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a b s t r a c t

This paper proposes a scalable stochastic optimization model and a Markov chain-based scenario
generation method to benefit from an active distribution network’s (ADN’s) flexibility. The optimization
variables are the dispatch plan, such as the active and reactive power of battery energy storage (BES)
and photovoltaic (PV) systems, as well as the active and reactive power and flexibilities given to
the transmission network at the point of common coupling (PCC). The uncertainty vector, on the
other hand, is made up of the PV system’s production capability, electricity demands, the flexibility
request of the transmission system operator (TSO), and the voltage at the PCC. The resulting stochastic
optimization problem is a second-order cone programming (SOCP) problem that is solved using freely
available convex solvers. To validate the performance of the proposed stochastic optimization, the
tests were carried out in a laboratory, where a flexible structure mimics different distribution network
topologies, such as a real low-voltage radial one in Switzerland.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

With the integration and expansion of renewable energy into
he electric power sector, network operators at both the dis-
ribution and transmission levels must optimize the active and
eactive power imbalance settlement processes. The operators
t the distribution level can take advantage of the potential of
istributed energy resources (DERs) for imbalance settlement be-
ause active distribution networks (ADNs) can accept significant
mounts of renewable energy [1]. In this context, we are referring
o DERs including battery energy storage (BES) and photovoltaic
PV) systems. Furthermore, we are referring to the underlying
lexibilities as the ability to regulate the active and reactive power
f DERs and at the point of common coupling (PCC) of the ADN.
The ADN’s operators face the following challenges to optimize

he operation of DERs and utilize the underlying flexibilities:

(i) They must respect the constraints of ADN’s components
(such as lines and transformers), as well as the security and
quality of the power supply (see [2]).

(ii) They must deal with the uncertainties associated with elec-
tricity demands and PV power production capabilities [3].
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In this regard, they derive a number of realistic opera-
tion scenarios, in which they summarize the patterns of
electricity demands and PV power production capabilities.

(iii) They would like to be participants in the wholesale flexi-
bility markets. In such a case, they are obligated to provide
planned flexibilities at the PCC in response to the request
of the transmission system operator (TSO) [4]. On the other
hand, operators at the distribution level cannot accurately
model the operation of the transmission network. As a
result, they must treat the request of TSO for deploying
flexibilities as an uncertain parameter.

Recent studies have emphasized the importance of schedul-
ing and exploiting ADN’s underlying flexibility. To summarize,
two types of research have been conducted: (i) those that have
focused on modeling the components, constraints, and uncer-
tainties of ADNs in order to provide flexibility; and (ii) those
that have proposed a mechanism or an algorithm for solving
the scheduling optimization problem and exploiting the ADNs’
underlying flexibilities.

A deterministic model for optimizing the flexibilities provided
by DERs in ADN is presented in [5]. A framework for dispatching
the power of an ADN has been developed in [6], with a BES system
serving as a flexible component. Ref. [7] proposed a framework
for stochastic co-optimization of primary frequency control sup-
ply by a BES system. In [8], a control framework for BES systems

in ADNs based on a data-driven model has been presented for
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Nomenclature

The main notations are defined in the following. Other
symbols are defined as needed throughout the text.

Indices and Sets

n Index of buses
i Index of PV systems
s Index of BES systems
t Index of time steps
k Index of scenarios
up(n) Upstream bus of bus n

Sets

N Set of buses
T Set of time steps
K Set of scenarios
I Set of PV systems
S Set of BES systems

Variables

vntk Voltage square of the bus n
lntk Square of the current flowing in the

central element of the line n’s model
or square of current flowing in the
transformer n.

pntk Real power flow entering the bus n from
bottom

qntk Reactive power flow entering the bus n
from bottom

v
(up)
ntk Voltage square of bus ‘‘up(n)’’.

p(up)ntk Real power flow entering the bus n from
the top.

q(up)ntk Reactive power flow entering the bus n
from the top.

p(DM)
ntk Real power demand of the bus n.

q(DM)
ntk Reactive power demand of the bus n.

p(PV)itk Real power production of the PV system
i.

q(PV)itk Reactive power production of the PV
system i.

p(BS)stk Real power production of the BES sys-
tem s.

q(BS)stk Reactive power production of the BES
system s.

p(net)ntk Net active power injection to the bus n.
q(net)ntk Net reactive power injection to the bus

n.
p(shed)ntk Quantity of load shedding at the bus n.
estk State-of-Charge of the BES system s.
p(PL)t Planned active power at the PCC.
q(PL)t Planned reactive power at the PCC.
r (p↑)
t Planned upward active power flexibility

at the PCC
r (p↓)
t Planned downward active power flexi-

bility at the PCC
r (q↑)t Planned upward reactive power flexibil-

ity at the PCC
2

r (q↓)t Planned downward reactive power flex-
ibility at the PCC

r (RE,p↑)
tk Proportion of requested upward active

power in real-time
r (RE,p↓)
tk Proportion of requested downward ac-

tive power in real-time
r (RE,q↑)tk Proportion of requested upward reactive

power in real-time
r (RE,q↓)tk Proportion of requested downward re-

active power in real-time

Parameters

unn′ A binary parameter, where unn′ = 1 if
n′

= up(n) and unn′ = 0 otherwise
rn Resistance of the line n or the trans-

former n
xn Reactance of the line n or the trans-

former n
2 · bn Shunt impedance of the line n or the

transformer n
δ Maximum allowable deviation from the

requested active and reactive power at
the PCC

η
(C)
s Charging efficiency of the BES system s

η
(D)
s Discharging efficiency of the BES system

s
∆t Time-step duration

delivering the flexibilities. However, the constraints of ADN have
not been included, and exploiting the underlying flexibilities of
PV systems has not been addressed. In [9], the effects of BES
system cycle-degradation and the value of lost load (VOLL) on
an ADN’s flexibility booking strategy have been evaluated under
demand uncertainty.

