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In recent decades, smart building has received considerable research attention due to the increased
demand for connected and integrated technology. Based on data collected by sensors, alarms, lighting,
access control, heating and cleaning can be adjusted according to human activity and the actual needs
of the occupants, resulting in efficient energy management and operating cost savings. However, in most
cases, these sensors are application-specific, which limits their usefulness and scalability. Of the available
sensing technologies, acoustic methods often rely on the use of microphones, which can lead to privacy
issues. In this work, we use an electrodynamic loudspeaker in combination with a convolutional neural
network algorithm to extract and classify the features of indoor events from the sound field. We show
how the loudspeaker impedance is sensitive, through the modal response of the room, to changes in
occupancy or room layout (presence of people, movement or removal of furniture), door or window
opening, or temperature variation. This gives the speaker a new functionality in addition to audio broad-
casting. Theoretical analysis and experiments in real rooms demonstrate the accuracy and effectiveness
of this acoustic-based approach for supervised classification of indoor events.
� 2022 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, research and innovation in smart buildings are
attracting more and more interest in the construction and building
management society. Sensing technologies are enabling areas such
as lighting, heating, ventilation and air-conditioning (HVAC),
access control and many others to become more connected and
integrated, making buildings truly smart. By detecting indoor occu-
pancy, it becomes possible to adjust thermostat settings and HVAC
operations or secure sensitive spaces more efficiently, improving
working conditions and safety while saving costs and energy
[1,2]. Among them, camera-based detection is very popular, with
the disadvantage of having to store large amounts of data and
especially of interfering with privacy issues. Passive infrared
(PIR) sensing is widely used for lighting management, automatic
door opening, intrusion detection, etc. However, this non-
intrusive approach has several weaknesses. The sensor is sensitive
to changes in the environment and may cause a false alarm if there
is heat or cold flow from an HVAC system or direct exposure to
sunlight [3]. In addition, people who are not moving cannot be
detected. Environmental sensors typically used for measuring tem-
perature, relative humidity, or CO2 concentration can also be used
to estimate occupancy over time [4]. The main drawback, however,
is a low accuracy and a strong dependence on external atmo-
spheric conditions. Also worth mentioning are magnetic reed
switches used to improve resident safety by detecting any unau-
thorized entry or intrusion through a door or window. More
recently, acoustic methods have been proposed for room occu-
pancy estimation [5], occupant behaviour monitoring and emer-
gency event detection [6], or as a complement to a home
security system for intrusion detection [7]. However, these tech-
niques involving microphones can raise privacy concerns in the
workplace by inferring personal information from voice or speech
recordings.

The alternative approach proposed in this research is to use an
electrodynamic loudspeaker as an impedance sensor to relate
small changes in the room’s modal response to the indoor events
that produced them. Generally speaking, when a room is excited
by a sound source, the input of acoustic energy at modal frequen-
cies causes standing waves called room modes [8]. This results in
an uneven distribution of acoustic energy with large pressure fluc-
tuations influenced by various factors such as room size ratio,
room shape, surface absorption and wall configuration. Room
modes are known to alter the free-field response of electrodynamic
loudspeakers and are one of the main obstacles to accurate sound
reproduction in listening rooms [9–12]. The acoustic coupling of
the listener/loudspeaker to modal pressure variations is termed
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modal coupling. Near the pressure nodes, the acoustic load impe-
dance exerted by the room to the loudspeaker diaphragm is very
low, resulting in a low radiation efficiency. In contrast, in the vicin-
ity of the anti-nodes, the acoustic load impedance is very large,
which greatly increases the radiation efficiency of the loudspeaker.
The loudspeaker impedance therefore reflects some characteristics
of the room at a given location and can be used to study the behav-
ior and performance of sound sources in rooms at low frequencies.

The acoustic response of the room to a source depends not only
on the position of the source, but also on internal damping and
scattering by non-absorbing objects [13–16]. The damping of room
modes usually comes from the amount of absorbing materials
through furniture or acoustic treatment. Well below the Schroeder
frequency, however, porous or fibrous materials such as textiles,
curtains, carpets, acoustic foam panels or mineral wool have a rel-
atively weak effect. In contrast, the walls can be vibrated by the
sound waves, thus dissipating some of the acoustic energy from
the room’s modes [17]. Adding or removing a piece of furniture,
on the other hand, can slightly distort the mode shapes and shift
the natural frequencies of the room [17]. This also applies between
an occupied and an empty room. Depending on the wavelength,
the sound waves will be partly diffracted around the body and
partly absorbed. The absorption of sound energy in this case is
mainly dominated by the amount and type of clothing [18]. By
monitoring the acoustic impedance of the loudspeaker diaphragm
over time, it is therefore possible to detect different events result-
ing from changes in the room, simply by examining the evolution
of the room modes. This, coupled with the fact that a loudspeaker
cannot record sensitive data, unlike a security camera, makes it a
good candidate for use where security and privacy are at stake.

In this work, we investigate how a conventional electrodynamic
loudspeaker can be used to 1) monitor room occupancy to know
the presence of people in the workplace in real time, 2) detect a
change in perimeter (opening of a door or window) to alert if an
intruder enters a protected area, 3) track a thermal anomaly to
warn of an unusual temperature variation (e.g. fire).

