and the distinctions between them can be
quite subtle. The world-wide shortage of trained taxonomists and curators capa-
ble of identifying organisms has come to be known as the taxonomic impediment.
Since the Rio Conference of 1992, it has been recognized as one of the major
obstacles to the global implementation of the Convention on Biological Diver-
sity1. In 2004, Gaston and O’Neill [17] discussed the potential of automated
approaches for species identification. They suggested that, if the scientific com-
munity were able to (i) produce large training datasets, (ii) precisely evaluate
error rates, (iii) scale up automated approaches, and (iv) detect novel species,
then it would be possible to develop a generic automated species identification
system that would open up new vistas for research in biology and related fields.

Since the publication of [17], automated species identification has been stud-
ied in many contexts [4,19,20,32,50,75,76,86]. This area continues to expand
rapidly, particularly due to advances in deep learning [3,18,51,60,78,79,80,81]. In
order to measure progress in a sustainable and repeatable way, the LifeCLEF2

research platform was created in 2014 as a continuation and extension of the
plant identification task that had been run within the ImageCLEF lab3 since
2011 [22,23,24]. Since 2014, LifeCLEF expanded the challenge by considering an-
imals and fungi in addition to plants, and including audio and video content in
addition to images [33,34,35,36,37,38,39,40]. Nearly a thousand researchers and
data scientists register yearly to LifeCLEF in order to either download the data,
subscribe to the mailing list, benefit from the shared evaluation tools, etc. The
number of participants who finally crossed the finish line by submitting runs was
respectively: 22 in 2014, 18 in 2015, 17 in 2016, 18 in 2017, 13 in 2018, 16 in 2019,
16 in 2020, 1,022 in 2021 (including the 1,004 participants of the BirdCLEF Kag-
gle challenge). The 2022 edition proposes five data-oriented challenges: three in
the continuity of the 2021 edition (BirdCLEF, GeoLifeCLEF and SnakeCLEF),
one new challenge related to fungi recognition with a focus on the combination
of visual information with meta-data on an open species set (FungiCLEF), and
a considerable expansion of the PlantCLEF challenge towards the identification
of the world’s flora (about 300K species).

The system used to run the challenges (registration, submission, leaderboard,
etc.) was the AICrowd platform4 for the PlantCLEF challenge and the Kaggle
platform5 for the GeoLifeCLEF, BirdCLEF, SnakeCLEF and FungiCLEF chal-
lenges. Three of the challenges (GeoLifeCLEF, SnakeCLEF, and FungiCLEF)

1 https://www.cbd.int/
2 http://www.lifeclef.org/
3 http://www.imageclef.org/
4 https://www.aicrowd.com
5 https://www.kaggle.com
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were organized jointly with FGVC6, an annual workshop dedicated to Fine-
Grained Visual Categorization organized in the context of the CVPR7 interna-
tional conference on computer vision and pattern recognition.
In total, 951 people/teams participated to LifeCLEF 2022 edition by submitting
runs to at least one of the five challenges (802 only for the BirdCLEF challenge).
Only some of them managed to get the results right, and about 30 of them went
all the way through the CLEF process by writing and submitting a working note
describing their approach and results (for publication in CEUR-WS proceed-
ings8). In the following sections, we provide a synthesis of the methodology and
main outcomes of each of the five challenges. More details can be found in the
extended overview reports of each challenge and in the individual working notes
of the participants (references provided below).

2 PlantCLEF Challenge: Identify the World’s Flora

A detailed description of the challenge and a more complete discussion of the
results can be found in the dedicated working note [21].

2.1 Objective
Automated identification of plants has recently improved considerably thanks to
the progress of deep learning and the availability of training data with more and
more photos in the field. In the context of LifeCLEF 2018, we measured a top-1
classification accuracy over 10K species up to 90 % and we showed that auto-
mated systems were not so far from human expertise [33]. However, these very
high performances are far from being reached at the scale of the world flora. It is
estimated that there are about 391,000 vascular plant species currently known
to science and new plant species are still discovered and described each year.
This plant diversity is a major element in the functioning of ecosystems as well
as for the development of human civilization. Unfortunately, the vast majority of
these species are very poorly known and the number of training images available
is extremely low for the majority of them [66].
The goal of the 2022 edition of PlantCLEF was to take another step towards
identifying the world’s flora. Therefore, we have built a training set of unprece-
dented size covering 80K species and containing 4M images. It was shared with
the community through a challenge9 hosted on the AIcrowd platform.

2.2 Dataset
The training set is composed of two subsets: a trusted training set coming from
the GBIF10 portal (the world’s largest biodversity data portal) and a web-based
6 http://www.fgvc.org/
7 https://cvpr2022.thecvf.com/
8 http://ceur-ws.org/
9 https://www.aicrowd.com/challenges/lifeclef-2022-plant

10 https://gbif.org/
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training set containing images collected via web search engines and containing
several kinds of noise.

More precisely, the GBIF training dataset is based on a selection of more than
2.9M images covering 80k plant species shared and collected mainly via GBIF
(and Encyclopedia Of Life 11 to a lesser extent). These images come mainly from
academic sources (museums, universities, national institutions) and collaborative
platforms such as inaturalist or Pl@ntNet, implying a fairly high certainty of
determination quality (collaborative platforms only share their highest quality
data qualified as ”research graded”). To limit the size of the training set and
limit class imbalance, the number of images was limited to around 100 images
per species, favouring types of views adapted to the identification of plants (close-
ups of flowers, fruits, leaves, trunks, ...).