A risk-averse scheduling optimization problem has been de-
veloped in [10] to completely leverage the controllability of mul-
tiple DERs in an ADN on both spatial and temporal scales. In [11],
a solution for planning BES and PV systems to give flexibility
based on chance-constrained (CC) optimization has been pro-
posed. The support of DERs in providing operational flexibility
has been addressed in [12] by developing a non-cooperative
game among strategic aggregators that coordinates the DERs.
The active and reactive power flexibility capability area of an
ADN has been discovered using linear stochastic optimization
in [13], where the DERs are limited to PV systems. Finally, a
coordination mechanism has been developed in [14] based on
stochastic optimization for controlling the BES and PV systems
in ADN to provide flexibility. The proposed two-stage problem
in [14] only deals with scheduling flexibilities, and the robustness
of the first-stage problem for day-ahead scheduling of flexibilities
has not been guaranteed.

To solve the ADN’s stochastic optimization problem, a number
of scenarios must be generated to account for the uncertainties
in electricity demands and PV power production capabilities.
The chosen scenarios have a direct impact on the outcome of
stochastic optimization and, as a result, the robustness, as well as
the optimality of the derived solution. However, in prior studies,
either the scenarios were given or the significance of generat-
ing realistic scenarios was overlooked. By realistic scenarios, we
mean that they must be brief but comprehensive, in the sense
that the number of scenarios must be limited while still capturing



M. Rayati, M. Bozorg, M. Carpita et al. Sustainable Energy, Grids and Networks 34 (2023) 100999

t
c

o
T
i
f
s
o
a
o
f

1

e
o
d
A
t
o
t
i
a
i
o
m

t
p
v
A
p
s
D
P
o
m
a
t
l

1

t

k
P
P
i
a
c

s
(
a
p
m
a
v

v
k
E
f
t
p
m
s
i

2

u

he typical operation (i.e., time-series pattern) as well as particular
onditions (i.e., small forecast error in net).
Li et al. in [15] have carried out a survey of various classes

f scenario generation methods for renewable energy systems.
he classic approach, which has been used in [13] and [14],
s based on auto-regressive integrated moving average (ARIMA)
orecasting and Monte Carlo sampling. As shown in [16,17], the
olution’s robustness would be justified if a large enough number
f scenarios were generated. However, this technique is not scal-
ble for ADNs with a large number of buses and time steps. Based
n historical data and K-Means clustering, [18] presents a method
or generating a small number of representative scenarios.

.1. Solution approach

This work provides a Markov chain-based technique for gen-
rating representative scenarios to solve the proposed stochastic
ptimization problem of an ADN while taking advantage of un-
erlying flexibilities. The huge amounts of measured data in
DNs, which resulted from the power industry’s digitalization via
he use of digital technologies, may assist the ADNs’ operators in
vercoming the obstacles to exploiting the underlying flexibili-
ies. In particular, the ADNs’ operators have improved visibility
nto the ADN’s component constraints and power supply quality
nd security. The forecast of PV power production and electric-
ty demands also becomes more precise. As a result, the ADNs’
perators can handle the planned flexibilities in an autonomous
anner.
In this paper, we present a scalable and data-driven optimiza-

ion problem for scheduling the underlying active and reactive
ower flexibilities of ADNs to address the shortcomings of pre-
ious studies. We framed a stochastic optimization problem for
DNs’ operators. Because of the operational uncertainties, the
roposed stochastic optimization algorithm considers all con-
traints of the ADN’s components (i.e., lines, transformers, and
ERs), and security, as well as quality limitations. Variations in
V system production capability, electricity demands, the request
f TSO for deploying the planned flexibilities, and the voltage
agnitude at PCC are examples of operational uncertainties. We
nticipate a data-driven scenario based on measured data selec-
ion strategy for proposed stochastic optimization, resulting in
ower computational costs.

.2. Contributions

Given the foregoing setting, the paper’s major contributions in
erms of modeling and solution methodology are as follows:

• We use a formulation that works in both directions of power
flow in radial networks to model the constraints of ADN’s
line/transformer flows, as well as the quality and security
of power supply. We also model the constraints of BES
systems using a relaxed convex formulation that does not
require binary variables to determine whether BES systems
are charging or discharging. Finally, the PV system capability
constraints are incorporated into our formulation. Compared
to previous studies [10–14], our paper uses a more exact
model that includes the power flow constraints of the ADN’s
network, and capability curves of PV as well as BES systems.

• We present a scalable second-order cone programming
(SOCP) solution for our stochastic optimization problem,
which can be solved using commercial or freely available
convex optimization solvers. The developed optimization
problems cited in [13,14,16,17] are not scalable because
they cannot be applied to a network with many buses
considering large number of operational scenarios, whereas
our developed optimization problem is scalable.
3

• We introduce a scenario selection strategy based on mea-
sured data. Because the proposed strategy takes into account
the temporal correlation in forecasting errors and results
in a small number of scenarios, the proposed optimization
problem can be used for large-scale problems. In this regard,
we use a Markov chain-based technique to generate repre-
sentative PV power and electricity demands scenarios that
can be used for stochastic co-optimization of energy and
flexibility, as opposed to [19], which developed a method for
generating a large number of scenarios for only PV power
production. Furthermore, in contrast to [18], which gener-
ates the optimal scenarios for optimizing the operation of
an ADN based on K-Means, we develop a new strategy that
takes the Markov chain character of uncertain parameters
into account and is trained on historical data.

1.3. Structure of the paper

The remainder of the paper is organized as follows: The con-
straints’ model is presented in Section 2. The stochastic optimiza-
tion problem is formulated in Section 3. The proposed scenario
selection strategy is introduced in Section 4. A numerical case
study is given in Section 5. Finally, the paper is concluded in
Section 6.

2. Mathematical formulation

The sections that follow discuss various constraints on the
targeted optimization problem. The general notation and uncer-
tain parameters are described in Section 2.1. The power flow
equations with the network’s security constraints are presented
in Section 2.2. Finally, the models for PV and BES systems are
provided in Sections 2.3 and 2.4, respectively.