The rest of the paper is structured as follows. Section 2, provides
the theoretical background for describing the acoustic coupling
between a loudspeaker and the room modes. A laboratory experi-
ment conducted in a meeting room is presented in Section 3 to
demonstrate the feasibility of the proposed methodology. Through
a 25-h test campaign, we show how the impedance of the loud-
speaker diaphragm is affected by room occupancy, perimeter
change or thermal anomaly. The classification problem is
addressed in Section 4 using a convolutional neural network algo-
rithm trained to recognise within labelled data sets the recurrent
patterns specific to the events of interest. We conclude with a dis-
cussion and prospects for future work.
2. Theoretical background

In this section, we present the modal theory for studying the
dynamic interaction between a loudspeaker and the room modes.
In the following model, the boundary surfaces are considered to
be locally reacting, so that the impedance of the walls is indepen-
dent of the angle of incidence of the sound waves. The effect of
room walls on internal damping can therefore be fully character-
ized by an impedance boundary condition which depends on spa-
tial coordinates and frequency.

2.1. Modal decomposition model

Considering a point source of volume flow Q in r0 ¼ ðx0; y0; z0Þ,
the pressure field in r ¼ ðx; y; zÞ can be expressed as a series of nor-
mal modes [8]:
2

pðx; y; zÞ ¼ jxqQ
X
n

pnðrÞpnðr0Þ
Kn k2n � k2
� � ð1Þ

wherex is the driving angular frequency, q is the density of air, c is
the speed of sound, kn;pn and Kn denote respectively the eigenval-
ues, the eigenfunctions and a coefficient which depend on the
assumptions made about the walls.

2.1.1. Rigid wall
With rigid walls and assuming that the mode coupling is small

enough to be neglected, these quantities are real and can be writ-
ten as:

kn ¼ kn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
ð2Þ

pn x; y; zð Þ ¼ cos kxxð Þ cos kyy
� �

cos kzzð Þ ð3Þ

Kn ¼ V
�nx�ny�nz

ð4Þ

where kx ¼ nxp=Lx; ky ¼ nyp=Ly; kz ¼ nzp=Lz are the wave numbers
associated with each dimension, nx;ny; nz are non-negative integers
that indicate the numbers of nodal planes perpendicular to the x-
axis, y-axis and z-axis, respectively, and �nx ¼ 1 for nx ¼ 0 and
�nx ¼ 2 for nx > 0. Similar expressions are used of �ny and �nz . The
corresponding natural frequency is therefore given by

f n ¼ c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þ k2z

q
ð5Þ

2.1.2. Finite wall impedance
If the walls are not perfectly rigid but have a uniform specific

admittance b ¼ nþ jr such that bkL � 1, where L is one of the
dimension of the room, it can be shows that [19]:

kn ¼ kn0 þ j
k

2kn0
�nx

bx0 þ bxLx

Lx
þ �ny

by0 þ byLy

Ly
þ �nz

bz0 þ bzLz

Lz

� �
ð6Þ

pn x; y; zð Þ ¼ cos gxnx

px
Lx

� jbx0
kLx
pgxnx

 !
cos gyny

py
Ly

� jby0
kLy
pgyny

 !

cos gznz

pz
Lz

� jbz0
kLz
pgznz

 !
ð7Þ

Kn ¼ V
1
2
þ sinðpgxnx Þ

2pgxnx

 !
1
2
þ
sinðpgyny

Þ
2pgyny

 !
1
2
þ sinðpgznz Þ

2pgznz

 !
ð8Þ

where,

gx0 ¼ � 1
jp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkLxðbx0 þ bxLx Þ

q
nx ¼ 0

gxnx ¼ nx þ j kLx
p2nx

ðbx0 þ bxLx Þ nx P 1
ð9Þ

Similar expressions are used for gyny
and gznz .

2.1.3. Walls with low real admittance
Assuming now a real specific admittance at the walls, i.e. b ¼ n,

the damping factor dn for each mode n is defined as [12,20]

dn ¼ c
2

�nx
bx0 þ bxLx

Lx
þ �ny

by0 þ byLy

Ly
þ �nz

bz0 þ bzLz

Lz

� �
ð10Þ

If now n can be considered as uniform for each wall, Eq. (10) can be
written

dn ¼ �nx
Lx

þ �ny
Ly

þ �nz
Lz

� �
cn ð11Þ

Substituting n by dn in Eqs. (6)–(9), Eq. (1) can be rewritten:

pðx; y; zÞ ¼ jxqc2Q
X
n

pnðrÞpnðr0Þ
Kn x2

n �x2 � 2jxdn
� � ð12Þ
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The average damping factor dn in Eq. (12) can be obtained experi-
mentally without prior knowledge of the impedance of the walls.
When the room modal density is low, which is true in a lightly
damped roomwell below the Schroeder frequency [21], dn is related
to the modal decay time MT60n of an eigenmode n as [8,20]

MT60n ¼ 3 lnð10Þ
dn

¼ 3 lnð10Þ
cn

V
ð�nx LyLz þ �nyLxLz þ �nz LxLyÞ

ð13Þ

which is analog to the reverberation time required for the sound
energy of a single mode to decay by 60 dB according to Sabine’s
formula.