The web dataset, on the other side, is based on a collection of web images
provided by commercial search engines (Google and Bing). The raw downloaded
data has a significant rate of species identification errors and a massive pres-
ence of (near)-duplicates and images not adapted for the identification of plant
photographs (e.g. herbarium sheets, landscapes, microscopic views, ...). It even
contains completely off-topic images such as portrait photos of botanists, maps,
graphs, other kingdoms of the living, manufactured objects, etc. Thus, the raw
data was cleaned up using a semi-automatic filtering (iterations of CNNs train-
ing, inference and human labelling). This filtering process drastically reduced
the number of irrelevant pictures and also improved the overall image quality by
favoring close-ups of flowers, fruits, leaves, trunks, etc. The web dataset finally
contains about 1.1 million images covering about 57k species.

Participants were allowed to use complementary training data (e.g. for pre-
training purposes) but at the condition that (i) the experiment is entirely repro-
ducible, i.e. that the used external resource is clearly referenced and accessible
to any other research group in the world, (ii) the use of external training data or
not is mentioned for each run, and (iii) the additional resource does not contain
any of the test observations. External training data was allowed but participants
had to provide at least one submission that used only the provided data.

Lastly, the test set was built from multi-image plant observations collected
on the Pl@ntNet platform during the year 2021 (observations not yet shared
through GBIF, and thus not present in the training set). Only observations
that received a very high confidence score in the Pl@ntNet collaborative review
process were selected for the challenge to ensure the highest possible quality of
determination. This process involves people with a wide range of skills (from be-
ginners to world-leading experts), but these have different weights in the decision
algorithms. Finally, the test set contains about 27k plant observations related
to about 55k images (a plant can be associated with several images) covering
about 7.3k species.

11 https://eol.org/
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2.3 Evaluation Protocol

The primary metrics used for the evaluation of the task is be the Mean Reciprocal
Rank. The MRR is a statistic measure for evaluating any process that produces
a list of possible responses to a sample of queries ordered by probability of
correctness. The reciprocal rank of a query response is the multiplicative inverse
of the rank of the first correct answer. The MRR is the average of the reciprocal
ranks for the whole test set:

MRR =
1

Q

Q∑
q=1

1

rankq
(1)

where Q is the total number of query occurrences (plant observations) in the
test set. However, the macro-average version of the MRR (average MRR per
species in the test set) was used because of the long tail of the data distribution
to rebalance the results between under- and over-represented species in the test
set.

2.4 Participants and Results

Eight participants registered to the PlantCLEF challenge hosted on AICrowd
but only four of them managed to perform well. The four others encountered dif-
ficulties mainly related to the very large scale of the challenge (both in terms of
the number of images and number of classes) and the need of high ended GPUs
for resource-intensive experiments. Details of the methods and systems used are
synthesized in the extended overview working note of the challenge [21] and fur-
ther developed in the individual working notes of participants ([5,8,46,58,67,85].
We report in Figure 1 the performance achieved by the different runs of the
participants.

The main outcomes we can derive from that results are the following:
– the best results were obtained by the only team which used vision transform-

ers [85] contrary to the others which used convolutional neural networks, i.e.
the traditional approach of the state-of-the-art for image-based plant identifi-
cation. However, this gain in identification quality is paid for by a significant
increase of the training time. The winning team reported that they had to
stop the training of the model in order to submit their run to the challenge.
Thus, better results could have surely been obtained with a few more days
of training (as demonstrated through post-challenge evaluations reported in
the their working note [85].

– One of the main difficulties of the challenge was the very large number of
classes (80K). For most of the models used, the majority of the weights to be
trained are those of the last fully connected layer of the classifier. This was an
important consideration for all participants in their model selection strategy.
Some teams have tried to limit this cost through specific approaches. The
BioMachina team [5], in particular, used a two-level hierarchical softmax



Fig. 1: PlantCLEF 2022 results

to reduce the number of weights drastically. They reported an considerable
training time reduction while maintaining almost the same identification
quality.

3 BirdCLEF Challenge: Bird call identification in
soundscape recordings

A detailed description of the challenge and a more complete discussion of the
results can be found in the dedicated working note [43].

3.1 Objective

The LifeCLEF Bird Recognition Challenge (BirdCLEF) was launched in 2014
and has since become the largest bird sound recognition challenge in terms of
dataset size and species diversity, with multiple tens of thousands of recordings
covering up to 1,500 species [25,41,42,44]. Birds are ideal indicators to identify
early warning signs of habitat changes that are likely to affect many other species.
They have been shown to respond to various environmental changes over many
spatial scales. Large collections of (avian) audio data are an excellent resource
to conduct research that can help to deal with environmental challenges of our
time. The community platform Xeno-canto12 in particular was launched in 2005
and hosts bird sounds from all continents. It receives new recordings every day
12 https://www.xeno-canto.org/

https://www.xeno-canto.org/


from some of the remotest places on Earth. The Xeno-canto archive currently
consists of more than 700,000 focal recordings covering over 10,000 species of
birds, making it one of the most comprehensive collections of bird sound record-
ings worldwide, and certainly the most comprehensive collection shared under
Creative Commons licenses. Xeno-canto data was used for BirdCLEF in all past
editions to provide researchers with large and diverse datasets for training and
testing.