2.1. Preliminary and uncertain parameters

Time and scenario are represented by the indices t ∈ T and
∈ K, where T = {1, . . . , T } and K = {1, . . . , K }. Other than the
CC, buses are denoted by n ∈ N , where N = {1, . . . ,N}. The
CC is represented by an index of 0. The PV and BES systems are
ndexed by i ∈ I and s ∈ S , respectively. Finally, Sn = {1, . . . , Sn}
nd In = {1, . . . , In} denote the sets of PV and BES systems
onnected to bus n.
The following four uncertain parameters are modeled with

cenarios k ∈ K to exploit the underlying flexibilities in ADNs:
i) the active and reactive power demand of users, i.e., p(DM)

ntk
nd q(DM)

ntk , which are negative; (ii) the available active power
(PV,max)
itk of PV systems, which is positive; (iii) the voltage square
agnitude v0tk at the PCC; and (iv) the proportion of exploited
ctive and reactive power flexibilities with respect to the planned
alues, i.e., r (RE,p↑)

tk , r (RE,p↓)
tk , r (RE,q↑)tk , and r (RE,q↓)tk .

Power flow variables in ADNs, as well as state and auxiliary
ariables in PV and BES systems, are written with an index of
∈ K because they are dependent on uncertain parameters.

xcept for the proportion of exploited active and reactive power,
or which we assume a random Uniform probability density func-
ion (PDF), we have a record of measurements for uncertain
arameters. We calculated a number of scenarios based on such
easurements and PDFs. The method for generating random
cenarios from given measurements and PDFs is discussed further
n the paper.

.2. Power flow, security, and quality constraints

We assume a radial ADN. The label ‘‘up(n)’’ refers to a bus
pstream of the bus n. The line or transformer ending in bus
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is also indexed with n. The binary parameter unn′ is set to 1 if
′
= up(n), otherwise unn′ = 0. For clarity and extra notations, the
-model of a distribution line or a transformer is shown in Fig. 1.
ote that because all variables are expressed in per-units based
n the voltage level of the transformers’ sides, the transformer
oltage ratio has been eliminated.
We denote the voltage square of bus ‘‘up(n)’’ with v

(up)
ntk . The

variables p(up)ntk and q(up)ntk represent the active and reactive power
flows entering the line n or the transformer n, i.e., from the
bus ‘‘up(n)’’. The variables pntk and qntk represent the active and
eactive power flow entering bus n from the bottom of the line
(or the transformer n). The variable lntk represents the square
f the current flowing in the central element of the line n (or the
ransformer n). We consider the line n’s (or the transformer n’s)
esistance, reactance, and shunt impedance to be rn, xn, and 2 ·bn,
respectively. The variable v0tk represents the PCC’s voltage square
magnitude at time t and is treated as an uncertain parameter
because of the following fact: The magnitude of the PCC’s volt-
age depends on the transmission network’s operation conditions,
which include, among other factors, the voltage set points at the
power plants. Such data is not available to the distribution level
operators.

To balance the injection and withdrawal of power from var-
ious buses, the power flow equations are given. The net active
and reactive power injections to bus n at time t are represented
by p(net)ntk and q(net)ntk , respectively.

p(net)ntk =

(∑
i∈In

p(PV)itk

)
+

(∑
s∈Sn

p(BS)stk

)
+p(DM)

ntk +p(shed)ntk , ∀n, t, k,

(1)

q(net)ntk =

(∑
i∈In

q(PV)itk

)
+

(∑
s∈Sn

q(BS)stk

)
+q(DM)

ntk , ∀n, t, k, (2)

where p(PV)itk , q(PV)itk , p(BS)stk , and q(BS)stk denote the active power produc-
tion of the PV system i, reactive power of the PV system i, active
power output of the BES system s, and the reactive power output
of the BES system s. The parameters p(DM)

ntk and q(DM)
ntk represent

the active and reactive power demand of the bus n, respectively.
Finally, p(shed)ntk is the quantity of load shedding at bus n.

Referring to Fig. 1, the followings are power flow equations
and security constraints for a given radial ADN:

p(up)ntk = rn · lntk − p(net)ntk +

∑
n′∈N

unn′ · p(up)n′t , ∀n, t, k, (3)

q(up)ntk = xn · lntk − q(net)ntk +

∑
n′∈N

unn′ · q(up)n′t

−

(
vntk + v

(up)
ntk

)
· bn, ∀n, t, k, (4)

v
(up)
ntk = vntk + 2 ·

(
rn · p(up)ntk + xn · (q(up)ntk + v

(up)
ntk · bn)

)
− (r2n + x2n) · lntk, ∀n, t, k, (5)

lntk · v
(up)
ntk ≥

(
p(up)ntk

)2
+

(
q(up)ntk

)2
, ∀n, t, k, (6)

p̂(up)ntk =

∑
n′∈N

unn′ · p̂(up)n′t − p(net)ntk , ∀n, t, k, (7)

q̂(up)ntk =

∑
n′∈N

unn′ · q̂(up)n′t −

(
v
(up)
ntk + vntk

)
· bn − q(net)ntk , ∀n, t, k,

(8)

v
(up)
ntk = vntk + 2 ·

(
rn · p̂(up)ntk + xn · (q̂(up)ntk + v

(up)
ntk · bn)