The modal decomposition method discussed above is applicable
when the boundary surfaces of the room have a large and real
impedance such as massive or very stiff walls, which are therefore
not sound-absorbing. For room with randomly distributed impe-
dance surfaces, moreover, approximation methods must be used
to analytically calculate the eigenmodes [19].

2.2. Radiation of a piston in a room

Let us now consider a square piston mounted into a wall in the
plane x ¼ 0 in the rectangular room, as shown in Fig. 1. The piston
coordinates are y0 < y < y0 þ a and z0 < z < z0 þ a.

The position of the source is such that only the front radiation is
taken into account. This excludes many real-world situations but
reduces considerably the complexity of the analytical expression.
It is assumed that the piston oscillates with a vibratory speed v
normal to the wall at the driving frequency x. In a rigid wall con-
figuration, the boundary conditions are therefore given by:

@p
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x¼Lx

¼ @p
@y

			
y¼0

¼ @p
@y

			
y¼Ly

¼ @p
@z

		
z¼0 ¼ @p

@z

		
z¼Lz

¼ 0 and

@p
@x

		
x¼0 ¼ jxqv; ðy; zÞ 2 S

0; ðy; zÞ R S


 ð14Þ

The sound pressure field in the room can be expressed as [22]:

pðx; y; zÞ ¼ jxq
4v
LyLz

X
ny ;nz

anybnz

enyenz
cos kxðx� LxÞð Þ
kx sinðkxLxÞ

� cos kyy
� �

cos kzzð Þ ð15Þ

where kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2y � k2z

q
, e0 ¼ 2; ej ¼ 1 for j– 0;a0 ¼ b0 ¼ a,

anyP1 ¼ sin kyðy0þaÞð Þ�sinðkyy0Þ
ky

and bnzP1 ¼ sin kzðz0þaÞð Þ�sinðkzz0Þ
kz

ð16Þ
Fig. 1. Location of the square piston in the rectangular room.

3

The total reaction force acting on the piston of surface area S ¼ a2 is
given by:

F ¼
Z Z

S
pð0; y; zÞdydz ð17Þ

and the radiation impedance of the piston can therefore be obtained
from Eqs. (15) and (17) as [22]:

ZmrðxÞ ¼ F
v

				
x¼0

¼ j
4qx
LyLz

X
ny ;nz

cot kxLxð Þ
enyenz kx

a2
nyb

2
nz ð18Þ

Eq. (18) describes how the room affects the radiation from the loud-
speaker at the diaphragm by exerting a complex frequency-
dependent additional load. Any changes at the room boundaries
such as opening a door or window will therefore affect the load
impedance seen by the loudspeaker. Similarly, the speed of sound
involved in Eq. (18), which is a function of room temperature, is also
expected to have a quantifiable effect on this impedance as we shall
see in Section 3.5.

2.3. Computed results

For comparison with the closed-form expression given in Eq.
(18), a numerical simulation was performed with COMSOL Multi-
physics 5.6 using the Pressure Acoustics, Frequency Domain inter-
face. We have used the 3D geometrical model shown in Fig. 1
where the loudspeaker is modelled as a square piston vibrating
with a normal velocity v and a surface area of 0.125 m2. The walls
are modelled as a sound hard boundary in the physics interface.
The specific acoustic impedance is calculated as the ratio of the
spatial average of the acoustic pressure to the vibratory speed of
the piston. The interior of the room is filled with air with
c ¼ 343m/s q ¼ 1:2 kg/m3 for the speed of sound and density,
respectively.

Fig. 2 illustrates the frequency response of a rectangular room
of dimensions (5.97 m � 2.885 m � 2.615 m) calculated with
sound hard walls. It compares the specific acoustic impedance of
the square piston calculated using Eq. (18) with that computed
numerically using the FEM simulation software. As can be shown
in Fig. 2, a good agreement can be observed between the two
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Fig. 2. Plot of numerical versus analytical frequency response functions of the
specific acoustic radiation impedance of a square piston in an undamped rectan-
gular room, with a 0.1 Hz frequency resolution.
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frequency response functions. It can be seen that the specific
acoustic impedance has alternating maxima and minima which
reflect the fluctuation of pressure at the position of the loud-
speaker in the room.
3. Validation experiments

3.1. Description

In this section, we present the results of a test campaign con-
ducted in a meeting room of dimensions 4.98 m � 3.24 m � 3.04
m made of drywall and glazing. The objective is to show how cer-
tain events related to human activity can affect the diaphragm
impedance of a loudspeaker in the room. In this experiment, the
effect of opening/closing doors and windows, an empty or occu-
pied room, and a change in room temperature is specifically eval-
uated. As can be seen in Fig. 3, the room is furnished with a
meeting table and has a door on one side and two windows on
the opposite side.

A 6-inch closed-box loudspeaker is placed on the floor in a cor-
ner of the room throughout the experiment. To obtain the impe-
dance of the loudspeaker diaphragm, we used a Brüel & Kjaer
Fig. 3. Meeting room used for the validation experiment; a) view of the room from

4

Type 4954 1/4 inch microphone to pick up the sound pressure at
about 1 cm from the diaphragm and a Polytec IVS-500 laser Dop-
pler vibrometer to measure the normal velocity of the membrane
near the connection between the dust cap and the cone. Signals
are acquired at a sampling rate of 4096 Hz with a Brüel & Kjaer
Type 3160 data acquisition hardware. Each measurement is
2 min long. Data acquisition was repeated every 10 min for a total
duration of 25 h. This resulted in the recording of 153 measure-
ments. Throughout the experiment, the loudspeaker continuously
played low-level white noise fed by an input voltage of about
30 mV RMS.