In recent years, research in the domain of bioacoustics shifted towards deep
neural networks for sound event recognition [45,72]. In past editions, we have seen
many attempts to utilize convolutional neural network (CNN) classifiers to iden-
tify bird calls based on visual representations of these sounds (i.e., spectrograms)
[26,48,59]. Despite their success for bird sound recognition in focal recordings, the
classification performance of CNN on continuous, omnidirectional soundscapes
remained low. Passive acoustic monitoring can be a valuable sampling tool for
habitat assessments and the observation of environmental niches which often are
endangered. However, manual processing of large collections of soundscape data
is not desirable and automated attempts can help to advance this process [83].
Yet, the lack of suitable validation and test data prevented the development of
reliable techniques to solve this task. Bridging the acoustic gap between high-
quality training recordings and soundscapes with high ambient noise levels is one
of the most challenging tasks in the domain of audio event recognition. This is
especially true when sufficient amounts of training data are lacking. This is the
case for many rare and endangered bird species around the globe and despite the
vast amounts of data collected on Xeno-canto, audio data for endangered birds
is still sparse. However, it is those endangered species that are most relevant
for conservation, rendering acoustic monitoring of endangered birds particularly
difficult.

The main goal of the 2022 edition of BirdCLEF was to advance automated
detection of rare and endangered bird species that lack large amounts of training
data. The competition was hosted on Kaggle13 to attract machine learning ex-
perts from around the world to participate and submit. The overall task design
was consistent with previous editions, but the focus was shifted towards species
with very few training samples.

3.2 Dataset and Evaluation Protocol

As the “extinction capital of the world,” Hawai’i has lost 68% of its bird species,
the consequences of which can harm entire food chains. Researchers use popu-
lation monitoring to understand how native birds react to changes in the envi-
ronment and conservation efforts. But many of the remaining birds across the
islands are isolated in difficult-to-access, high-elevation habitats. With physical
monitoring difficult, scientists have turned to sound recordings. This approach
could provide a passive, low labor, and cost-effective strategy for studying en-
dangered bird populations.
13 https://www.kaggle.com/c/birdclef-2022

https://www.kaggle.com/c/birdclef-2022


Fig. 2: Expert ornithologists provided bounding box labels for all soundscape
recordings indicating calling of 21 target species. In this example, all ‘I‘iwi calls
were annotated, while vocalizations of other species were not labeled. This la-
beling scheme was applied to all test data soundscapes.

Current methods for processing large bioacoustic datasets involve manual
annotation of each recording. This requires specialized training and prohibitively
large amounts of time. Thankfully, recent advances in machine learning have
made it possible to automatically identify bird songs for common species with
ample training data. However, it remains challenging to develop such tools for
rare and endangered species, such as those in Hawai’i.

Deploying a bird sound recognition system to a new recording and obser-
vation site requires classifiers that generalize well across different acoustic do-
mains. Focal recordings of bird species form an excellent base to develop such a
detection system. However, the lack of annotated soundscape data for a new de-
ployment site poses a significant challenge. As in previous editions, training data
was provided by the Xeno-canto community and consisted of more than 14,800
recordings covering 152 species. Participants were allowed to use metadata to
develop their systems. Most notably, we provided detailed location information
on recording sites of focal and soundscape recordings, allowing participants to
account for migration and spatial distribution of bird species.

In this edition, test data, consisting of 5,356 soundscapes amounting to more
than 90 hours of recordings, were hidden and only accessible to participants dur-
ing the inference process. These soundscapes were collected for various research
projects by the Listening Observatory for Hawaiian Ecosystems (LOHE) at the
University of Hawai‘i at Hilo from 7 sites across the islands of Hawai‘i, Maui,
and Kaua‘i. All soundscapes received some level of manual bird vocalization an-
notation by specially trained members of the LOHE lab using Raven Pro 1.5
software, however some recordings had a select few target species annotated,
while others were annotated for every detectable species (see Figure 2). In light
of these uneven annotation strategies, only the subset of species for which every
vocalization was annotated were scored for any given file. This resulted in a to-
tal of 21 scored bird species in the contest, 15 species endemic to the Hawaiian
Islands and 6 introduced species.

The goal of the task was to localize and identify 21 target bird species within
the provided soundscape test set. Each soundscape was divided into segments of



Fig. 3: Scores achieved by the best systems evaluated within the bird identifica-
tion task of LifeCLEF 2022.

5 seconds, and a list of audible species had to be returned for each segment. The
used evaluation metric was a weighted variant of the macro-averaged F1-score. In
previous editions, ranking metrics were used to assess the overall classification
performance. However, when applying bird call identification systems to real-
world data, confidence thresholds have to be set in order to provide meaningful
results. The F1-score as balanced metric between recall and precision appears
to better reflect this circumstance. For each 5-second segment, a binary call
indication for all 21 scored species had to be returned. Participants had to apply
a threshold to determine if a species is vocalizing during a given segment (True)
or not (False).

3.3 Participants and Results

1,019 participants from 62 countries on 807 teams entered the BirdCLEF 2022
competition and submitted a total of 23,352 runs. Details of the best methods
and systems used are synthesized in the overview working notes paper of the
task [43] and further developed in the individual working notes of participants.
In Figure 3 we report the performance achieved by the top 50 collected runs.
The private leaderboard score is the primary metric and was revealed to par-
ticipants after the submission deadline to avoid probing the hidden test data.
Public leaderboard scores were visible to participants over the course of the en-
tire challenge.