)
, ∀n, t, k,

(9)

p(up)ntk = rn · lntk − p(net)ntk +

∑
n′∈N

unn′ · p(up)n′t , ∀n, t, k, (10)

q(up)ntk = xn · lntk − q(net)ntk +

∑
unn′ · q(up)n′t
n′∈N

4

−

(
vntk + v

(up)
ntk

)
· bn, ∀n, t, k, (11)

lntk · vntk ≥ max{p̂2ntk, p
2
ntk}

+ max{(q̂ntk − vntk · bn)2, (qntk − vntk · bn)2}, ∀n, t, k, (12)

lntk · v
(up)
ntk ≥ max{(p̂(up)ntk )2, (p(up)ntk )2}

+ max{(q̂(up)ntk + v
(up)
ntk · bn)2, (q

(up)
ntk + v

(up)
ntk · bn)2}, ∀n, t, k, (13)

pntk = −p(net)ntk +

∑
n′∈N

unn′ · p(up)n′t , ∀n, t, k, (14)

qntk = −q(net)ntk +

∑
n′∈N

unn′ · q(up)n′t , ∀n, t, k, (15)

p̂ntk = −p(net)ntk +

∑
n′∈N

unn′ · p̂(up)n′t , ∀n, t, k, (16)

ˆntk = −q(net)ntk +

∑
n′∈N

unn′ · q̂(up)n′t , ∀n, t, k, (17)
(max)
n · vntk ≥ max{p̂ntk, pntk}

2
+ max{q̂ntk, qntk}

2, ∀n, t, k, (18)
(max)
n · v

(up)
ntk ≥ max{p̂(up)ntk , p(up)ntk }

2
+ max{q̂(up)ntk , q(up)ntk }

2, ∀n, t, k, (19)
(min)
n ≤ vntk ≤ v(max)

n , ∀n, t, k, (20)

where l(max)
n is the maximum allowable current square for line n

or transformer n, v
(min)
n and v

(max)
n are the minimum and maxi-

um permissible values of voltage square for bus n, respectively.
he auxiliary variables p̂(up)ntk , q̂(up)ntk , p(up)ntk , q(up)ntk , p̂ntk, q̂ntk, pntk, qntk,

vntk, v
(up)
ntk , and lntk are added to ensure that the constraints are

accurate in both directions of power flow. Including these auxil-
iary variables and the resulting constraints is based on the model
presented in [20], which relaxes the power flow equations to
make the feasible space convex.

Here, (3)–(5) are directly obtained by applying Kirchhoff’s law
to Fig. 1. (6) is the relaxed version of the relationship between
the square of current flowing in the central part of the two-
port Π model and the voltage square and the power coming
from upward of line n (or transformer n). In the case of reverse
power flow, the relaxation of constraint (6) may be inexact. To
address this issue, the constraints (7)–(17) are supplemented
with auxiliary variables that are upper bounds of power flow
variables (pntk, qntk, vntk, and lntk) and variables that do not depend
n the flowing current of the lines (p̂ntk and q̂ntk). See [20] for a
omprehensive discussion of these constraints.

.3. Photovoltaic systems capability constraints

The capability curve of a PV system i ∈ I is defined by the
ntersection of the following constraints: (i) the voltage constraint
f the PV system’s power electronic converter; (ii) the current
onstraint of the PV system’s converter; and (iii) the maximum
ower production due to solar irradiation and cell temperature
f the PV system.
(i) As demonstrated in [21], the converter’s voltage constraint

f a PV system is modeled as follows:(
p(PV)itk

)2
+

(
q(PV)itk +

3 · (v(net,PV)
i )2

x(PV)i

)2

≤

(
3 · v

(net,PV)
i · v

(con,PV)
i

x(PV)i

)2

, ∀i, t, k, (21)

where v
(net,PV)
i , v

(con,PV)
i , and x(PV)i are the ADN’s voltage, the con-

verter’s voltage, and the Thévenin’s reactance from the PV sys-
tem’s perspective, respectively.

(ii) The converter’s current constraint of PV system i at time-
step t ∈ T is(
p(PV)

)2
+

(
q(PV)

)2
≤

(
S(PV,max)

)2
, ∀i, t, k. (22)
itk itk i



M. Rayati, M. Bozorg, M. Carpita et al. Sustainable Energy, Grids and Networks 34 (2023) 100999

(
i

0

t

2

t
f
m
v

m
B
s
c

s

f
f
n
s
o
g

o

s

p

w
p
i
f
F
t
(

f
q
t
a
r
w
t
b
d
d

g
d

4

4

s

a
o
u
o

Fig. 1. Π-model of a distribution line or a transformer.

iii) The PV system i’s active power constraint at time-step t ∈ T
s

≤ p(PV)itk ≤ p(PV,max)
itk , ∀i, t, k. (23)

It should be noted that p(PV,max)
itk is an uncertain parameter

that depends on available solar irradiation and PV system i’s cell
emperature.

.4. Battery energy storage systems constraints

Each BES s ∈ S is linked to the ADN by a power elec-
ronic converter. The converter’s capability constraint must there-
ore be handled. The BES’s state-of-charge (SoC), denoted by estk,
ust also be kept within the acceptable minimum and maximum
alues.
The model under consideration is based on the convex refor-

ulation in [22], which does not use binary variables to force a
ES to operate in just charging or discharging mode at each time-
tep. To generate a set of relaxed convex constraints, additional
ontinuous variables and convex constraints are added.
The detailed equality and inequality constraints for each BES

∈ S are

es(t+1)k =
100

e(max)
s

·

(
p(BS,D)st · ∆t

η
(D)
s

+ η(C)
s · p(BS,C)st · ∆t

)
+ estk, ∀s, t, k,

(24)

0 ≤ p(BS,C)stk , ∀s, t, k, (25)

0 ≥ p(BS,D)stk , ∀s, t, k, (26)

p(BS)stk = p(BS,C)stk + p(BS,D)stk , ∀s, t, k, (27)

(p(BS)stk )2 + (q(BS)stk )2 ≤ (S(BS,max)
s )2, ∀s, t, k, (28)

100 ·
e(min)
s

e(max)
s

≤ estk ≤ 100, ∀s, t, k, (29)

ẽs(t+1)k = ẽstk +
100

e(max)
s

·

(
p(BS,D)stk · ∆t + p(BS,C)stk · ∆t

)
, ∀s, t, k, (30)

100 ·
e(min)
s

e(max)
s

≤ ẽstk ≤ 100, ∀s, t, k, (31)

where e(min)
s and e(max)

s are the minimum and maximum amounts
of energy that can be stored in the BES s, respectively; and
S(BS,max)
s is the maximum amount of apparent power that BES s
can produce or consume.