The status of the parameters during each of the 14 phases of the
experiment is given in Table 1. Configurations 1, 4, 6, 8, 10, 12 and
14 are all identical and are referenced by a star symbol (�). They
correspond to the baseline scenario characterized by closed doors
and windows, no chairs or sound absorbing panels, and no people
in the room. In configuration 7, we used a single panel of Dinaphon
B 810 (bulk density 8.5–11.5 kgm�3, different pore sizes with a
maximum of 10 pores of 5–15 mm diameter per square meter)
open cell melamine foam with a total effective volume of
1:2� 0:6� 0:05 ¼ 0:036 m3. Configuration 9, consisting of 97 mea-
surements, corresponds to a variation in ambient temperature
the door (left) and from the windows (right) and b) map of the meeting room.



Table 1
Scenario timeline of the experiment.

scenario 1* 2 3 4* 5 6* 7

date 14/06/21 14/06/21 14/06/21 14/06/21 14/06/21 14/06/21 14/06/21
start time 11.19 am 12.18 pm 1.08 pm 1.48 pm 2.37 pm 3.17 pm 3.57 pm
stop time 12.08 pm 12.58 pm 1.38 pm 2.27 pm 3.07 pm 3.47 pm 4.27 pm
nb. meas. 6 5 4 5 4 4 4
door status C O O C C C C
window 1 C O C C C C C
window 2 C C C C C C C
body – – – – 1 – –
chairs – – – – 1 – –
foam panel – – – – – – 1
avg. temp (�C) 22.4 22.6 23.2 23.5 24.2 24.8 25.4
avg. hum (%) 25.8 25 26 27 27.8 28.8 29

scenario 8* 9 10* 11 12* 13 14*
date 14/06/21 14/06/21 15/06/21 15/06/21 15/06/21 15/06/21 15/06/21
start time 4.37 pm 5.16 pm 9.20 am 10 am 10.39 am 11.19 am 11.59 am
stop time 5.06 pm 9.10 am 9.50 am 10.30 am 11.09 am 11.49 am 12.29 pm
nb. meas. 4 97 4 4 4 4 4
door status C C C O C C C
window 1 C O C C C C C
window 2 C O C C C C C
body – – – – – – –
chairs – – – – – 9 –
foam panel – – – – – – –
avg. temp (�C) 26.1 25.1 24.7 25.1 25.9 26.5 26.9
avg. hum (%) 30 32 30.5 28.2 27.2 26.5 26.5
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obtained by leaving the two windows open overnight. In Table 1,
‘‘C” stands for closed and ‘‘O” stands for open. The temperature
and relative humidity were taken during each measurement and
the average values for each configuration are reported in Table 1.
Throughout the experiment, the temperature and relative humid-
ity varied between 22.4 and 26.9�C, and between 25% and 32%
respectively. The effect of temperature on the modal response of
the room is discussed in Section 3.5.

3.2. Event detection

In this section, we examine how a specific event can impact on
the loudspeaker impedance, in order to perform a supervised
classification.

Fig. 4 depicts in light grey solid lines the 31 measurements of
the modulus of the loudspeaker specific acoustic impedance (SAI)
- defined as the complex-valued ratio between the total acoustic
pressure and the diaphragm velocity - that have been obtained in
the baseline configuration described previously. They are displayed
between 80 Hz and 650 Hz with a frequency resolution of
0.0625 Hz. Assuming these measurements follow a normal distri-
bution for each frequency bin, about 99.7% of values are contained
within three standard deviations of the mean. The upper and lower
control limits are plotted as solid black lines and can be thought as
the ”three-sigma limits” into which an SAI measured in the base-
line situation should fall. In the same graphs, an example of an
indoor event (opening of two windows) is depicted in solid red
line. It is clear that certain room modes are largely affected by this
event, as its corresponding SAI falls outside the three-sigma limits.
Therefore, this kind of event can be easily detected by a trained
algorithm and alert to a potential security issue in the room.

An example of simple detection algorithm is described in the
following. Let’s call s a Boolean of value 1 in case the room differs
from the baseline situation, and 0 otherwise. A possible algorithm
for estimating the value of s is:

s ¼ 1; if N > K� Nt

0; otherwise



ð19Þ
5

where Nt is the total number of frequency bins contained in the SAI
frequency response, N is the number of frequency bins for which the
modulus of the SAI is not contained within the upper and lower lim-
its, and K is an arbitrary threshold between 0 and 1 (typically 0.1).

The confusion matrix obtained after applying such a decision
rule over the 153 available measurements is given in Table 2. For
these results, we set K = 1/100 � M, where M is the number of fre-
quency bins between 80 Hz and 280 Hz.