The baseline F1-score in this year’s edition was 0.5112 (public 0.4849) with
all scored birds marked as silent (False) for all segments, and 665 teams managed
to score above this threshold. The best submission achieved a F1-score of 0.8527
(public 0.9128) and the top 10 best performing systems were within only 7%
difference in score. The vast majority of approaches were based on convolutional



neural network ensembles and mostly differed in pre- and post-processing and
neural network backbone. Interestingly, few-shot learning techniques were vastly
underrepresented despite the fact that some target species only had a handful
of training samples. Participants employed various sophisticated post-processing
schemes, most notably a percentile based thresholding approach that was estab-
lished during the 2021 edition [28]. Some participants experimented with differ-
ent loss functions, especially focal loss being the most notable. However, results
were inconsistent across teams. Some teams used audio transformers, but again,
results were inconsistent and led to discussions about whether these methods
were appropriate for the task of bird call identification.

4 GeoLifeCLEF Challenge: Predicting Species Presence
From Multi-Modal Remote Sensing, Bioclimatic and
Pedologic Images

A detailed description of the challenge and a more complete discussion of the
results can be found in the dedicated working note [57].

4.1 Objective

Automatic prediction of the list of species most likely to be present at a given
location is useful for many scenarios related to biodiversity management and
conservation. First, it can improve species identification tools (whether auto-
matic, semi-automatic or based on traditional field guides) by reducing the list
of candidate species observable at a given site. Moreover, it can facilitate deci-
sion making related to land use and land management with regard to biodiversity
conservation obligations (e.g., to determine new constructible areas or new nat-
ural areas to be protected). Last but not least, it can be used in the context of
educational and citizen science initiatives, e.g., to determine regions of interest
with a high species richness or vulnerable habitats to be monitored carefully.

4.2 Data Set and Evaluation Protocol

Data collection. The data for this year’s challenge is a cleaned-up ver-
sion of the data from previous years, essentially removing species integrated
by error and those observed less than 3 times. A detailed description of the
GeoLifeCLEF 2020 dataset is provided in [9] and a complete changelog of the
cleaning process is available on the Kaggle page14. In a nutshell, the dataset con-
sists of over 1.6 million observations covering 17, 037 plant and animal species
distributed across US and France (as shown in Figure 4). Each species obser-
vation is paired with high-resolution covariates (RGB-NIR imagery, land cover
and altitude data) as illustrated in Figure 5. These high-resolution covariates are
resampled to a spatial resolution of 1 meter per pixel and provided as 256× 256

14 https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9/data

https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9/data


(a) US
(b) France

Fig. 4: Observations distribution over the US and France in GeoLifeCLEF 2022.
Blue dots represent training data, red dots represent test data.

images covering a 256m × 256m square centered on each observation. RGB-NIR
imagery come from the 2009-2011 cycle of the National Agriculture Imagery Pro-
gram (NAIP) for the US15, and from the BD-ORTHO® 2.0 and ORTHO-HR®
1.0 databases from the IGN for France16. Land cover data originates from the
National Land Cover Database (NLCD) [30] for the U.S. and from CESBIO17

for France. All elevation data comes from the NASA Shuttle Radar Topography
Mission (SRTM)18. In addition, the dataset also includes traditional coarser res-
olution covariates: bio-climatic rasters (1km2/pixel, from WorldClim [29]) and
pedologic rasters (250m2/pixel, from SoilGrids [27]).

Train-test split. The full set of occurrences is split in a training and test-
ing set using a spatial block holdout procedure to limit the effect of spatial
auto-correlation in the data [69]. Using this splitting procedure, a model cannot
achieve a high performance by simply interpolating between training samples.
The split was based on a global grid of 5km × 5km quadrats. 2.5% of these
quadrats were randomly sampled and the observations falling in those formed the
test set. 10% of those observations were used for the public leaderboard on Kaggle
while the remaining 90% allowed to compute the private leaderboard providing
the final results of the challenge. Similarly, another 2.5% of the quadrats were
randomly sampled to provide an official validation set. The remaining quadrats
and their associated observations were assigned to the training set.

Evaluation metric. For each occurrence in the test set, the goal of the task
was to return a candidate set of species likely to be present at that location. To
measure the precision of the predicted sets, top-30 error rate was chosen as the
main evaluation criterion. Each observation i is associated with a single ground-
truth label yi corresponding to the observed species. For each observation, the

15 https://www.fsa.usda.gov
16 https://geoservices.ign.fr
17 http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/
18 https://lpdaac.usgs.gov/products/srtmgl1v003/

https://www.fsa.usda.gov
https://geoservices.ign.fr
http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-s2-2016/
https://lpdaac.usgs.gov/products/srtmgl1v003/


Fig. 5: In the GeoLifeCLEF dataset, each species observation is paired with high-
resolution covariates (clockwise from top left: RGB imagery, IR imagery, altitude,
land cover).

submissions provided 30 candidate labels ŷi,1, ŷi,2, . . . , ŷi,30. The top-30 error
rate was then computed using

Top-30 error rate =
1

N

N∑
i=1

ei, (2)

where

ei =

{
1 if ∀k ∈ {1, . . . , 30}, ŷi,k ̸= yi

0 otherwise
. (3)

Note that this evaluation metric does not try to correct the sampling bias
inherent to present-only observation data (linked to the density of population,
etc.). The absolute value of the resulting figures should thus be taken with care.
Nevertheless, this metric does allow to compare the different approaches and
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Fig. 6: Results of the GeoLifeCLEF 2022 task. The top-30 error rates of the best
submission of each participant are shown in blue. The provided baselines are
shown in orange.

to determine which type of input data and of models are useful for the species
presence detection task.