Here, (24) models the classical energy balance for a lossy
BES. The constraints (25) and (26) satisfy that the charge and
discharge powers of the BES s ∈ S are positive variables at time
t and scenario k. The net power of BES s ∈ S is determined in
(27). The current limit of the power converter is given in (28).
The maximum and minimum SoC limitations of BES s ∈ S are
modeled by (29). The constraints (30) and (31) are also included,
along with the auxiliary variable ẽstk, which represents the SoC
of the ideal BES s ∈ S without any loss, to prevent misuse
 a

5

of the relaxed model without binary variables. For a detailed
explanation of the mentioned constraints, see [22].

3. Optimal dispatch plan based on stochastic optimization

First, we define the objective function of the ADN’s operator in
order to obtain the optimal dispatch plan for PV and BES systems
by utilizing the underlying flexibilities. The PCC’s planned active
and reactive power are denoted as p(PL)t and q(PL)t , respectively. The
planned upward active and reactive power flexibilities are also
denoted by r (p↑)

t and r (q↑)t , respectively. Furthermore, the planned
downward active and reactive power flexibilities are denoted by
r (p↓)
t and r (q↓)t , respectively.

The objective of ADN’s operator is to maximize its profit
rom selling active and reactive power as well as corresponding
lexibilities, as formulated in (32), while keeping the distribution
etwork’s and resources’ security constraints in mind, as pre-
ented in (33). The optimization problem of ADN’s operator based
n stochastic programming is as follows, taking into account the
iven constraints in the previous section:

bjective =

∑
t∈T

(
λ
(p,PL)
t · p(PL)t + λ

(q,PL)
t · q(PL)t

+ λ
(p↑)
t · r (p↑)

t + λ
(p↓)
t · r (p↓)

t

+ λ
(q↑)
t · r (q↑)t + λ

(q↓)
t · r (q↓)t −VOLL · p(shed)t

)
, (32)

ubject to: (1)–(31), (33)

(shed)
t :=

1
K

·

∑
k∈K

∑
n∈N

p(shed)ntk , ∀t, (34)⏐⏐⏐p(PL)t + r (RE,p↑)
tk · r (p↑)

t − r (RE,p↓)
tk · r (p↓)

t − p0tk
⏐⏐⏐ ≤ δ, ∀t, k, (35)⏐⏐⏐q(PL)t + r (RE,q↑)tk · r (q↑)t − r (RE,q↓)tk · r (q↓)t − q0tk
⏐⏐⏐ ≤ δ, ∀t, k, (36)

here λ
(p,PL)
t , λ

(q,PL)
t , λ

(p↑)
t , λ

(p↓)
t , λ

(q↑)
t , and λ

(q↓)
t are prices of

lanned active power, reactive power, upward active power flex-
bility, downward active power flexibility, upward reactive power
lexibility, downward reactive power flexibility, respectively.1

urthermore, VOLL is the cost of load shedding and p(shed)t is the
otal expected amount of load shedding at time t as calculated in
34).

The TSO requests in real-time a proportion of the planned
lexibilities, namely r (RE,p↑)

tk , r (RE,p↓)
tk , r (RE,q↑)tk , and r (RE,q↓)tk . The re-

uested flexibilities are uncertain and depend on the behavior of
ransmission network’s operation. To tighten the feasible space
nd balance the ADN for exploiting the underlying flexibilities in
eal-time, the constraints (35)–(36) are embedded in the problem,
here p0tk and q0tk are the active and reactive power available at
he PCC for scenario k. The parameter δ is a small positive num-
er, e.g., δ = 0.01 kW, that represents the maximum allowable
eviation from the requested flexibilities in addition to the PCC
ispatch plan.
The optimization problem (32)–(36) is a SOCP. The method for

enerating scenarios K = {1, 2, . . . , K } based on the measured
ata is described in the following section.

. Solution methodology

.1. Benchmark scenario selection strategies

In order to evaluate the advantages of our proposed scenario
election strategy (which is described in the next subsection),

1 This market assumption that there are real-time prices for reactive power,
s well as upward and downward flexibility may not be valid in some cases
r countries (see [23] for real-time reactive power pricing, as well as [24] for
pward and downward flexibility pricing). Nonetheless, the given model and
bjective for scheduling reactive power and flexibility are general and may be
dapted to various TSO-DSO coordination schemes.
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e investigate a case where we use the data from previous
ays without any clustering as scenarios and the following two
enchmark scenario selection procedures.
The first benchmark is based on data from a month ago, which

s clustered into a limited number. The data from the preceding
onth is clustered using the K-Means approach, and the centers
f the clusters are considered to be the scenarios [18]. A case
ithout clustering and using the data from the most recent few
ays as scenarios directly are also taken into consideration in or-
er to assess the benefit of clustering. The disadvantage of this ap-
roach is that the quality of the stochastic optimization-derived
olution is strongly influenced by the scenarios that occurred in
he preceding month. To evaluate the benefit

The second benchmark strategy is based on the ARIMA fore-
asting method, which is a classical approach to predicting the
ncertain parameters [25]. We forecast each uncertain parame-
er for the following day. The standard deviation of forecasting
rrors can then be calculated. Using the forecasted value and the
tandard deviation of forecast errors, we generate a large number
f scenarios, for example, 1000. Finally, we employ the K-Means
ethod to reduce the number of generated scenarios, and the
enters of the clusters are used to represent the reduced output
cenarios. The disadvantage of this strategy is that the temporal
orrelation is not reflected in the output generated scenarios.

