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Abstract. A numerical model for the simulation of multiphase flows with free surfaces is
presented. The model allows to incorporate in a unified manner several phases ranging from
incompressible Newtonian flows, Oldroyd-B viscoelastic flows and neo-Hookean elastic solids
deformations.

We advocate a Eulerian modeling of the multiphase flows, relying on the volume fraction
of liquid, describing multiple phases with those different rheologies. One advantage of the
Eulerian approach is to allow for large deformations of elastic solids, and changes of topologies.
The numerical framework relies on an operator splitting strategy and a two-grid method. The
numerical model is validated with a numerical experiment based on the collision between two
elastic bodies with free surfaces.

1 MATHEMATICAL MODELING

Multiphase flows are ubiquitous in nature. The objective of this work is to introduce a
unified mathematical model for the numerical simulation of multiphase flows with free surfaces,
including multiple immiscible phases with different rheologies. The rheologies we would like to
consider are those of Newtonian fluids, of visco-elastic fluids, but also of elastic solids. Our goal
is to be able to account for large deformations or changes of topology of each phase. For this
reason, we advocate an Eulerian framework based on a volume-of-fluid approach [5, 6, 7]. This
framework has been experimented for various multiphysics problems [1, 2, 3], and is extended
here to elastic materials as well.

Let Λ ∈ R3 be a cavity containing a multiphase liquid flow and ambient air, and let T > 0 be
the final time of the simulation. The free surface model we consider reads as follows. The volume
fraction of liquid [5, 7] is used to track each of the liquid phases. We consider the characteristic
function of each liquid ϕ` : Λ × (0, T ) → {0, 1}, ` = 1, . . . , N , where N is the total number of
phases, and

ϕ(x, t) =

N∑
`=1

ϕ`(x, t).
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Since the phases are immiscible, we have ϕ(x, t) ∈ {0, 1}, for all x ∈ Λ and for all t ∈ (0, T ).
Let us then define:

Ω`(t) = {x ∈ Λ : ϕ`(x, t) = 1} ,

Ω(t) =

N⋃
`=1

Ω`(t) = {x ∈ Λ : ϕ(x, t) = 1} ,

and QT , the space-time domain containing the liquids is defined by QT =
{

(x, t) ∈ Λ× (0, T ) :
ϕ(x, t) = 1

}
=
{
x ∈ Ω(t), t ∈ (0, T )

}
.

Let us consider a velocity field v : QT → R3, a pressure field p : QT → R and an extra-stress
tensor σσσ : QT → R3×3 in the liquid phases. In order to describe the kinematics of the free
surface, each characteristic function ϕ` (the volume fraction of liquid for the phase `) satisfies
(in a weak sense) a transport equation:

∂ϕ`

∂t
+ v · ∇ϕ` = 0 in Λ× (0, T ), ` = 1, . . . , N. (1)

This equation translates the fact that the fluid particles move at velocity v. The characteristic
functions ϕ` are given at initial time, and boundary conditions are imposed on the inlet boundary
(if any).

Within this multiphase flow, we would like to consider a mixture of liquid phases with dif-
ferent rheologies. A unified model is derived, which allows to consider the interaction between
Newtonian fluids, visco-elastic fluids and elastic solids, with free surfaces. We assume that the
velocity v, the pressure p, and the extra-stress tensor σσσ satisfy the following set of equations in
the multiphase flow domain Ω(t) for all t ∈ (0, T ) :

ρ(ϕ)

(
∂u

∂t
+ (u · ∇)u

)
−∇ · (2ηs(ϕ)εεε(u)− pId + σσσ) = ρ(ϕ)g, in Ω(t), (2)

∇ · u = 0, in Ω(t), (3)

α(ϕ)σσσ + λ(ϕ)

(
∂σσσ

∂t
+ (u · ∇)σσσ −∇uσσσ − σσσ∇uT

)
= 2ηp(ϕ)εεε(u), in Ω(t). (4)

Here D(v) = 1/2(∇v +∇vT ) is the symmetric deformation tensor, Id the identity tensor, and
g denotes the gravity field. The physical quantities are the density ρ, the solvent viscosity
ηs ≥ 0, the polymer viscosity ηp > 0 and the relaxation time λ ≥ 0. They are assumed to vary
from one liquid phase to another as discontinuous, piecewise constant, functions of the volume
fractions of liquid ϕ`, ` = 1, . . . , N . For the sake of simplicity, the notation ρ(ϕ) actually denotes
ρ(ϕ1, . . . , ϕN ). The parameter α is a modeling parameter that also depends on the phase.