4.3 Participants and Results

52 teams participated and submitted at least one prediction file through the
Kaggle19 page of the GeoLifeCLEF 2022 challenge for a total number submission
in the course of the competition of 261. Out of these teams, 7 managed to beat
the weakest (non-constant) baseline provided and 5 the strongest one. Details
of the baselines provided and of the methods used in the submitted runs are
synthesized in the overview working note paper for this task [57]. The runs of
5 of those participants are further developed in their individual working notes
[31,47,49,74,87]. Figure 6 shows the final standings given by the Kaggle’s private
leaderboard. We briefly highlight the main methods used by the participants.

Multi-modal data. The main challenge of this competition is to find a
proper way to aggregate the heterogeneous sources of data and to deal with
their respective characteristics: while RGB and NIR patches are standard im-
ages, other data is not directly provided in this format. For instance, altitude can
not be casted in uint8 without loss of information, land cover data is a categor-
ical variable, bioclimatic and pedologic data have a resolution and range of their
own, and, localisation (GPS coordinates) is a punctual information. Interest-
ingly, the participants did try different means of aggregating this heterogeneous
19 https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9

https://www.kaggle.com/c/geolifeclef-2022-lifeclef-2022-fgvc9


data with more or less success and conflicting result. For instance, [49] tried the
most straight-forward and easy to implement approach: train separate models
and average their predictions. The winning team and [47,74] used complete net-
works as feature extractors for each chosen modality separately, concatenated
the resulting representation and fed it to a final classifier (single or multiple
linear layers). This is the approach which was chosen by GeoLifeCLEF 2021
winning solution [71]. [87] used single-layer features extractors which outputs
are summed before being fed to a Swin transformer [55]. Finally, [74] used early
aggregation by directly feeding the network with aggregated patches with more
than 3 channels.

Species imbalance. Another important trait of the dataset is its imbalance:
a few species account for most of the observations, while a lot of them have only
been observed a handful of times. [47,31] tried to use specialized method for
this type of data such as focal loss [52], balanced softmax [68] or more advanced
methods. These did not help improve their scores, most likely because the test
set shares the same imbalance as the training set and the evaluation metric did
take it into account (the fixed list of metrics implemented by Kaggle did not
allow us to use a class-averaged top-30 error rate).

Presence-only observation data. One last major characteristic of the
dataset is that the observation data provided is presence-only data: at a given
location, we only know that one species is present and do not have access of the
complete list of species present nor the ones absent. The winning team and [47]
tried to address this by using a grid of squared cells to aggregate the species
observed into each cell. They then used this information in a different manner.
The winning team tried to map the 30 species closest to each training point
falling into its cell and used this list as the new label. Unfortunately, in the
given time, this approach only resulted in overfitting. On the other hand, [47]
successfully used the aggregated observations as a regularization method by
replacing the label assigned to each training observation by another species from
its cell 10% of the time.

Other methods were also tried out such as different architectures, different
approaches for model pretraining (no pretraining, pretraining on ImageNet, on
another dataset closer to GeoLifeCLEF 2022, etc.), multi-task learning, and a
lot more. These are more exhaustively listed in the GeoLifeCLEF 2022 overview
working note paper [57] along with a more detailed description of the methods
presented above and further analyses.

5 SnakeCLEF challenge: Automated Snake Species
Identification on a Global Scale

A detailed description of the challenge and a more complete discussion of the
results can be found in the dedicated overview paper [64].



5.1 Objective

Building an automatic and robust image-based system for snake species iden-
tification is an important goal for biodiversity, conservation, and global health.
With over half a million victims of death and disability from venomous snakebite
annually, such a system could significantly improve eco-epidemiological data and
treatment outcomes (e.g. based on the specific use of antivenoms) [2,6]. Impor-
tantly, most herpetological expertise and most snake images are concentrated in
developed countries in areas of the world where snake diversity is relatively low
and snakebite is not a major public health concern. In contrast, remote parts
of developing countries tend to lack expertise and images, even in areas where
snake diversity is high and snakebites are common [15]. Thus, snake species iden-
tification assistance has a bigger potential to save lives in areas with the least
information.

A primary difficulty of snake species identification lies in the high intra-class
and low inter-class variance in appearance, which may depend on geographic
location, color morph, sex, or age. At the same time, many species are visu-
ally similar to other species – mimicry (Figure 7). Furthermore, our knowledge
of which snake species occur in which countries is incomplete, and it is com-
mon that most or all images of a given snake species might originate from a
small handful of countries or even a single country. Furthermore, many snake
species resemble species found on other continents, with which they are entirely
allopatric. Incorporating metadata on the geographic origin of an unidentified
snake can narrow down the possible correct identifications considerably because
only about 125 of the approximately 3,900 snake species co-occur in any given
location [70]. It is known that more widespread species with more images are
over-predicted relative to rare species with few images [16], and this can be a
particularly vexing problem when trying to predict the identity of species that
are widespread across areas of the world with few images.