In Table 2, the missed detection corresponds to a realisation of
scenario 13 which simply differs from the baseline by the presence
of 9 chairs in the room. This is due to the very small effect that the
addition of furniture has on the diaphragm impedance at the loud-
speaker’s location in the room. The algorithmwas able to recognise
that the data from the other three measurements in scenario 13
were different from the baseline scenario. All other indoor events
involving the opening of windows and doors, the presence of peo-
ple, the addition of absorbent foam panels were correctly detected.

3.3. Introducing impedograms

As shown in Section 2, the SAI allows to account for the load
exerted by the room on the radiation from the loudspeaker.
Inspired by spectrograms which are a well-known time–frequency
representations of concatenated spectrum of signal chunks [23,24],
the concatenation of acoustic impedance gives rise to what might
be termed acoustic ‘‘impedograms” with time in seconds in the
x-axis and the frequency in Hz in the y-axis; the color scale
representing the module of the specific acoustic impedance, in
Pa.s/m.

Raw signals are segmented into chunks of size Lw samples and
overlap Lo samples, then (optionally) weighted by an apodization
window. The acoustic impedance is estimated by computing the
transfer function between normal velocity of the diaphragm
sensed by a laser Doppler vibrometer and the microphone signal,
for example by using the tfestimate function from Matlab. The con-
catenation of successive signal chunks forms 2D matrices of size
F � N where F is the number of frequency bins, and N is the number
of impedance curves, given by the following expression:



Fig. 4. Frequency response function of the loudspeaker specific acoustic impedance (SAI) showing the typical dispersion (excluding temperature) observed for the baseline
scenario from 31 measurements (configurations 1, 4, 6, 8, 10, 12 and 14 in Table 1) compared to the case of the two open windows (one measurement extracted the 97
measurements of configuration 9 in Table 1). Bottom: zoom in on different frequency ranges showing how such a change in boundary conditions affect the modal response of
the room, and thus the loudspeaker SAI.

Table 2
Confusion matrix for room change detection.

n = 153 a change actually occurred no change actually occurred

a change is predicted True positive: 121 (99.1%) False alarm: 1 (0.9%)
no change is predicted Missed detection: 1 (3.2%) True negative: 30 (96.8%)
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N ¼ L� Lw
Lw � Lo

� �
þ 1 ð20Þ

where L is the length of the raw signal, in samples, and b:c stands for
the floor operator.

3.4. Examples of impedograms

As an example, Figs. 5–7 show acoustic impedograms measured
between 600 Hz and 650 Hz after a change in perimeter, a change
in occupancy and a change in temperature, respectively.

Fig. 5 illustrates an intentional perimeter change consisting first
of opening a window and a door (between measurements 6 and 7),
followed by closing the window (between measurements 11 and
12), then the closing of the door (between measurements 15 and
16). The ambient temperature was stable throughout the measure-
ment, around 26�C. It can be observed that the opening of a door or
window substantially affects the frequency response of the room
by damping, broadening or frequency shifting the room modes.

The scenario described in Fig. 6 consists of an intentional
change of occupation in a meeting room. Successive measurements
from 17 to 20 are taken with an empty room with only a table in
the center, from 21 to 24 the room is occupied (one person sitting
on a chair), and from 25 to 28 the room is empty again. The ambi-
6

ent temperature was relatively stable around 26.5�C throughout
this experiment. As shown in Fig. 6, there is a noticeable attenua-
tion of certain modes in the presence of a person and a chair in the
meeting room, especially in the frequency range 600–650 Hz.

Fig. 7 illustrates the effect of varying the room temperature by
deliberately leaving two windows open overnight, keeping the
other parameters unchanged. It is clear that temperature variation
produces an increasing frequency shift of all room modes. The fre-
quency offset, in Hz, can be theoretically estimated as explained
below.

Figs. 8–10 show the corresponding impedograms in the electri-
cal domain, computed from the voltage and current at the loud-
speaker input terminals. Note that the electrical and acoustic
data (pressure and velocity at the loudspeaker diaphragm) used
to calculate the electrical and acoustic impedograms were mea-
sured simultaneously. As shown in Fig. 8–10 b), however, the
dynamic effect of the indoor events studied on the room modal
response is less noticeable in the electrical impedograms than in
the acoustic impedograms. This is due in particular to the principle
of electrodynamic transduction, in which the internal impedance
of the loudspeaker predominates over that of the acoustic load
exerted by the room. The frequency responses shown in
Figs. 8–10 c) clearly illustrate the mechanical resonance of the
moving part of the loudspeaker (here around f s ¼ 125 Hz) accounts



Fig. 5. Evolution of room modes over time depending on a perimeter change; a)
gives the state of the room boundary conditions between measurements 1 and 20
and the temperature, b) shows the corresponding impedogram between 600 Hz and
650 Hz resulting from the concatenation of 20 SAIs, and c) shows the frequency
response functions of the SAI for measurements 3 (door and windows closed) and
10 (door and two windows open) as an example.

Fig. 6. Evolution of room modes over time due to a change in occupation; a) gives
the occupancy status of the room and temperature between measurements 17 and
28, b) shows the corresponding impedogram between 600 Hz and 650 Hz resulting
from the concatenation of 12 SAIs, and c) shows the frequency response functions of
the SAI for measurements 18 (empty room) and 23 (one person sitting on a chair) as
an example.
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for most of the dynamics. The effect of the room modes thus con-
tribute moderately to this motional impedance, which is added to
the blocked impedance of the voice coil [25]. Nevertheless, it can
be seen that the acoustic load exerted by the room on the loud-
speaker is able to modulate the electrical input impedance. Even
if the effects are small, changes in perimeter, occupancy and tem-
perature can be detected, paving the way for even easier indoor
event monitoring.