A 2D sketch of the situation is illustrated in Figure 1 in the case of two colliding droplets in
vacuum.

Equations (2)(3) are the Navier-Stokes equations for incompressible flows with the addition
of an extra-stress tensor. Equation (4), with α = 1 is the so-called Oldroyd-B model for visco-
elastic flows [1]. Actually, this model allows to unify Newtonian fluids (when α = 1 and λ = 0)
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Figure 1: Colliding droplets with different rheologies. 2D sketch of the geometrical domain. Two
droplets composed of two different immiscible liquid phases (tracked by ϕ1 and ϕ2) are colliding in a
cavity Λ. The droplets are surrounded by vacuum. The velocity, pressure and extra-stress variables
(u, p,σ) are defined in both liquid phases.

[7], visco-elastic fluids (when α = 1 and λ > 0) [1], and elastic solids expressed in Eulerian
coordinates (when α = 0, λ > 0, and ηs = 0) [9]. In the latter case, the tensor σσσ represents the
stress of an incompressible Neo-Hookean elastic solid. The ratio ηp/λ is then equal to the Lamé
coefficient of the incompressible solid material [9].

This system of equations (1)–(4) is supplemented by initial conditions at time t = 0 for the
volume fractions of liquid, the velocity and the extra-stress tensor. The initial fluid regions
are defined as Ω`(0) = {x ∈ Λ;ϕ`(x, 0) = 1} and Ω(0) = {x ∈ Λ;ϕ(x, 0) = 1}. Boundary
conditions on ∂Λ for the velocity include slip or no-slip conditions. If an inflow is imposed,
additional inflow boundary conditions for the the volume fractions of liquid, the velocity and
the extra-stress tensor must be prescribed on the inflow boundary of ∂Λ.

Surface tension effects on the liquid-vacuum interface are not taken into account, and the
surrounding vacuum has no influence on the fluid. The boundary conditions on the liquid-
vacuum interface ∂Ω(t)\∂Λ are then given by the no-force boundary condition:

(−pI + 2ηsεεε(u)) + σσσ) · n = 0, (5)

where n is the external normal vector to the liquid-vacuum interface.

2 NUMERICAL ALGORITHM

The numerical algorithm follows [6] and relies on a time splitting algorithm and a two-grid
method. The order one splitting algorithm relies on a decoupling between advection and diffusion
phenomena.
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2.1 Time splitting strategy

Let 0 = t0 < t1 < t2 < . . . < tN = T be a subdivision of the time interval [0, T ] and
∆tn = tn − tn−1, n = 0, 1, 2, . . . , N − 1 be the time steps. Let ϕn−1

` , un−1, pn−1,σσσn−1 be

approximations of ϕ`, u, p, σσσ respectively available at time tn−1, and ϕn−1 =
∑N

`=1 ϕ
n−1
` .

Let Ωn−1 = {x ∈ Λ : ϕn−1(x) = 1} be the approximated liquid region at time tn−1. The
approximations ϕn

` , ϕn, un, pn, σσσn at time tn are computed by means of the splitting algorithm
illustrated in Figure 2.
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Figure 2: Time splitting algorithm from time tn−1 to tn (left to right). At each time step n − 1, we
first solve the advection equations (6) (7) (8) to obtain the new positions of the liquid phases Ωn

1 and Ωn
2

and predictions un−1/2 and σn−1/2. Then, the diffusion problems (a generalized Stokes problem and the
Oldroyd-B problem) are solved to obtain the corrected velocity un, the pressure pn, and the corrected
extra-stress tensor σn

1. The prediction step consists in solving between tn−1 and tn the advection problems

∂ϕ`

∂t
+ u · ∇ϕ` = 0, ` = 1, . . . , N, (6)

∂u

∂t
+ (u · ∇)u = 0, (7)

∂σσσ

∂t
+ (u · ∇)σσσ = 0. (8)

to obtain the approximations ϕn
` , ϕ

n =
N∑
`=1

ϕn
` , Ωn

` = {x ∈ Λ : ϕn(x) = 1}, Ωn =
⋃N

`=1 Ωn
` ,

and the predictions un− 1
2 and σσσn−

1
2 in Ωn.