The main goal of the SnakeCLEF 2022 competition was to provide a reliable
evaluation ground for automatic snake species recognition. Like other LifeCLEF
competitions, the SnakeCLEF 2022 competition was hosted on Kaggle20 primar-
ily to attract machine learning experts to participate and present their ideas.

5.2 Dataset and Evaluation Protocol

For this year, the dataset used in previous editions [62,?] has been extended
with new and rare species. The number of species was doubled and the num-
ber of images from remote geographic areas with none or just a few samples
was increased considerably, i.e., the uneven species distributions across all the
countries was straightened. The SnakeCLEF 2022 dataset is based on 187,129
snake observations – multiple images of the same individual (refer to Figure 8)
– with 318,532 photographs belonging to 1,572 snake species and observed in
20 https://www.kaggle.com/competitions/fungiclef2022

https://www.kaggle.com/competitions/fungiclef2022


Fig. 7: Harmless mimic species Cemophora coccinea ssp. coccinea (top row) and
poisonous lookalike species. Micrurus pyrrhocryptus, Micrurus ibiboboca, and
Micrurus nigrocinctus (left to right, bot. row). ©roadmom–iNaturalist, ©An-
thony Damiani–iNaturalist, ©Adam Cushen–iNaturalist, ©Alexander Guiñazu–
iNaturalist, ©Tarik Câmara–iNaturalist, and ©Cristhian Banegas–iNaturalist.

208 countries. The dataset has a heavy long-tailed class distribution, where the
most frequent species (Natrix natrix) is represented by 6,472 images and the
least frequent species just by 5 samples. The difference in the number of images
between the species with the most and fewest was reduced by an order of mag-
nitude relative to SnakeCLEF2021. All the data was gathered from the online
biodiversity platform – iNaturalist21.

For testing, two sets were created: (i) the full test set for a machine evaluation,
with 48,280 images from 28,431 observations, and (ii) the subset from the full
test set with 150 observations, tailored for the human performance evaluation.
Unlike in other LifeCLEF competitions, where the final testing set remained
undisclosed, we provided the test data without labels to the participants. To
prevent over fitting to the leaderboard, the evaluation method was composed
of two stages; the first being the public leaderboard where the user scores were
calculated on an unknown 20% of the test set, and the second a private leader-
board where participants were scored on the remaining part of the test set. In
addition to image data, we provide:

21 https://www.inaturalist.com/

https://www.inaturalist.org/observations/110567604
https://www.inaturalist.org/observations/113900167
https://www.inaturalist.org/observations/115428948
https://www.inaturalist.org/observations/117853506
https://www.inaturalist.org/observations/119838602
https://www.inaturalist.org/observations/118449200
https://www.inaturalist.com/


Fig. 8: Two snake observations from SnakeCLEF2022 dataset – three images for
each individual. ©André Giraldi – iNaturalist, ©Harshad Sharma – iNaturalist.

– human verified species labels that allows up-scaling to higher taxonomic
ranks,

– the country-species mapping file describing species-country presence to al-
low better regularization towards all geographical locations, based on The
Reptile Database [77], and

– information about endemic species – species that occur only in one geograph-
ical region, e.g., Australia or Madagascar.
The geographical information, e.g., state and country labels, was included

for approximately 95% of the training and test images. Additionally, we provide
a mapping matrix (MMcs) describing country-species presence to allow better
worldwide regularization.

MMcs =

{
1 if species S ∈ country C,

0 otherwise.
(4)

Unlike last year’s dataset, where the vast majority (77%) of all images came
from the United States and Canada, the SnakeCLEF 2022 dataset includes just
a fraction of the data (28.3%) from the United States and Canada. The rest
of the data is distributed across remaining regions, e.g., Europe, Asia, Africa,
Australia and Oceania.

Evaluation: The main goal of this challenge was to build a system that is
capable of recognizing 1,572 snake species based on the given snake observation
– unseen set of images – and relevant geographical location. As a main metric,
we use the macro F1 score (Fm

1 ). The Fm
1 is defined as the mean of class-wise

F1 scores:

https://www.inaturalist.org/observations/25915308
https://www.inaturalist.org/observations/65147559


Fm
1 =

1

N

N∑
s=0

F1s , F1s = 2× Ps ×Rs

Ps +Rs
, (5)

where s is species index, N equals to the number of classes in a training set.
The F1 score for each class represents harmonic mean of the class precision Ps

and recall Rs.

5.3 Participants and Results

A total of 29 teams participated in the SnakeCLEF 2022 challenge and con-
tributed with 648 submissions. Everyone who submitted a solution better than
baseline submission, i.e., random predictions, was considered a participant. The
number of participants quadrupled since last year, primarily as Kaggle was used
as an evaluation platform. The best performing team achieved Fm

1 of 86.47% on
a private part of a test set and 94.01% accuracy on the full test set. On the ex-
pert set, the best performing team achieved an Fm

1 of 90.28%. The performance
evaluation for top-20 Teams is provided in Figure 9. At the time of writing, the
organisers could not reproduce any score from the leaderboard, even though
most teams provided code.