3.5. On temperature change

Assuming air as an ideal gas, the speed of sound in dry air at
normal conditions can be approximated with an error less than
0.2% between �30�C and + 30�C using the following linearization
[26]:

ch ¼ 331:4þ 0:59 � h ð21Þ
where h is the temperature in degrees Celsius. By combining Eq.
(21) with Eq. (5), it can be shown that a temperature shift Dh
implies that the natural frequency of all modes is shifted by:
7

Df n ¼ 0:59
2
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As indicated in Eq. (22), the natural frequency of a given roommode
therefore varies proportionally with the ambient temperature. The
higher the natural frequency, the greater the frequency shift due
to a change in temperature. Fig. 11 shows contour curves where
Df n has constant values for a given mode between 0 and 700 Hz
and a temperature increase from 0 to + 5�C.

As an example, Fig. 12 shows the measured specific acoustic
impedance of the loudspeaker diaphragm at two different temper-
atures when the room is in the same configuration (door closed,
two windows open, no chair, no additional sound absorbing mate-
rials and no one inside). It is thus confirmed that a change in room
temperature indeed leads to a frequency shift of room modes
which increases with frequency. This experiment shows that the
impedance of the loudspeaker membrane is sensitive to small
modal variations in the sound field and that the interior events
studied have specific identifiable characteristics on the modal
response.



Fig. 7. Evolution of room modes over time due to a change in temperature; a) gives
the evolution over 25 h of the room temperature, b) shows the corresponding
impedogram between 600 Hz and 650 Hz resulting from the concatenation of 96
segments of 5 min recorded every 10 min and c) gives the SAI frequency response
functions for measurements 51 (26.5�C) and 119 (23.2�C) as an example.

Fig. 8. Same as Fig. 5 but in the electrical domain.
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4. Event classification

4.1. Problem statement

In the following, we present the classification process imple-
mented using an algorithm trained to recognize recurrent patterns
specific to the events of interest on the impedograms discussed
above. The intended application is to predict the classes of mea-
sured data that differ from the baseline scenario – identified by
the algorithm described in Section 3.2 for example. The general
algorithm framework for such a classification problem should be
flexible enough to work in real rooms and to not be limited to a
specific number of scenario. Indeed, some users may be interested
in detecting large changes, such as those that can be observed
between an open and a closed door, while others may be interested
in fine classification of very acoustically similar situations, such as
predicting the number of people in a room.

Regardless of the type of signal or application, a classification
problem traditionally involves two steps: feature extraction and
pattern recognition. In our context, knowing which feature(s) in
the impedance frequency response function is relevant to
8

dissociate two distinct scenarios generally requires very precise
room and loudspeaker models, and some expertise in engineering
and simulation. In practice, obtaining the mechanical and acoustic
properties of the boundaries of the room and the furniture is a
cumbersome process, making it almost impossible to identify in
advance what really matters in dissociating two scenarios. The rea-
son we chose a solution based on a deep neural network is that
they can extract such features automatically when trained on a
huge amount of data [27].

In recent years, deep neural networks have been successfully
applied to solve similar engineering problems in other application
areas such as ECG signal classification [28] or speech emotion clas-
sification [29]. The common strategy is to use two-dimensional
classification models even if the raw data is one-dimensional sig-
nals. This makes it possible to fall back within algorithms frame-
work originally implemented for image classification and whose
efficiency is no longer questioned, see [30] for example. One such
very famous classifier is the convolutional neural network (CNN),
introduced in 1989 by LeCun et al. for handwritten zip codes recog-
nition [31].

In audio or biomedical processing, a common method of con-
verting 1D signals to 2D images is to build (mel-) spectrograms,
as in [28]. We applied a similar approach to feed a CNN classifier
with impedograms described in Section 3.3. The preliminary study



Fig. 9. Same as Fig. 6 but in the electrical domain.
Fig. 10. Same as Fig. 7 but in the electrical domain.
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conducted to validate the feasibility of the principle is discussed
below.
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Fig. 11. Contour plot of expected frequency shift of room modes with a change in
temperature; y-axis represents the natural frequencies that room modes can take,
x-axis represents the temperature change and the contour curves indicate the iso-
response values of the corresponding frequency shift Df n .
4.2. Preliminary classification experiment

An experimental setup similar to that described in Section 3.1
was installed in a rectangular, rigid-walled room of 5.97 m
�2.885 m �2.615 m. In addition to the acoustic pressure and dia-
phragm normal velocity, the current and voltage at the input ter-
minals of the loudspeaker were also measured. The four signals
were acquired simultaneously at a sampling rate of 4400 Hz using
specially developed electronics to drive the loudspeaker by
voltage-controlled current source. The underlying idea is to
explore which type of impedogram (acoustic p=vor electrical u=i)
is best suited for the classification of events using a loudspeaker.
As can be seen in Fig. 13, the room is unfurnished and has only
one door (from where the photo is taken).