.2. Proposed data-driven scenario selection strategy

A randomized sampling approach based on historical data or
nowledge of the PDFs of the uncertain parameters is required for
he proposed stochastic optimization problem. In order to accom-
lish this, we created a data-driven scenario selection strategy
ased on the model introduced in [19]. It is important to note
hat the solution to the stochastic optimization problem is robust
f the number of scenarios, i.e., K , is large enough. Based on the
results of [16,17], the minimum number of scenarios for estab-
lishing different confidence levels can be determined. However,
the number of scenarios in the typical cases of our problem is so
large that the resulting problem is not scalable.2 Thus, we assume
a fixed and small number of representative scenarios3 based on
historical data.

The following is the steps of the proposed scenario selection
strategy, which is summarized in Fig. 2:

(i) Pre-process data: We aggregate the previous month’s data
on solar irradiance and electricity demand. Then, the data is
normalized by removing outliers and standardizing it based
on minimum and maximum values. The data is clustered
into specific numbers using the K-Means approach, such
as three clusters signifying cloudy, intermittently cloudy,
or clear days. This feature, known as the ‘‘cluster number’’,
will be added to the data.

(ii) Train the model: We train a model based on Markov chain
for each cluster number. As a result, we get a specific
number of, e.g., three, transition probability matrices (one
for each cluster number).

(iii) Forecast: We use the Random Forest defined in [26] to
forecast the uncertain parameters for the next day. The
resulting forecast is referred to as the baseline scenario.
The Random Forest is an ensemble learning method with
outstanding computational performance that may be used
for classification as well as regression. The Random Forest

2 The required number of scenarios for our case study is more than 10,000,
here the ADN has just five buses and the problem is formulated for 144 time
teps (24 × 6 of 10 min time steps).
3 In the sense that they exhibit the same behavior as a large number of

cenarios, these scenarios are efficient.
6

Table 1
Parameters of the lines and transformer of the ADN.
Parameter Value Parameter Value

rt1 in Ohm 0.0110 rl2 in Ohm 0.110
xt1 in Ohm 0.0144 xl2 in Ohm 0.252
2 · bt1 in Siemens 0.0000 2 · bl2 in Siemens 0.229

rl3 in Ohm 0.066 rl4 in Ohm 0.098
xl3 in Ohm 0.148 xl4 in Ohm 0.197
2 · bl3 in Siemens 0.0312 2 · bl4 in Siemens 0.241

is a collection of many decision trees known as ‘‘forests’’.
Each tree is based on an independent random sample, and
the average of all the trees’ outputs is regarded as the
solution to the regression problem. We normalize both
the input and output patterns before training the random
forest model for each node. Outliers are also detected and
removed from the time series to minimize over-fitting. To
fit and validate these models, we use the python function
RandomForestRegressor from the package sklearn.

(iv) Generate scenarios: Using the distance between the fore-
cast and cluster centers, we identify which cluster number
corresponds to the baseline scenario. We then generate a
huge number of scenarios for that cluster number, using
the corresponding transition probability matrix.

(v) Reduce scenarios: We apply the K-Means method to re-
duce the number of generated scenarios. Cluster centers
are regarded as representative scenarios in addition to the
previously forecasted baseline scenario.

5. Numerical case study

The test is carried out in a reconfigurable distribution network
laboratory [27], mimicking a real low-voltage ADN in a rural
area of Switzerland. The considered ADN is depicted in abstract
form in Fig. 3, which includes an 8.5 kW PV system, a 69 kWh
BES system, a transformer, and three distribution lines. Table 1
displays the parameters of case study.

The proposed stochastic optimization problem and data-driven
scenario selection strategy are utilized to plan and exploit the
underlying flexibilities for the last day of each month in 2021.
The latest 30 days of data on active and reactive power electricity
demand, as well as PV power production are used for each day.

5.1. Scenario generation by Markov chain model

The trained Markov chain tables for a sunny day for three vari-
ables of (a) active and (b) reactive power of electricity demands
and (c) PV power production are shown in Fig. 4. We assumed
that each variable has 21 states, so we discretized them linearly
between their minimum and maximum. Each color code from
blue to yellow represents a transition probability value between
0.0 to 1.0, respectively. We use the quantecon package in Python
for producing the transition probability matrices form the input
measured data. The sum of the probabilities in each column and
row of a transition probability matrix must add up to unity based
on the Markov requirement for transition probabilities. As shown
in Fig. 4-c, the state of PV power production more than states 16
is persistent since the clear sky index is close to one in sunny
days. Furthermore, Fig. 4-b shows that the reactive power is close
to white noise without any pattern between its minimum and
maximum values. Finally, Fig. 4-a shows that the active power of
electricity demands is persistent at large values.

The scenarios generated by these trained Markov chain tables
are also depicted in Fig. 4. In step (iv) of the proposed scenario

selection strategy, we generate 100 scenarios. In the presented
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Fig. 2. The flowchart of the proposed scenario selection strategy.
Fig. 3. Single-line diagram of the ADN for the case study.

esult, the real data (red line) is between the minimum and max-
mum of the generated scenarios more than 85% of the time. More
nformation about the usage of the Markov chain for generating
large number of scenarios may be found in [19].

.2. Scenario selection results

We implement the proposed scenario selection strategy, no
lustering approach, and the mentioned two benchmarks stated
bove in Python using the packages sklearn, scipy, and
uantecon. To show that our proposed scenario selection is
ealistic, we used multiple metrics to demonstrate that generated
cenarios are concise and comprehensive. This means that gener-
ted scenarios are limited, but still captures typical operation and
articular conditions.

.2.1. Inertia
First, we employ the Elbow technique (see [28]) to get the

ptimal (limited) number of scenarios, i.e., K , for the dataset,
hich means determining the point at which the declining trend

n inertia is no longer worth the additional cost, i.e., a larger
umber of scenarios and time consumption. Fig. 5 depicts the
ataset’s inertia, where K = 3 is the graph’s elbow. A dataset’s

inertia is measured by how well it was clustered using K-Means.
7

It is calculated by squaring the distance between each data point
and its centroid, and summing the squares across one cluster.
A good model has low inertia and a small number of clusters
(i.e., K ). However, there is a trade-off since as K increases, inertia
decreases.