Details of the best submitted methods and systems are synthesized in the
overview working notes paper [64] and further developed in the individual work-
ing notes. The main outcomes we can derive from the achieved results are as
follows:

Transformer-based architectures outperformed CNNs. This year var-
ious deep neural network architectures – Convolutional Neural Networks and
Transformers – were evaluated; ConvNext [56], EfficientNet [73], Vision Trans-
former [14], Swin Transformer [55], and MetaFormer [13]. Unlike last year, where
the CNN architectures overwhelmed the performance, Vision Transformer archi-
tectures were a vital asset for most methods submitted this year. The second
best method with Fm

1 score of 84.56% was based on an ensemble of exclusively
ViT models and performed slightly worst (−0.9%) than the best performing
system that used a combination of Transformer and CNN models. An ensemble
of MetaFormer models achieved the third-best score of 82.65%. It seems that
Transformers and CNNs benefit from each other in an ensemble, while a stan-
dalone Transformer ensemble performs better than a pure CNN ensemble which
achieved an Fm

1 score of ”only” 70.8%

Loss Function matters. Several loss functions were evaluated: Label Aware
Smoothing [88], (modified) Categorical Cross-Entropy, and Seesaw [82]. Overall,
any Loss function if used is better than standard CrossEntropy. The wining team
used Label Aware Smoothing. The runner-up used an Effective Logit Adjustment
Loss and showed an improvement of around 2% of Fm

1 score when compared to
Cross Entropy, reducing the error rate by 15%. The the third team used Logit
adjustment to outperform the Seesaw loss from an Fm

1 score of 76.5% to 78.6%.



Self-supervision has potential. Adding unlabeled data to the train set
is a welcome option when not many observations of a species are available.
The third team used the SimCLR [7] method with InfoNCE [61] loss function to
increase the Fm

1 score from 63.76% to 68.83% when compared to an ImageNet-1k
pretrained models.

Geographical metadata improves classification performance. Most
teams report accuracy improvement when adding the metadata into the learning
process. The second team achieved an improvement of 10.9% in terms of the Fm

1

score using a simple location filtering approach. The third team described an
absolute improvement of 7.5% when adding the metadata into the MetaFormer.

Ensemble helps, but at what cost? Most teams used ensembling to in-
crease the accuracy of classification. The standard approach was to compute
an average of the individual models’ decisions. Some teams used a late fusion
of deep features by concatenation as an ensemble technique. Even though the
improvement in accuracy is observable (around 1 percentage point of Fm

1 across
the board), it would be interesting to measure the added computational com-
plexity vs the added accuracy. In the case of snakebite, the system’s inference
time plays a crucial role.
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Fig. 9: SnakeCLEF 2022 competition: Top20 teams Performance. Accuracy on
Full Test set, and MacroF1 score on private part of the test set and Expert set.
Sorted by performance on the private leaderboard.

6 FungiCLEF Challenge: Fungi Recognition as an Open
Set Classification Problem

A detailed description of the challenge and a more complete discussion of the
results can be found in the dedicated overview paper [65].



Fig. 10: Two fungi specimen observations from the Danish Fungi 2020 dataset.
Atlas of Danish Fungi: ©Jan Riis-Hansen and ©Arne Pedersen.

6.1 Objective

Automatic recognition of fungi species assists mycologists, citizen scientists and
nature enthusiasts in species identification in the wild. Its availability supports
the collection of valuable biodiversity data. In practice, species identification
typically does not depend solely on the visual observation of the specimen but
also on other information available to the observer – such as habitat, substrate,
location and time. Thanks to rich metadata, precise annotations, and baselines
available to all competitors, the challenge provides a benchmark for image recog-
nition with the use of additional information.

The main goal for the new FungiCLEF competition was to provide an eval-
uation ground for automatic methods for fungi recognition in an open class set
scenario, i.e, the submitted methods have to handle images of unknown species.
Similarly to previous LifeCLEF competitions, The competition was hosted on
Kaggle22 primarily to attract machine learning experts to participate and present
their ideas.

6.2 Dataset and Evaluation Protocol

Data collection: The FungiCLEF 2022 dataset is based on data collected
through the Atlas of Danish Fungi mobile (iOS23 and Android24) and Web25

applications.
22 https://www.kaggle.com/competitions/fungiclef2022
23 https://apps.apple.com/us/app/atlas-of-danish-fungi/id1467728588
24 https://play.google.com/store/apps/details?id=com.noque.svampeatlas
25 https://svampe.databasen.org/

https://svampe.databasen.org/
https://www.kaggle.com/competitions/fungiclef2022
https://apps.apple.com/us/app/atlas-of-danish-fungi/id1467728588
https://play.google.com/store/apps/details?id=com.noque.svampeatlas
https://svampe.databasen.org/


The Atlas of Danish Fungi is a citizen science platform with more than 4,000
actively contributing volunteers and with more than 1 million content-checked
observations of approximately 8,650 fungi species.

For training, the competitors were provided with the DanishFungi 2020
(DF20) dataset [63]. DF20 contains 295,938 images – 266,344 for training and
29,594 for validation – belonging to 1,604 species. All training samples passed
an expert validation process, guaranteeing high quality labels. Furthermore, rich
observation metadata about habitat, substrate, time, location, EXIF etc. are
provided.