2. The correction step consists in solving between tn−1 and tn in Ωn the diffusion problems:

ρ(ϕn)
∂u

∂t
−∇ · (2ηs(ϕn)εεε(u)− pId + σσσ) = ρ(ϕn)g, (9)

∇ · u = 0, (10)

α(ϕn)σσσ + λ(ϕn)

(
∂σσσ

∂t
−∇uσσσ − σσσ∇uT

)
= 2ηp(ϕ

n)εεε(u). (11)
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2.2 Two-grid method

The splitting algorithm allows to decouple the diffusion and advection phenomena. In order to
take further advantage of this situation, two grids are used for the space discretization, following
[7]. They are illustrated in Figure 3 (in two space dimensions): a regular grid of small structured
cells (left) is used to solve the advection problems (6)–(8), while an unstructured tetrahedral
finite element mesh (right) is used to solve the diffusion problem (9)-(11).

Prediction step Correction step

Figure 3: Two-grid method (2D sketch). The advection problems are solved on a structured grid of
small cells (left). The diffusion problems are solved on a coarser unstructured finite element mesh (right).

The structured grid is chosen to be finer than the finite element grid, in order to improve
the accuracy of the free surfaces and interfaces’ approximation. The advection problems (6)–(8)
are solved with a forward characteristics method [7, 10]. Interface reconstruction techniques,
such as a SLIC method [8], or mass conservation heuristics [6], are added to avoid numerical
diffusion when implementing (6), as ϕ` is discontinuous across the interfaces. On the other hand,
the unstructured finite element mesh allows to consider complex geometries, and is considered
coarser to keep the computational cost of solving the diffusion (Stokes) problem reasonable. A
semi-implicit Euler scheme in time, and stabilized, continuous, piecewise linear, finite elements
are used to solve (9)-(11) [4].

We typically advocate H ' 3h − 5h in the numerical experiments presented below for a
balance between accuracy and computational efficiency. Under the CFL condition, the overall
convergence rate of the numerical method is one. Thus, when dividing H,h and ∆t by two, the
error should be divided by two.

3 PRELIMINARY NUMERICAL RESULTS

Some preliminary results are presented here, involving multiphase flows with a free surface.
We consider the case of two elastic (rubber) balls of different densities and rigidity with radius
r = 0.1 [m], and centers (−0.15, 0, 0) and (0.15, 0, 0) respectively. They are colliding in a cavity
Λ = (−0.43, 0.27) × (−0.14, 0.14) × (−0.14, 0.14) filled with vacuum. The physical parameters
are ηs,1 = ηs,2 = 0 [Pa s], ρ1 = 1000 [kg m−3], ρ2 = 2000 [kg m−3], λ1 = λ2 = 10−2 [s],
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Figure 4: Colliding elastic balls, with a light ball (left) and a heavier ball (right). Snapshots of the
collision at times t = 0, 3, 6, 10, 15 and 20 [ms] (left to right, top to bottom).

ηp,1 = 4 · 104 [Pa s], and ηp,2 = 2 · 105 [Pa s]. There are no gravity forces. The modeling
parameters are α1 = α2 = 0, which implies that both balls are composed of elastic materials.
The phases are initiated with an horizontal velocity along Ox of 10 [m/s] in opposite direction.
The initial extra-stress tensor σ(0) is equal to zero. Figure 4 shows snapshots of the collision at
times t = 0, 3, 6, 10, 15 and 20 [ms]. It shows that the light ball is propelled back to the left after
impact, while the dense one continues its march to the left as well. Figure 5 shows horizontal
profiles along the line Ox (for y = z = 0), at time t = 6 [ms] of the horizontal component of the
velocity ux and of the σxx extra-stress tensor component for three time and space discretizations
(coarse, middle and fine, h = 4, 2, 1 [mm], H = 16, 8, 4 [mm], ∆t = 0.4, 0.2, 0.1 [ms] respectively).
One can observe visually a convergence towards a given profile.
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Figure 5: Horizontal profiles along the horizontal line x at time t = 6 [ms] of the horizontal component
of the velocity ux (left) and of the σxx extra-stress tensor component (right). Three time and space
discretizations are considered (coarse, middle and fine, h = 4, 2, 1 [mm], H = 16, 8, 4 [mm], ∆t =
0.4, 0.2, 0.1 [ms]).

4 CONCLUSIONS

We have introduced a unified mathematical model for incompressible Newtonian fluids, in-
compressible viscoelastic fluids and elastic solids with free surfaces. Our formulation allows to
include multiple immiscible phases and free surfaces with the ambient air considered as vacuum.
We have extended an existing numerical method to include such cases with various rheologies.
The algorithm relies on a time splitting algorithm for the time discretization, and a two-grid
approach for the space discretization. Preliminary results have been presented when two elastic
bodies are colliding in a vacuum, and some convergence results have been exhibited. Future
work will investigate the interactions when the multiple phases have very different rheologies.
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