5.2.2. Silhouette score
Fig. 6 depicts the outcomes of the first and second bench-

marks, as well as the proposed scenario selection strategy with
K=3 for active power of electricity demands on July 30th, 2021.
Similar plots can be found in Figs. 7 and 8 for the reactive power
of electricity demands and PV power production, respectively.
Furthermore, the first subplots of Figs. 6–8 show the data of
electricity demands and PV power production of the preceding
30 days for July 30th, 2021.

The silhouette score measures how closely the generated sce-
narios align with the centers of the clusters formed by the actual
data from the previous 30 days. It indicates the degree to which
the scenarios match the patterns and characteristics of the typical
data. By comparing the silhouette scores in Figs. 6–8, we conclude
that the first benchmark’s outcome is more closely correlated to
the actual data from the previous 30 days. The Silhouette score
ranges from −1 for incorrect clustering to +1 for highly dense
clustering, which is calculated as follows:

Silhouette score =
b − a

max(a, b)
, (37)

where a is the average distance between each point within a
cluster and b is the average distance between all clusters.

The results of the second benchmark contain three nearly
identical scenarios in which the temporal correlation is ignored,
resulting in low Silhouette scores (0.1482, 0.0062, and 0.0922),
indicating that the resulting scenarios are unlikely to be encoun-
tered in practice (by comparing to the data from the previous 30
days). The proposed scenario selection strategy in Figs. 6–8, on
the other hand, gets poor scores for the active and reactive power
of electricity demands and PV power production. We show in the
following that, whereas the outputs of the proposed strategy are
different (by comparing them to the data from the previous 30
days), they result in scenarios that are more particular and closer
to what we expect the next day.
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Fig. 4. The trained Markov chain and generated scenarios for June 30th, 2021 for (a) active power of electricity demand, (b) reactive power of electricity demand,
and (c) PV power production; (each gray line represents a scenario, whereas the red line represents the actual data for June 30th, 2021). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Inertia comparison with different number of clusters.

5.2.3. P-value, mutual information, and log-likelihood
To finalize our analysis, we used three traditional metrics,

.e., p-value, mutual information, and log-likelihood, to assess
8

the extent to which the generated scenarios accurately captured
typical operations and particular conditions. These metrics allow
us to evaluate the quality of the scenarios we generate.

P-value is a measure of the probability of obtaining a data that
s at least as extreme as the observed data, given that the null
ypothesis is true. In general, a small p-value (usually less than
.05) suggests that the observed data is non-typical and provides

strong evidence against the null hypothesis. On the other hand,
a large p-value (usually greater than 0.05) suggests that the
observed data is typical and provides weak evidence against the
null hypothesis [29]. To calculate the p-value for two time series,
you can use a t-test. To conduct a t-test in Python, you can use a
t-test function from a statistical library, such as the ttest_ind
function from the scipy.stats module.

Mutual information score is a measure of the mutual depen-
dence between two variables. It quantifies the amount of in-
formation that scenarios contain about the particular data from
the following day. A high mutual information score indicates
a strong relationship between the two variables, while a low
mutual information score indicates a weak relationship [29]. The
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Fig. 6. The results for active power of electricity demands on July 30th, 2021.
Fig. 7. The results for reactive power of electricity demands on July 30th, 2021.
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utual information score is calculated as the difference between
he entropy of the joint distribution of two variables and the
ntropy of the marginal distribution of each variable. It is defined
s:

utual information = H(X) + H(Y ) − H(X, Y ), (38)

here H(X) is the entropy of the marginal distribution of X , H(Y )
is the entropy of the marginal distribution of Y , and H(X, Y )
is the entropy of the joint distribution of X and Y . Entropy is
a measure of the uncertainty or randomness of a distribution.
It is calculated as the sum of the probabilities of the events in
the distribution multiplied by the logarithm of the probabilities.
To calculate the mutual information score, we use a function
from a statistical library, called mutual_info_score from the
sklearn.metrics module.
 f

9

Log-likelihood is a measure of the goodness of fit of a statistical
odel to the particular data. It is defined as the logarithm of

he likelihood function, which is a measure of the probability of
he data given the model. A high log-likelihood score indicates a
ood fit of the model to the actual data of the next day, while a
ow log-likelihood score indicates a poor fit. To calculate the log-
ikelihood score in Python, we use the log_likelihood function
rom the sklearn.metricsmodule [30].

In Fig. 9, we compare the p-value and mutual information
core of various scenario selection strategies. Each point repre-
ents a scenario of a generated time series for PV power produc-
ion, active power of electricity demands, and reactive power of
lectricity demands. From the distribution of mutual information
cores and p-values for the mentioned approaches, we have the

ollowing observations:
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Fig. 8. The results for PV power production on July 30th, 2021.
Fig. 9. Comparing p-value and mutual information for the scenarios generated by each scenario selection strategy.
• The p-value for the no clustering approach is higher than
the others, indicating that what is expected to happen in
the next day is not significantly different from the previous
historical data. Thus, we will have more typical scenarios
using this strategy.

• Although the p-value for the proposed Markov chain ap-
proach is lower than the no clustering approach, it has a
higher mutual information score with the actual data of the
next day. It is because the proposed approach forecasts the
data of the next day, resulting in a higher mutual informa-
tion score and scenarios closer to the particular condition of
the next day.

• While the benchmark 2 has the highest mutual information,
it has the lowest p-value. This indicates that the bench-
mark 2 forecasts better the particular conditions of the next
day compared to other strategies; however, it generates a
non-typical time series.
10
In Fig. 10, we show the log-likelihood of each scenario selec-
tion strategy’s generated scenarios and the real data measured
the next day. From this figure, we conclude that the proposed
Markov chain strategy has a good fit between the model and the
actual data as it has a greater log-likelihood.