The test dataset is constructed from all observations submitted in 2021, for
which expert-verified species labels are available. It includes observations col-
lected across all substrate and habitat types. The test set contains 59,420 obser-
vations with 118,676 images belonging to 3,134 species: 1,165 known from the
training set and 1,969 unknown species covering approximately 30% of the test
observations. The test set was further split into public (20%) and private (80%)
subsets – a common practice for Kaggle competitions to prevent participants
from overfitting to the leaderboard.

Task description: The goal of the task is to return the correct species
(or ”unknown”) for each test observation, consisting from a set of images and
metadata. Photographs of unknown fungi species should be classified into an
”unknown” class with label id -1. A baseline procedure to include meta-data in
the decision problem and baseline pre-trained image classifiers were provided as
part of the task description to all participants.

Evaluation Protocol: The evaluation process consisted of two stages: (i)
a public evaluation, which was available during the whole competition with a
limit of two submissions a day, and (ii) a private evaluation used for the final
leaderboard. The main evaluation metric for the competition was the Fm

1 , defined
as the mean of class-wise F1 scores:

Fm
1 =

1

N

N∑
s=1

F1s , (6)

whereN represents the number of classes – in case of the Kaggle evaluation,
N = 1, 165 (#classes in the test set) – and s is the species index. The F1 score
for each class is calculated as a harmonic mean of the class precision PS and
recall RS :

F1s = 2× Ps ×Rs

Ps +Rs
, Ps =

tps

tps + fps

, Rs =
tps

tps + fns

(7)

In single-label multi-class classification, the True Positives (tp) of a species
represents the number of correct Top1 predictions of that species, False Positive
(fp) denotes how many times was different species predicted instead of the (tp),
and False Negatives (fn) indicates how many images of species s have been
wrongly classified.
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Fig. 11: Results of the FungiCLEF 2022 competition on Kaggle, sorted by per-
formance on the final (private) test set.

6.3 Participants and Results

In total, 38 teams contributed with 701 valid submissions to the challenge eval-
uation on Kaggle. A detailed description of the methods used in the submitted
runs is available in the overview working note paper [65] and further developed
in the individual working notes. The results on the public and private test sets
(leaderboards) are displayed in Figure 11.

All submissions that shared their working notes were based on modern Con-
volutional Neural Network (CNN) or transformer-inspired architectures, such
as Metaformer [13], Swin Transformer [55], and BEiT [1]. The best performing
teams used ensembles of both CNNs and Transformers. The winning team [84]
achieved 80.43% accuracy with a combination of ConvNext-large [56] and MetaFormer [13].
The results were often improved by combining predictions belonging to the same
observation and by both training-time and test-time data augmentations.

Participants experimented with a number of different training losses to battle
the long tail distribution and fine-grained classification with small inter-class
differences and large intra-class differences: besides the standard Cross Entropy
loss function, we have seen successful applications of the Seesaw loss [82], Focal
loss [52], Arcface loss [11], Sub-Center loss [10] and Adaptive Margin [53].

We were happy to see the participants experimented with different use of
the provided observation metadata, which often lead to improvements in the
recognition scores. Besides the probabilistic baseline published with the dataset
[63], we have seen hand-crafted encoding of the metadata into feature vectors,
as well as encoding of the meta-data with a multilingual BERT model [12] and
RoBERTa [54]. The meta-data were then combined with image features extracted
from a CNN or Transformer image classifier, or directly used as an input to
Metaformer [13].



7 Conclusions and Perspectives

The main outcome of this collaborative evaluation is a new snapshot of the per-
formance of state-of-the-art computer vision, bio-acoustic and machine learning
techniques towards building real-world biodiversity monitoring systems. This
study shows that recent deep learning techniques still allow some consistent
progress for most of the evaluated tasks. One of the main new insights of this
edition of LifeCLEF is that vision transformers performed better than CNNs in
some tasks, in particular in the PlantCLEF task for which the best model is
a vision transformer whose training was not yet completed at the time of the
challenge closure. This shows the potential of these techniques on huge datasets
such as the one of PlantCLEF (4M images of 80K species). However, training
those models requires more computational resources that only participants with
access to large computational clusters can afford. In the other challenges, what
seems to best explain the best performances is the model selection methodology
employed given the time constraints and the available computational resources.
Participants must carefully prioritize the approaches they want to test with a
compromise between novelty and efficiency. New methods are typically more
risky than that well-known recipes. However, when they work they can make
a real difference to the other participants. The challenge where there were the
most methodological novelty is probably the GeoLifeCLEF challenge. It is indeed
quite unusual due to its multi-modal nature (mixing very different types) and
the originality of the task itself (set-valued classification based on presence-only
data). The way all the modalities were combined was clearly one of the main
driver of success. Moreover, the set-valued classification problem has encouraged
the implementation of an original label swapping strategy that has proven to be
effective. In the FungiCLEF challenge, several participants utilized the provided
metadata in the decision process of a fine-grained image classification task –
either by combining image and metadata embeddings in a classifier, or by di-
rectly feeding the image and the metadata in a transformer / MetaFormer [13]
architecture. Finally, the long-tail distribution problem (common to all tasks)
has also been one of the most explored research topics through the different
challenges (in particular the SnakeCLEF and FungiCLEF challenges). While it
is difficult to draw a simple conclusion about the superiority of some approaches
over others, many participants showed that substantial gains could be made by
taking the long tail problem into account (including alternative loss functions to
cross-entropy or self-supervision on unlabeled data).
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