During this experiment, four classes were considered:

� class 1: door closed, room empty (baseline configuration)
� class 2: door closed, with 8 absorbing panels in the room
� class 3: door closed, someone walking in the room
� class 4: door open, room empty
9



Fig. 12. Specific acoustic impedance measured under the same room configuration
for two different temperature values.

Fig. 13. Test room used for the preliminary classification experiment; a) empty as in c
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In class 2, we used eight panels of Dinaphon B 810 open cell mel-
amine foam with a total effective volume of
1:2� 0:6� 0:05� 8 ¼ 0:288 m3. Approximately 45 min of signals
were recorded for each class. Data were divided into a training
dataset (about 40 min) and a testing dataset (about 5 min). In
terms of samples, the training dataset is constituted of 319, 295,
297, and 345 frames for class 1, 2, 3 and 4, respectively, and the
testing dataset is constituted of 53, 51, 57, and 56 frames for class
1, 2, 3 and 4, respectively.

The size of each frame was equal to F � N ¼ 1000 � 10, where F
denotes the frequency bins and N is the number of impedance
measurements. The studied bandwidth was set between 70.5 Hz
and 205 Hz, with a frequency resolution of 0.13 Hz. Note that for
convenience, each impedogram is resized to a square image of
100� 100 pixels before feeding the CNN. For the sake of trans-
parency we provide in Table 3 the architecture of the CNN used
in this work. Our model is inspired by one of those described in
the documentation of the Deep Learning toolbox of MATLAB (The
Math Works, Inc). The optimisation of the CNN architecture is
beyond the scope of this study, so we have not tried to compare
it to others. However, we believe that the classification results
obtained with another architecture would have equally proven
the feasibility of our approach.
lass 1 and 4, b) with 8 absorbing panels as in class 2, and c) map of the test room.



Table 3
Architecture of the used 2D-CNN model.

Layer Name Type Activations

1 imageinput 100� 100� 1 images Image Input 100� 100� 1
2 conv_1 12 3� 3 convolutions with stride ½1 1� Convolution 100� 100� 12
3 batchnorm_1 Batch normalization Batch Normalization 100� 100� 12
4 relu_1 ReLu ReLu 100� 100� 12
5 maxpool_1 3� 3 max pooling with stride ½3 3� Max Pooling 34� 34� 12
6 conv_2 24 3� 3 convolutions with stride ½1 1� Convolution 34� 34� 24
7 batchnorm_2 Batch normalization Batch Normalization 34� 34� 24
8 relu_2 ReLu ReLu 34� 34� 24
9 maxpool_2 3� 3 max pooling with stride ½3 3� Max Pooling 12� 12� 24
10 conv_3 48 3� 3 convolutions with stride ½1 1� Convolution 12� 12� 48
11 batchnorm_3 Batch normalization Batch Normalization 12� 12� 48
12 relu_3 ReLu ReLu 12� 12� 48
13 maxpool_3 12� 12 max pooling with stride ½1 1� Max Pooling 1� 1� 48
14 dropout 20% dropout Dropout 1� 1� 48
15 fc 4 fully connected layer Fully Connected 1� 1� 4
16 softmax softmax Softmax 1� 1� 4
17 classoutput crossentropyex Classification output 1� 1� 4
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4.3. Results

In the following, we evaluate the performance of the classifier in
terms of percentage accuracy of the results. Let’s M be the number
of classes, and let’s i and j two integers such that i 2 ½1;M� and
j 2 ½1;M�; j– i. An impedogram belonging to class i is called a pos-
itive sample and an impedogram belonging to class j is called a

negative sample. The model accuracy for the ith class can be defined
as:

Accuracyið%Þ ¼ TPi þ TNj

TPi þ TNj þ FPi;j þ FNi;j
� 100 ð23Þ

where TPi stands for true positive, meaning the number of positive
samples (actually belonging to class i) that are predicted to be pos-
itive by the model; TNj stands for true negative, meaning the num-
ber of all negative samples (actually belonging to any class j;8 j 2
½1;N�; j – i) that are predicted to be negative by the model; FPi;j

stands for false positive, meaning the number of samples that are
predicted to be positive by the model but are actually negative;
and FNi;j stands for false negative, meaning the number of samples
that are predicted to be negative by the model but are actually
positive.

Accuracy results after feeding the CNN with the testing dataset
are provided in Table 4. Two types of impedograms are consid-
ered and compared: those obtained from electrical quantities
(current and voltage) at the loudspeaker terminals and those
derived from acoustic quantities (output pressure and velocity
at the loudspeaker membrane). The accuracy results obtained
with the electrical impedograms are slightly lower than those
obtained with the acoustic impedograms, but still sufficient to
classify the different events of interest. In addition, this sensorless
approach has the advantage of being more compact and less
expensive. This preliminary result shows how promising
impedance-based event classification can be in an enclosed space
such as a room.
Table 4
Accuracy results in percent of the classifier.

impedance type door closed + room empty door closed + abs. panels

electrical 97.2 100
acoustical 99.5 100
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5. Discussion

Most meeting and office rooms are rectangular in shape with
dimensions such that the first room modes appear below a few
hundred hertz. This is also the frequency range in which most elec-
trodynamic speakers are used. This matching results in a strong
dynamic coupling between the loudspeaker and the modal
response of the room. In this way, room modes can be detected
at the loudspeaker diaphragm, which forms the acoustic interface.
The proposed method therefore uses the impedance of the loud-
speaker diaphragm to estimate various changes within the room.