5.3. Stochastic optimization results

Using the resulting representative scenarios, we solve the
stochastic optimization problem. Although the prices might fluc-
tuate over time, we assume fixed prices of λ

(p,PL)
t = 1 CHF/kWh,

λ
(q,PL)
t = 0 CHF/kVARh, λ

(p↑)
t = 0.1 CHF/kWh, λ

(p↓)
t = 0.1

CHF/kWh, λ(q↑)
t = 0.05 CHF/kVARh, and λ

(q↓)
t = 0.05 CHF/kVARh

for all t ∈ T . Furthermore, we considered VOLL = 6 CHF/kWh.
Regardless, the selection of prices and VOLL will have no influence
on findings of this paper.
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Fig. 10. Comparing the likelihood of the time series generated by each strategy with the measured data.
Table 2
Results of proposed stochastic optimization for different days of the year.

Objective (CHF) Deviation (%)

No Clustering Benchmark 1 Benchmark 2 Markov Chain No Clustering Benchmark 1 Benchmark 2 Markov Chain

31/Jan. 36.343 3.104 39.987 40.507 6.670 0.165 3.815 3.737
28/Feb. −0.306 18.999 24.823 17.598 10.236 3.591 16.707 6.698
31/Mar. 9.400 24.542 55.932 22.575 6.743 4.026 10.046 6.951
30/Apr. 12.831 40.625 52.527 56.025 7.271 7.037 13.630 10.265
31/May 32.390 26.139 57.004 40.264 3.463 3.415 0.076 3.860
30/Jun. 12.100 30.309 64.421 26.875 11.389 0.241 7.158 2.383
31/Jul. 14.173 16.583 54.397 27.551 3.473 0.067 0.628 4.131
31/Aug. 27.013 29.857 52.557 27.500 13.681 4.336 7.361 6.735
30/Sep. −0.003 7.210 44.467 −0.094 0.070 3.433 3.382 0.321
31/Oct. −0.623 4.075 28.311 11.096 0.165 0.324 6.711 0.048
30/Nov. 34.072 −0.310 43.442 −0.056 3.360 30.044 20.107 3.416
31/Dec. −0.318 −0.049 −0.098 −0.063 0.102 6.679 13.359 10.050

Average 14.756 16.757 43.147 22.481 5.552 5.280 8.582 4.883
Table 2 and 11 show the resulting objectives for four cases,
amely no clustering, benchmarks 1, 2, and proposed strategy,4
nd for different days of the year. In addition, the table and figure
how the percentage deviation from the scheduled plan when
ata for the next day is available, as defined below.

eviation =
ND
T

× 100%, (39)

here ND is the number of time instants that we would have
deviation from the scheduled plan (considering the constraints
of networks and resources).

The column of deviations demonstrates the robustness of the
proposed solution in each case. According to Fig. 11, the Markov
chain-based scenario selection strategy has the lowest devia-
tion in average and distribution; however, the objective is not
significantly greater than benchmark 1.

Figs. 12 also depict the planned flexibilities of different meth-
ods of scenario selection strategy for the 30th of July 2021.

We can deduce the following results from the Figs. 11–12 and
Table 2:

4 The results of benchmarks 1, 2, and the proposed strategy are presented
or K=3 clusters. If we increase the number of clusters to 4, the average of the
bjectives decreases by 2.6% while the average deviation does not change by
ore than 0.1% for the proposed strategy. It demonstrates that the number of
lusters of 3 was a reasonable choice.
11
• The proposed scenario selection strategy has the lowest
average deviation in Table 2, which means that the results
are more robust to the uncertainties. However, for the ad-
vantage of robustness against uncertainties, the objective of
the proposed strategy is less than the benchmark 2.

• The first benchmark considers scenarios that are similar, and
the second benchmark model is even more optimistic, and
thus, we wrongly assumed that the average consumption
could be less (see Figs. 12-b and 12-c).

• The green and read areas in Fig. 12 represent the flexibility
capacity sold by the network operator to the TSO for each
method. As one can see, the upward active power flexibility
is set to 0 for all cases, as generating active power and selling
the energy is worth more.

• Although the planned active and reactive power, as well as
flexibility, for the proposed strategy and the first benchmark
have similar patterns (with more average consumption in
the proposed strategy), there is a difference in the distri-
bution of deviation from the request of the TSO (0.4% less
deviation in the case of the proposed strategy in average, as
shown in Fig. 11). Note that the proposed scenario selection
strategy leads to 7.2% less deviation by comparing the worst
case of Markov chain and no clustering strategy (3.4% less
deviation by comparing the worst case of Markov chain and
benchmark 1). This is due to the fact that the scenarios gen-
erated by the proposed strategy results in a more realistic

scenarios (e.g., 85% accuracy level for July 30th, 2021).
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Fig. 11. Distribution of results for different days of the year.
Fig. 12. The planned active and reactive power, and flexibilities of (a) no clustering, (b) benchmark 1, (c) benchmark 2, (d) and proposed scenario selection strategy.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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6. Conclusion

The distributed energy resources (DERs) in an active distribu-
tion network (ADN) are used to plan active and reactive power
as well as the flexibility, ensuring security and providing high-
quality flexibility with less deviation in real-time. To achieve this,
we have formulated a stochastic optimization problem. However,
in order to solve this problem efficiently with limited computa-
tional resources, we have developed a scenario selection strategy
based on historical data.

The proposed scenario selection strategy in the case study is
compared to traditional methods, such as those that use real-
world data and auto-regressive integrated moving average
(ARIMA) forecasting. The proposed strategy has several advan-
tages:

(i) It generates a large number of scenarios quickly, making
it useful in situations where time and resources for data
generation are limited.

(ii) It is able to generate a limited number of realistic scenarios
that are close to the particular time series of the next day
and typical information from the previous days.

(iii) It allows for the incorporation of uncertain parameters and
constraints, while also allowing for the flexibility of an
active distribution network.

dditionally, the proposed method has a lower computational
omplexity and includes robust constraints. Its scalability makes
12
it suitable for use in active distribution networks with a large
number of buses.
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All codes and simulations are available on a GitHub reposi-
ory [31].
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