The modal expansion method described in Section 2 is used to
show a simple case of coupling between a rectangular room with
rigid walls and a square piston. Through this analytical approach,
we show how room modes affect the frequency response of the
loudspeaker. This highlights that the diaphragm impedance is a
relevant quantity to observe changes in a room or at its boundaries.
By monitoring the loudspeaker impedance, a range of indoor
events can therefore be classified from the sound field. For exam-
ple, the closed-form solution given in Eq. (18) illustrates how a
temperature variation influences room modes. For more realistic
room shapes, however, a FEM model may be needed to predict
how an indoor event may affect the modal response of the room.
In addition, objects such as furniture can also be added to the
model to study how room modes are affected in terms of damping
and frequency shift. Note that a time-domain parallel wave-based
acoustic FEM and a frequency-domain FEM can be used to handle
more practical room acoustic designs [32–34]. They allow the
modelling of acoustic diffusers or sound absorbers with locally
reacting frequency-dependent impedance boundary conditions.

The indoor event detection and classification approach pro-
posed in this article requires a fine frequency resolution to analyse
small variations in the modal response. The frequency bins we
used experimentally were typically 0.1 Hz resolution or less. In a
lightly-damped room with solid walls, the study of a frequency
range between 20 Hz and 200 Hz is generally sufficient to extracts
door closed + someone door open

97.2 100
99.5 100
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the relevant features from the modal response. The quality factor
of the room modes is quite high and modal density is rather low
which makes them easily identifiable. In a real roommade of light-
weight drywall for example, the damping is higher and the normal
modes tend to overlap, making them more difficult to distinguish.
For the indoor event classes studied in this research, we found that
they were nevertheless detectable. This is explained by the fact
that each event affects several modes simultaneously and that
the algorithm considers the entire frequency response of the room.
If this concept were to be applied in an enclosed space of smaller or
larger dimensions, the frequency range of interest would need to
be adjusted accordingly.

This study demonstrates that it is possible to give new features
to a conventional loudspeaker already employed in buildings for
audio broadcasting. This widely used and relatively inexpensive
transducer can indeed be employ to detect changes in the indoor
sound field. An AI algorithm trained to recognise recurring patterns
in labelled data sets then extracts features to classify events. One
advantage of this technology is no sensitive data is recorded in
contrast to security camera. The fact that the device is easy to set
up in a room, if not already there, makes it an interesting option
in situations where security and privacy must be taken into
account. This can be useful in helping companies or building man-
agers to understand how premises and workspaces are used. By
detecting the presence of people or the movement of furniture in
real time, it is thus possible to use space more efficiently and save
money, or to know which offices or meeting rooms are available in
near real time.

This study also showed that the interior changes could be
detected from the electrical input impedance of the loudspeaker.
As can be seen in Table 4, the room modes transfer well to the
input impedance of the transducer but the accuracy results are
poorer than those obtained using the microphone and laser Dop-
pler vibrometer. This is partly because the response of the electro-
dynamic transducer dominates over that of the room modes. We
are currently working on training a long-term memory neural net-
work (LSTM) [35] to estimate the acoustic impedance directly from
the electrical impedance at the loudspeaker input terminals. With
this sensorless approach, only easily measurable electrical quanti-
ties are processed directly, making the device even more compact
and less expensive.

After this preliminary study, many questions remain to be
explored and pave the way to future research. It should be exam-
ined whether a loudspeaker can recognise events in a different
room from the one used for the training data set. It would also
be interesting to study the influence of the position of the loud-
speaker in the room on the overall performance. This would help
to determine whether the classification is improved in an area of
high modal density (typically in a corner of the room) or rather
in an area of lower modal density. From a loudspeaker perspective,
it would be desirable to determine the key electromechanical
parameters that should be favoured to increase the accuracy of
the classification. Another practical aspect would be to explore
whether the speaker can monitor indoor events while playing
music at the same time. Regarding feature extraction, the mini-
mum recording time per class in the learning phase of the algo-
rithm would also need to be studied.
6. Conclusion

In this paper, we present an acoustic-based approach to indoor
event detection and supervised classification using a loudspeaker
and an algorithm trained to recognise recurring patterns from
the modal response of the room. The principle relies on an impe-
dance measurement at the diaphragm of the loudspeaker which
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defines the acoustic interface with the room and is sensitive to
room modes. A CNN algorithm is then used to interpret the varia-
tions in frequency response induced by changes in or at the bound-
aries of the room. Experimental evidence in real rooms is provided,
showing how changes in occupancy, temperature variations or the
opening of doors and windows affect the room modes, and there-
fore the impedance of the diaphragm. A 25-h experiment con-
ducted in a meeting room shows that changes in acoustic
impedance seen through the loudspeaker can be used to identify
the cause. This privacy-friendly technology solution is expected
to eventually allow monitoring of different categories of indoor
events without recording sensitive data, in addition to playing
music, notifications or alerts. Future work will focus on estimating
acoustic impedance without external sensors to make it more com-
pact, cheaper and simpler, and in improving the automatic event
classification method.
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